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A new approach to the electroweak properties of two–
particle composite systems is developed. The approach is
based on the use of the instant form of relativistic Hamilto-
nian dynamics. The main novel feature of this approach is
the new method of construction of the matrix element of the
electroweak current operator. The electroweak current matrix
element satisfies the relativistic covariance conditions and in
the case of the electromagnetic current also the conservation
law automatically. The properties of the system as well as the
approximations are formulated in terms of form factors. The
approach makes it possible to formulate relativistic impulse
approximation in such a way that the Lorentz–covariance of
the current is ensured. In the electromagnetic case the current
conservation law is ensured, too. The results of the calcula-
tions are unambiguous: they do not depend on the choice of
the coordinate frame and on the choice of ”good” components
of the current as it takes place in the standard form of light–
front dynamics. Our approach gives good results for the pion
electromagnetic form factor in the whole range of momentum
transfers available for experiments at present time, as well as
for lepton decay constant of pion.

I. INTRODUCTION.

All atoms, nuclei, and the main part of the so called
elementary particles are composite systems. That is why
the constructing of correct quantitative methods of cal-
culation for composite–particle structure is an important
line of investigations in particle physics. In nonrelativis-
tic dynamics there exist different correct methods which
use model or phenomenological interaction potentials.
However, in the case of high energy one needs to develop
relativistic methods. It is worth to note that now the ex-
periments on accelerators, in particular at JLab are per-
formed with such an accuracy that the treatment of tra-
ditionally ”nonrelativistic” systems (e.g. the deuteron)
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needs to take into account relativistic effects. Relativis-
tic effects are important also in the treatment of compos-
ite systems of light quarks. In this case the relativistic
effects are significant even at low energy. However, the
relativistic treatment of hadron composite systems is a
rather complicated problem. To solve it one needs, in
fact, to solve a many–particle relativistic problem with,
in addition, not precisely known interaction. Let us note
that the use of the methods of the field theory in this
case encounters serious difficulties. For example, it is
well known that the perturbative QCD can not be used
in the case of quark bound states (see, e.g., [1,2]).
In the present paper we will use the relativistic con-

stituent model which describes the hadron properties
at quark level in terms of degrees of freedom of con-
stituent quarks. The constituent quarks are consid-
ered as extended objects , the internal characteristics of
which (MSR, anomalous magnetic moments, form fac-
tors) are parameters of model. As relativistic variant of
constituent model we choose the method of relativistic
Hamiltonian dynamics (RHD) (see, e.g., [3–6] and the
references therein).
Our aim is to construct a relativistic invariant ap-

proach to electroweak structure of two–particle compos-
ite systems. The main problem here is the construction
of the current operators [7–11].
It seems to us that RHD is the method the most ad-

equate for our purpose. The use of RHD enables one to
separate the main degrees of freedom and so to construct
convenient models.
We use one of the forms of RHD, namely the version

of the instant form (IF).
Our approach has a number of features that distinguish

it from other forms of dynamics and other approaches in
the frames of IF.

• The electroweak current matrix element satisfies
the relativistic covariance conditions and in the
case of the electromagnetic current also the con-
servation law automatically.

• We propose a modified impulse approximation
(MIA). It is constructed in relativistic invariant
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way. This means that our MIA does not depend on
the choice of the coordinate frame, and this con-
trasts principally with the ”frame–dependent” im-
pulse approximation usually used in instant form
(IF) of dynamics. 1

• Our approach provides with correct and natural
nonrelativistic limit (”the correspondence princi-
ple” is fulfilled).

• For composite systems (including the spin 1 case)
the approach guarantees the uniqueness of the so-
lution for form factors and it does not use such con-
cepts as ”good” and ”bad” current components.

• The approach describes correctly the spin Wigner
rotation and this fact makes it possible to obtain
the correct (QCD) asymptotic.

The RHD method as the relativistic theory of com-
posite systems is based on the direct realization of the
Poincaré algebra on the set of dynamical observables on
the Hilbert space (see, e.g., [3–6] and the references
therein). RHD theory of particles lie between local field
theoretic models and nonrelativistic quantum mechanical
models.
Let us describe briefly the main statements of RHD.
As it is known (see, e.g., [12]), the relativistic invari-

ance of a theory means that there exists (on the Hilbert
space of states) the unitary representation of the inho-
mogeneous group SL(2, C), which is the universal cov-
ering of the Poincaré group. The relativistic invariance
means the validity of the Poincaré algebra commutation
relations for the generators of space–time translations
P̂µ and rotations M̂µν . To construct the representation
SL(2, C) means to obtain these generators in terms of
dynamical variables of the system. In the case of free
particle system this program is not difficult to be re-
alized and the generators P̂µ , M̂µν have clear phys-
ical meaning: P̂ 0 ≡ Ĥ — is the total energy opera-

tor, ~̂P = (P̂ 1, P̂ 2, P̂ 3) — is the operator of the total

3–momentum, ~̂J = (M̂23, M̂31, M̂12) — the operator of

the total angular momentum, ~̂N = (M̂01, M̂02, M̂03) —
the generators of Lorentz boosts.

1 It is known that correct impulse approximation (IA) real-
ization in the frame of traditional version of IF dynamics en-
counters difficulties: the standard IA depends on the choice of
the coordinate frame. We show below that IA can be formu-
lated in an invariant way, the composite system form factors
being defined by the one–particle currents alone.

In the case of interacting systems the situation is dif-
ferent and the construction of the generators in terms
of dynamical variables encounters some difficulties. To
make clear the sense of these difficulties let us compare
RHD with the nonrelativistic quantum mechanics. In
nonrelativistic case it is the Galilean group that is the
group of invariance. In the case of nonrelativistic inter-
acting system the interaction operator enters (in addi-
tive way) only the generator of time translations (energy
operator). The interaction operator satisfies the usual
conditions of invariance under translations and rotations
and of independence on the choice of inertial coordinate
frame. Under these conditions the algebraic relations for
the generators of the Galilei group written in terms of dy-
namical variables remain to be valid after the interaction
including. This is the meaning of the Galilean invariance
of the theory. So, in nonrelativistic theory of interacting
particles it is only one generator of Galilei group — the
Hamiltonian — that contains the interaction. Other gen-
erators have the same form as in the case of free particles.
This way of interaction including in the observables alge-
bra is unique in nonrelativistic case and gives the unique
nonrelativistic dynamics — the dynamics governed by
the Schrödinger equation.
The situation in the relativistic case is quite different.

The structure of the Poincaré algebra is of such kind
that the interaction including in the total energy operator
alone results in the breaking of algebraic structure, i.e.
in the relativistic invariance breaking. This is the conse-
quence of the fact that the Lorentz transformations mix
space and time. To preserve the algebra it is necessary
to include the interaction in the other generators, too.
Now the generators of Poincaré algebra can be divided
into two classes: containing interaction (interacting gen-
erators) – hamiltonians, and without interaction (non-
interacting generators). The latter present the so called
kinematical subgroup. This division, that is the interac-
tion inclusion in the Poincaré group, is not unique. The
different ways of such a division preserving the Poincaré
algebra result in different types of relativistic dynamics
(see, e.g., [4]).
The idea of this approach — RHD — is originated by

Dirac. In [13] he considered different ways of descrip-
tion of the evolution of classical relativistic systems —
different forms of dynamics. Dirac separated the concept
of time as a coordinate and that of time as a parameter
defining the system evolution. Consequently, he defined
three main forms of dynamics with different evolution pa-
rameters: point (PF), instant (IF) and light–front (FF)
dynamics. Each of these forms has its relative advan-
tages and disadvantages. The total number of possible
dynamics is actually five [3] so that the unique non-
relativistic Hamilton description is changed in relativis-
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tic case for, generally, five possibilities. Each of these
possible dynamics is connected with a three–dimensional
hypersurface in the four dimensional space. The initial
conditions are given on these hypersurfaces and the evo-
lution of the hypersurfaces is described. The kinemati-
cal subgroups are the invariance groups of the hypersur-
faces. In particular, these hypersurfaces are: hyperboloid
xµ xµ = a2, t > 0 (PF), hyperplane t = 0 (IF), light–
cone surface x0 + x3 = 0 (FF).
It is worth to notice that RHD and the field theory

are quite different approaches. The establishment of the
connection between RHD and field theory is a difficult
and as yet unresolved problem. Contrary to field theory,
RHD is dealing with finite number of degrees of freedom
from the very beginning. This is certainly a kind of a
model approach. The preserving of the Poincaré alge-
bra ensures the relativistic invariance (see for details the
Sec.II). So, the covariance of the description in the frame
of RHD is due to the existence of the unique unitary
representation of the inhomogeneous group SL(2, C) on
the Hilbert space of composite system states with finite
number of degrees of freedom. The success of composite
models shows the validity of approximate relativistic in-
variant description with fixed number of particles and a
finite number of degrees of freedom. The similar situa-
tion (as was pointed out in [3]) takes place in the solid
state theory: many of solid state properties are connected
directly with its symmetry group and the actual form of
the particle interaction plays less important role. RHD
is based on the simultaneous action of two fundamental
principles: relativistic invariance and Hamiltonian prin-
ciple — and presents the tool the most adequate to treat
the systems with finite number of degrees of freedom.
It is worth to notice that the mathematics of RHD is
similar to that of nonrelativistic quantum mechanics and
permits to assimilate the sophisticated methods of phe-
nomenological potentials and can be generalized to de-
scribe three or more particles.
Now the problem of the choice of the actual form of

RHD arises.
Some time ago it was proved that S–matrices are

equivalent in the different dynamics forms [14]. This fact
is interesting but it does not mean the absolute equiva-
lence of the forms. First, there are problems which can
not be reduced to S–matrix, e.g., the calculation of form
factors. Second, one has to keep in mind that any con-
crete calculation uses some approximations; the approx-
imations usually used in different forms of dynamics are
nonequivalent.
Our point of view is the following. One must choose

the form of dynamics adequate to the problem in question
and to the approximations to be done. It seems us that
this is in the spirit of RHD – the choosing of the adequate

degrees of freedom.
RHD is widely used in the theory of electromag-

netic properties of composite quark and nucleon systems
[6], [8], [11], [15–28]. It was shown that RHD not only
presents an interesting relativistic model but is a fruitful
tool and can compete with other approaches in describing
the existing experimental data ( especially at small and
moderate momentum transfers). At present time the FF
dynamics is the most developed and used for composite
systems [8,11,15,16,18,19]. In fact, the light front dynam-
ics has obvious advantages: a) the minimal number of
operators containing the interaction (three); b) the sim-
ple relativistic invariant separation of the variables into
classes of ”internal” and ”external” variables (while con-
sidering the approach as Hamiltonian theory with fixed
particle number); c) the simple vacuum structure for the
light–front perturbative field theory. However, there are
some difficulties in the FF RHD approach. In particular,
it was shown [15,29] that the calculated electromagnetic
form factors for the systems with the total angular mo-
mentum J = 1 (the deuteron, the ρ – meson) vary signif-
icantly with the rotation of the coordinate frame. This
ambiguity is caused by the breaking of the so called angle
condition [15,29], that is really by the breaking of the
rotation invariance of the theory. Some of the difficulties
of FF dynamics are discussed in [30]. A possible way
to solve the problem by adding some new (nonphysical)
form factors to the electromagnetic current was proposed
(see [31] and references therein).
A different approach to the problem was proposed re-

cently in Ref. [11], where a new method of construction
of electromagnetic current operators in the frame of FF
dynamics was given. The method of [11] gives unam-
biguous deuteron form factors. However, as the authors
of [11] note themselves, their current operator and the
one used in Ref. [8] are different, since both of them
are obtained from the free one, but in different reference
frames, related by an interaction dependent rotation.
All these facts naturally cause authors to consider

other forms of relativistic Dirac dynamics.
Recently the PF dynamics was considered in the pa-

pers [6,23,26,27]. The authors used PF dynamics to
calculate the processes under investigations in JLab ex-
periments. It is worth to notice that these experiments
enlarge the interest to the RHD approach – the relativis-
tic theory which can be used in the region of soft pro-
cesses.
Now we present a relativistic treatment of the prob-

lem of soft electroweak structure in the framework of
another form – IF of RHD. IF of relativistic dynamics,
although not widely used, has some advantages. The cal-
culations can be performed in a natural straightforward
way without special coordinates. IF is particularly con-
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venient to discuss the nonrelativistic limit of relativistic
results. This approach is obviously rotational invariant,
so IF is the most suitable for spin problems.
We describe the dynamics of composite systems (the

constituent interaction) in the frame of general RHD ax-
iomatics. However, our approach differs from the tra-
ditional RHD by the way of constructing of matrix ele-
ments of local operators. In particular, our method of
description of the electromagnetic structure of compos-
ite systems permits the construction of current matrix
elements satisfying the Lorentz–covariance condition and
the current conservation law.
To construct the current operator in the frame of IF

RHD we use the general method of relativistic invariant
parameterization of matrix elements of local operators
proposed as long ago as in 1963 by Cheshkov and Shi-
rokov [32].
The method of [32] gives matrix elements of the op-

erators of arbitrary tensor dimension (Lorentz–scalar,
Lorentz-vector, Lorentz–tensor) in terms of a finite num-
ber of relativistic invariant functions – form factors. The
form factors contain all the dynamical information on the
transitions defined by the operator. That is why a system
can be described in terms of form factors.
The method of parameterization is similar in spirit to

the method of presentation of matrix elements of irre-
ducible tensor operators on the rotation group in terms of
reduced matrix elements. This method extracts from the
matrix element of a tensor operator a part defining sym-
metry properties and selection rules following the well
known Wigner–Eckart theorem.
In the review [4] two possible variants of such kind of

representation of matrix elements in terms of form fac-
tors are presented – the elementary–particle parameteri-
zation and the multipole parameterization. The variant
of parameterization given in [32] is an alternative one.
In [32] the authors propose the construction of matrix
elements in canonical basis so it can be called canonical
parameterization. This method was developed for the
case of composite systems in [33,34]. The composite–
system form factors in this approach are in general case
the distributions (generalized functions), they are defined
by continuous linear functionals on a space of test func-
tions. Thus, for example, the current matrix elements
for composite systems are functionals, generated by some
Lorentz–covariant distributions, and the form factors are
functionals generated by regular Lorentz–invariant gen-
eralized functions. We demonstrate these facts below, in
Sec.III, using a simple model as an example.
It is worth to notice that the statement that the form

factors of a composite system are generalized functions is
not something exotic. This fact takes place in the stan-
dard nonrelativistic potential theory, too (see Sec.III(F)).

The use of canonical parameterization permits to de-
scribe the electroweak properties of composite systems
satisfying the Lorentz–covariance condition on each stage
of calculation and to satisfy the electromagnetic cur-
rent conservation law when describing the electromag-
netic properties. In our formalism it is necessary to for-
mulate the composite model features in slightly unusual
way in terms of matrix elements which are generalized
functions.
In particular, the relativistic impulse approximation

(IA) has to be reformulated.
Let us remind the physics of IA. In IA a test particle

interacts mainly with each component separately, that
is the electromagnetic current of the composite system
can be described in terms of one–particle currents. In
fact, the composite–system current is approximated by
the corresponding free–system current. This means that
exchange currents are neglected, or, in other words, that
there is no three–particle forces in the interaction of a
test particle with constituents. It is well known that
the traditional IA breaks the Lorentz–covariance of the
composite–system current and the conservation law for
the electromagnetic current (see, e.g., [4] for details). As
we show in the Sec.III(C) one can overcome these diffi-
culties if one formulates IA in terms of form factors.
It is worth to notice that all known approaches (in-

cluding the perturbative quantum field theory (QFT))
encounter difficulties while constructing a composite–
system current operator satisfying Lorentz–covariance
and conservation conditions. This problem is now dis-
cussed widely in the literature [7–11]. To satisfy the con-
servation law in the frame of Bethe–Salpeter equation
and quasipotential equations, for example, it is necessary
to go beyond IA: one has to add the so called two–particle
currents to the current operator. In the case of nucleon
composite systems these currents are interpreted as me-
son exchange currents [9]. In the case of deuteron this
means the simultaneous interaction of virtual γ– quanta
with proton and neutron. However, in Ref. [35] it is
shown that the current conservation law can be satisfied
without such processes, although they contribute to the
deuteron form factor. It seems that at the present time
there is an intention to formulate IA with transformed
conservation properties without dynamical contribution
of exchange currents [11,26,31].
Our formalism also gives, in fact, the description of

the covariance properties of the operators in terms of
many–particle as well as one–particle currents. However,
the important feature of our formalism is the fact that
form factors or reduced matrix elements describing the
dynamics of transitions contain only the contributions of
one–particle currents.
So, our approach to the construction of the current
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operator includes the following main points:
1. We extract from the current matrix element of com-
posite system the reduced matrix elements (form factors)
containing the dynamical information on the process. In
general these form factors are generalized functions.
2. Along with form factors we extract from the matrix
element a part which defines the symmetry properties of
the current: the transformation properties under Lorentz
transformation, discrete symmetries, conservation laws
etc.
3. The physical approximations which are used to calcu-
late the current are formulated not in terms of operators
but in terms of form factors.
In this paper we present the main points of our ap-

proach. To make it transparent we consider here only
simple systems with zero total angular momenta, so that
technical details do not mask the essence of the method.
We demonstrate the effectiveness of the approach by cal-
culating the pion electroweak properties. In this case the
canonical parameterization is very simple and can be re-
alized without difficulties. The case of more complicated
systems needs using a rather sophisticated mathematics
for canonical parameterization of local operator matrix
elements and will be considered elsewhere.
The paper is organized as follows. In Sect. II we re-

mind briefly the basic statements of RHD, especially of IF
RHD. Two bases in the state space of composite system
are considered: the basis with individual spins and mo-
menta and the basis with separated center–of–mass mo-
tion. The Clebsh–Gordan decomposition for the Poincaré
group which connects these bases is given. The IF wave
functions of composite systems are defined. In Sect. III
our approach to relativistic theory of two–particle com-
posite systems and their electroweak properties is pre-
sented. A simple model is considered in details: two spin-
less particles in the S-state of relative motion, one of the
particles being uncharged. The electromagnetic form fac-
tor of the system is derived. The standard conditions for
the current operator are discussed. The modified impulse
approximation (MIA) is proposed. The results of IA and
MIA are compared. The nonrelativistic limit is consid-
ered. The connection between the presented version of IF
RHD and the dispersion relations in mass is established.
In Sect.IV the developed formalism is used in the case
of the system of two particles with spins 1/2. The pion
electromagnetic form factor and the lepton decay con-
stant are derived. The model parameters are discussed
and the comparison of the results with the experimental
data is given. The results of calculations in IA and MIA
are compared and are shown to differ significantly. In
Sect.V the conclusion is given.

II. RELATIVISTIC HAMILTONIAN DYNAMICS.

In this Section some basic equations of RHD and
some relations from relativistic spin theory are briefly
reviewed.
The relativistic invariance of a theory means that the

unitary representation of the Poincaré group is realized
on the Hilbert space of system states (see, e.g., [12]).
In this case the structure of the Poincaré algebra can be
defined on the set of observables (M̂µν , P̂ σ)

[M̂µν , P̂ σ] = −i(gµσP̂ ν − gνσP̂µ),

[M̂µν , M̂σρ] = −i(gµσM̂νρ − gνσM̂µρ)− (σ ↔ ρ),

[P̂µ, P̂ ν ] = 0. (1)

In (1) gµν is the metric tensor in Minkowski space.
As we have mentioned, in the case of the particles with
interaction the realization of the Poincaré algebra on the
set of observables is more complicated than in the case of
the free particles. Let us consider one key commutator
from the set of commutators (1) (see, e.g., [2]):

[P̂ jN̂k] = i δjk Ĥ (2)

(we use notations given in the Introduction; j, k =
1, 2, 3).

Since Ĥ is interaction dependent for non-trivial sys-

tems, either ~̂P , ~̂N , or some combination of ~̂P and ~̂N
also must be interacting. To preserve the commutation
relations (1) one has to make other generators depending
on the interaction, too. So, the generators occur to fall
into two groups: the generators which are independent of
the interaction and form the so called kinematical sub-
group, and the generators depending on the interaction
– Hamiltonians. This division is not unique. Different
ways to obtain kinematical subgroups result in different
forms of dynamics.
In this paper we use the so called instant form dynam-

ics (IF). In this form the kinematical subgroup contains
the generators of the group of rotations and translations
in the three–dimensional Euclidean space:

~̂J , ~̂P . (3)

The remaining generators are Hamiltonians (interaction
depending):

P̂ 0 , ~̂N . (4)

The additive including of interaction into the mass
square operator (Bakamjian–Thomas procedure [36], see,
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e.g., [4] for details) presents one of the possible technical
ways to include interaction in the algebra (1):

M̂2
0 → M̂2

I = M̂2
0 + Û . (5)

Here M̂0 is the operator of invariant mass for the free
system and M̂I – for the system with interaction. The
interaction operator Û has to satisfy the following com-
mutation relations:

[

~̂P , Û
]

=
[

~̂J, Û
]

=
[

~▽P , Û
]

= 0 . (6)

These constraints (6) ensure that the algebraic relations
(1) are fulfilled for interacting system. The constraints
(6) are not too strong. For instance, a large class of non-
relativistic potential satisfies (6). The relations (6) mean
that the interaction potential does not depend on the to-
tal momentum of the system. This fact is well established
for a class of potential, for example, for separable poten-
tials [37]. Nevertheless, the conditions (5) and (6) can
be considered as the model ones. There exists another
approach [38] where a potential depends on the total mo-
mentum but that approach is out of scope of this paper.
In RHD the wave function of the system of interacting

particles is the eigenfunction of a complete set of com-
muting operators. In IF this set is:

M̂2
I , Ĵ2 , Ĵ3 , ~̂P . (7)

Ĵ2 is the operator of the square of the total angular mo-

mentum. In IF the operators Ĵ2 , Ĵ3 , ~̂P coincide with
those for the free system. So, in (7) only the operator

M̂2
I depends on the interaction.
To find the eigenfunctions for the system (7) one has

first to construct the adequate basis in the state space of
composite system. In the case of two-particle system (for
example, quark-antiquark system q q̄) the Hilbert space
in RHD is the direct product of two one-particle Hilbert
spaces: Hqq̄ ≡ Hq ⊗Hq̄.
As a basis in Hqq̄ one can choose the following set of

two-particle state vectors:

| ~p1 ,m1; ~p2 ,m2〉 = | ~p1m1〉 ⊗ | ~p1m2 〉 ,

〈~p ,m | ~p ′m′〉 = 2p0 δ(~p− ~p ′) δmm′ . (8)

Here ~p1 , ~p2 are 3-momenta of particles, m1 , m2 — spin

projections on the axis z, p0 =
√

~p2 +M2 , M is the
constituent mass.
One can choose another basis where the motion of the

two-particle center of mass is separated and where three
operators of the set (7) are diagonal:

| ~P ,
√
s, J, l, S, mJ 〉,

〈 ~P ,
√
s, J, l, S, mJ | ~P ′,

√
s′, J ′, l′, S′, mJ′ 〉

= NCG δ
(3)(~P − ~P ′)δ(

√
s−

√
s′)δJJ′δll′δSS′δmJmJ′

,

NCG =
(2P0)

2

8 k
√
s
, k =

1

2

√

s− 4M2 . (9)

Here Pµ = (p1 + p2)µ, P
2
µ = s,

√
s is the invariant

mass of the two-particle system, l — the orbital angu-
lar momentum in the center–of–mass frame (C.M.S.),
~S 2 = (~S1 + ~S2)

2 = S(S + 1) , S — the total spin in
C.M.S., J — the total angular momentum with the pro-
jection mJ .
The basis (9) is connected with the basis (8) through

the Clebsh–Gordan (CG) decomposition for the Poincaré
group. The decomposition of the direct product (8)
of two irreducible representations of the Poincaré group
into irreducible representations (9) has the following form
[34]:

| ~p1 ,m1; ~p2 ,m2 〉 =
∑

| ~P ,
√
s, J, l, S, mJ 〉

×〈JmJ |S lmsml 〉Y ∗
lml

(ϑ , ϕ)〈S mS |1/2 1/2 m̃1 m̃2 〉

× 〈 m̃1|D1/2(P, p1) |m1 〉〈 m̃2 |D1/2(P, p2) |m2 〉. (10)

Here the sum is over the variables m̃1, m̃2, ml, mS , l,
S, J , mJ . ~p = (~p1 − ~p2)/2, p = |~p|, ϑ , ϕ are the spheri-
cal angles of the vector ~p in the C.M.S., Ylml

- a spher-
ical harmonics (star means the complex conjugation),
〈SmS |1/2 1/2 m̃1 m̃2 〉 and 〈JmJ |S lmS ml 〉 are the CG
coefficients for the group SU(2), 〈 m̃|D1/2(P, p) |m 〉 - the
three–dimensional spin rotation matrix to be used for
correct relativistic invariant spin addition.
Let us discuss briefly the relativistic properties of spins.

It is known that the Lorentz transformation for spins is
momentum depending (see, e.g., [12]). So, to perform
Lorentz invariant spin addition for particles with differ-
ent momenta ~p and ~p ′ one has to ”shift” the spins to
the frame where the momenta are equal to one another.
The spin transforms following the so called small group
which is isomorphic to rotation group and thus, the op-
erator of such a ”shift”is a 3-dimensional rotation matrix
D(α, β, γ) . The Euler angles α, β, γ can be written in
terms of the components of the vectors ~p and ~p ′. In this
way the ”transplantation” of spins on one and the same
momentum is realized. To understand what means this
”transplantation” let us consider an example: one par-
ticle has the momentum ~p1, mass M1, spin j and spin
projection m, while another particle with momentum ~p2
and mass M2 has no spin. In the case of free particles
the vector state of this system is

6



| ~p1 ,M1 , j ,m; ~p2 ,M2 〉 = | ~p1 ,M1 , j ,m〉 ⊗ | ~p2 ,M2 〉.
(11)

The two–particle vector state in the case when it is the
first particle that has no spin is

| ~p1 ,M1; ~p2 ,M2 , j ,m 〉 = | ~p1 ,M1 〉 ⊗ | ~p2 ,M2 , j ,m 〉.
(12)

In nonrelativistic angular momentum theory the states
(11) and (12) are identical. They describe the two–
particle system with momenta ~p1 and ~p2 and total spin
j with the projection m. In both cases the total spin
can be obtained in simple way and is equal to the spin j
of the first particle for (11) or of the second particle for
(12).
In relativistic theory the states (11) and (12) differ es-

sentially. The difference is caused by the fact that the
states transform from one inertial coordinate system to
another in different ways. As was mentioned before the
Lorentz transformation for spin depends on the particle
momentum and the spins in (11) and (12) correspond
to particles with different momenta. In relativistic case
the states (11) and (12) coincide only if the particles mo-
menta are equal. In general case, to connect the state
vectors (11) and (12) one has to ”shift” the spin, for
example, to shift the spin in (12) into the frame where
the second particle has the momentum ~p1. This shift-
ing transformation is realized by the matrix Dj(p2, p1)
which belongs to the small group. Let us consider the
state vector

| ~p1 ,M1 〉 ⊗Dj(p2, p1) | ~p2 ,M2 , j ,m 〉. (13)

Let us remind that a transformation belonging to the
small group does not act on momenta. It is easy to
see that the resulting vector describes the same state as
(11) and transforms from one frame to another in the
same way as (11). To show this let us use the equation
D(p′, p′′)D(p′′, p) = D(p′, p). Now the following covari-
ant equality is valid:

| ~p1 ,M1 , j ,m; ~p2 ,M2〉

=
∑

m′

| ~p1 ,M1; ~p2 ,M2 , j ,m
′〉 〈m′|Dj(p2, p1) |m〉. (14)

As one can see from (14) the spin has ”changed” the
momentum. As this operation is very important for the
understanding of the parameterization below let us for-
mulate it in other words, namely, in terms of the gener-
ators of the Lorentz transformations.
The Lorentz–transformation generator for the state

(11) is of the form:

~̂N = ~̂N
j

1 +
~̂N2 ,

~̂N
j

= ip0
∂

∂~p
− [~j~p]

p0 +M
, ~̂N = ip0

∂

∂~p
. (15)

If we perform the transformation (14), the D-matrix
transforms the generators in the following way:

Dj(p2, p1) ( ~̂N
j

1 +
~̂N2) [D

j(p2, p1)]
−1 = ~̂N1 + ~̂N

j

2 . (16)

It is just the equations (14) and (16) (and only these
equations) that present the exact statement that D-
function shifts spin from one momentum to another one.
Similar equations (however, more complicated) are valid
in the case of two non-zero spins. In the case of spin 1/2
the D – function [34] has the form

D1/2(p1, p2) = cos
(ω

2

)

−2i(~k~j) sin
(ω

2

)

, ~k =
[ ~p1 ~p2 ]

|[ ~p1 ~p2 ]|
,

ω = 2 arctan
|[ ~p1 ~p2 ]|

(p10 +M1)(p20 +M2)− (~p1~p2)
. (17)

We will use it below.
Let us make a remark concerning the invariance of the

decomposition (10). The total spin S and the total or-
bital angular momentum l in (10) play the role of invari-
ant parameters of degeneracy. However, the square of the

total spin ~S = (~S1 + ~S2) is not invariant. But one can
define the total spin square in invariant way as follows:

{

[DS1(p1, P )]
−1 ~S1 [D

S1(p1, P )]

+ [DS2(p2, P )]
−1 ~S2 [D

S2(p2, P )]
}2

= S(S + 1) . (18)

Here P is the center-of-mass momentum. One can see
that in C.M.S. the definition (18) coincides with the def-
inition (9). Similarly, one can define the orbital moment
l in invariant way.
The described spin rotation effect in (10) is a purely

relativistic effect. If one takes it into account, one obtains
interesting observable effects [24].
To obtain the basis vectors (9) in terms of vectors (8)

one has to inverse (10). The final equation has the form:

| ~P ,
√
s, J, l, S, mJ 〉

=
∑

m1 m2

∫

d~p1
2p10

d~p2
2p20

| ~p1 ,m1; ~p2 ,m2 〉

× 〈 ~p1 ,m1; ~p2 ,m2 | ~P ,
√
s, J, l, S, mJ 〉 . (19)

Here

〈 ~p1 ,m1; ~p2 ,m2 | ~P ,
√
s, J, l, S, mJ 〉

7



=
√
2s[λ(s, M2, M2)]−1/2 2P0 δ(P − p1 − p2)

×
∑

m̃1 m̃2

〈m1|D1/2(p1 P ) |m̃1 〉〈m2|D1/2(p2 P ) |m̃2 〉

×
∑

ml mS

〈1/2 1/2 m̃1 m̃2 |SmS 〉Ylml
(ϑ , ϕ)

×〈S lmsml |JmJ 〉 .

Here λ(a, b, c) = a2 + b2 + c2 − 2(ab+ bc+ ac). To obtain
(19) the decomposition in terms of spherical harmonics
and the summation of all of the momenta to give the total
momentum J were performed in the C.M.S. and then the
obtained result was shifted to arbitrary coordinate frame
by use of D-functions.
It is on the vectors (9), (19) that the Poincaré–group

representation is realized in the vector state space of two
free particles. The vector in representation is determined
by the eigenvalues of the complete commuting set of op-
erators:

M̂2
0 = P̂ 2 , Ĵ2 , Ĵ3 . (20)

The parameters S and l (as was mentioned) play the role
of invariant parameters of degeneracy.

As in the basis (9) the operators Ĵ2 , Ĵ3 , ~̂P in (7) are

diagonal, one needs to diagonalize only the operator M̂2
I

in order to obtain the system wave function.
The eigenvalue problem for the operator M̂2

I in the ba-
sis (9) has the form of nonrelativistic Schrödinger equa-
tion (see, e.g., [4]).
The corresponding composite–particle wave function

has the form

〈~P ′,
√
s′, J ′, l′, S′, m′

J | pc〉 =

= NC δ(~P
′ − ~pc)δJJ′δmJm′

J
ϕJ′

l′S′(k′) , (21)

NC =
√

2pc0

√

NCG

4 k′
,

| pc〉 is an eigenvector of the set (7); J(J +1) and mJ are

the eigenvalues of Ĵ2, Ĵ3, respectively (Eqs. (7), (20)).
The two–particle wave function of relative motion for

equal masses and total angular momentum and total spin
fixed is:

ϕJ
lS(k(s)) =

4
√
s ul(k) k , (22)

and the normalization condition has the form:

∑

l

∫

u2l (k) k
2 dk = 1 . (23)

Let us note that for composite quark systems one uses
sometimes instead of equation (23) the following one:

nc

∑

l

∫

u2l (k) k
2 dk = 1 . (24)

Here nc – is the number of colours. The wave func-
tion (22) coincides with that obtained by ”minimal rela-
tivization” in [39]. The normalization factors in (22) in
this case correspond to the relativization obtained by the
transformation to relativistic density of states

k2 dk → k2 dk

2
√

(k2 +M2)
. (25)

It is worth to notice that wave functions in RHD (for
example, the wave function (21) defined as the eigen-
function of the operators set (7)) in general are not the
same as relativistic covariant wave functions defined as
solutions of wave equations or as the matrix elements of
local Heisenberg field.
The formalism of this Section is used in the next one

to present the method of calculation of electroweak prop-
erties of composite systems. Particularly, the method
of construction of electroweak current operators is de-
scribed.

III. THE NEW RELATIVISTIC INSTANT–FORM
APPROACH TO THE ELECTROWEAK

STRUCTURE OF TWO BODY COMPOSITE
SYSTEMS.

In this Section we present our approach to elec-
troweak properties of relativistic two–particle systems.
To demonstrate how one describes the electromagnetic
properties of composite systems in our version of the
RHD instant form we first use the following simple model.
We consider the system of two spinless particles in the S–
state of relative motion, one particle having no charge.
Let us note that a similar model was used in [4] where the
authors gave the description of constituent interaction in
IF of RHD and obtained the mass spectrum. The appli-
cation of our method in general case follows the scheme
of this Section. The case of π - meson is investigated in
Sec.IV and the S = 1 case in [40].
Electromagnetic properties of the system are deter-

mined by the current operator matrix element. This ma-
trix element is connected with the charge form factor
Fc(Q

2) as follows:

8



〈pc |jµ(0)| p′c 〉 = (pc + p′c)µ Fc(Q
2) , (26)

where p′c , pc are 4–momenta of the composite system in
initial and final states, Q2 = −t , q2 = (pc−p′c)2 = t , q2

is the momentum–transfer square. The form (26) is de-
fined by the Lorentz covariance and by the conservation
law only and does not depend on the model for the in-
ternal structure of the system.
The Eq. (26) presents the simplest example of the

extraction of a reduced matrix element. The 4–vector
(pc + p′c)µ describes symmetry and transformation prop-
erties of the matrix element. The reduced matrix element
(the form factor) contains all the dynamical information
on the process described by the current. Usually, one
does not fix the dependence of form factor on a scalar

mass of the composite system pc
2 = p′c

2
= Mc

2, because
it is diagonal with respect to this variable. The represen-
tation of a matrix element in terms of form factors often
is referred to as the parameterization of matrix element.
The scattering cross section for elastic scattering of elec-
trons by a composite system can be expressed in terms
of charge form factor Fc(Q

2). So, form factor can be ob-
tained from experiment and it is interesting to calculate
it in a theoretical approach.
In this Section we calculate the form factor of our sim-

ple composite system using the version of RHD IF based
on the approach of the Section II.
Now let us list the conditions for the operator of the

conserved electromagnetic current to be fulfilled in rela-
tivistic case (see, e.g., [10]).
(i).Lorentz–covariance:

Û−1(Λ)ĵµ(x)Û(Λ) = Λµ
ν ĵ

ν(Λ−1x) . (27)

Here Λ is the Lorentz–transformation matrix, Û(Λ) –
the operator of the unitary representation of the Lorentz
group.
(ii).Invariance under translation:

Û−1(a)ĵµ(x)Û (a) = ĵµ(x− a) . (28)

Here Û(a) is the operator of the unitary representation
of the translation group.
(iii).Current conservation law:

[ P̂ν ĵ
ν(0) ] = 0 . (29)

In terms of matrix elements 〈 ĵµ(0) 〉 the conservation law
can be written in the form:

qµ 〈 ĵµ(0) 〉 = 0 . (30)

Here qµ is 4-vector of the momentum transfer.
(iv).Current–operator transformations under space–time

reflections are:

ÛP

(

ĵ0(x0 , ~x) ,~̂j(x0 , ~x)
)

Û−1
P

=
(

ĵ0(x0 ,− ~x) ,− ~̂j(x0 ,− ~x)
)

,

ÛR ĵ
µ(x) Û−1

R = ĵµ(− x) . (31)

In (31) ÛP is the unitary operator for the representation

of space reflections and ÛR is the antiunitary operator of
the representation of space-time reflections R = P T .
(v).Cluster separability condition: If the interaction is
switched off then the current operator becomes equal to
the sum of the operators of one–particle currents.
(vi).The charge is not renormalized by the interaction

including: The electric charge of the system with in-
teraction is equal to the sum of the constituent electric
charges.
In this paper the explicit equations for the form factors

are obtained taking into account all the listed conditions.

A. Electromagnetic properties of the system of free
particles

Let us consider first the simple two–particle system de-
scribed in the beginning of Section III. The elastic scat-
tering of a test particle, e.g., of an electron, by the system
are defined by the operator of electromagnetic current

j
(0)
µ (0) of the two–particle free system. This operator
can be calculated in the representation given by the ba-
sis (8) or in the representation given by the basis (9). In

the first case the operator has the form j
(0)
µ = j1µ ⊗ I2.

Here j1µ is the electromagnetic current of the charged
particle and I2 is the unity operator in the Hilbert space
of states of the uncharged particle.

〈~p1; ~p2|j(0)µ (0)|~p ′
1; ~p

′
2〉

= 〈~p2|~p ′
2〉〈~p1|j1µ(0)|~p ′

1〉 . (32)

The matrix element of the one spinless particle current in
the free case contains only one form factor – the charge
form factor of the charged particle f1(Q

2):

〈~p1|j1µ(0)|~p ′
1〉 = (p1 + p′1)µ f1(Q

2) . (33)

So, the electromagnetic properties of the system of two
free particles (26) are defined by the form factor f1(Q

2),
containing all the dynamical information on elastic pro-
cesses described by the matrix element (32) [4]. Particu-
larly, the charge of the system is defined by the value of
this form factor at Q2 → 0:
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lim
Q2→0

f1(Q
2) = f1(0) = ec . (34)

ec is the system charge.
Now let us write the electromagnetic–current matrix

element for the two–particle free system in the basis
where the center–of–mass motion is separated (9):

〈~P ,
√
s, | j(0)µ (0) | ~P ′,

√
s′〉 . (35)

Here the variables which take zero values are omitted:
J = S = l = 0. One can consider the matrix element (35)
as a matrix element of an irreducible tensor operator on
the Lorentz group and one can apply the Wigner–Eckart
theorem. Under the condition of the theorem the matrix
element of an irreducible tensor operator is the product of
two factors: the invariant part (reduced matrix element)
and the CG coefficient which defines the transformation
properties of the matrix element. Thus, one can write
(35) in the form

〈~P ,
√
s, | j(0)µ (0) | ~P ′,

√
s′〉 =

= Aµ(s,Q
2, s′) g0(s,Q

2, s′) . (36)

The motivation for the parameterization (36) is easy to
be understood for our simple system. The 4–vector Aµ

describes the transformation properties of the matrix ele-
ment and the invariant function g0(s,Q

2, s′) contains the
dynamical information on the process. We will refer to
g0(s,Q

2, s′) as to free two–particle form factor. For more
complicated systems the parameterization corresponding
to the Wigner–Eckart theorem for the Lorentz group can
be performed using a special mathematical techniques as
described in the papers [32], [34].
The vector Aµ(s,Q

2, s′) which describes the matrix–
element transformation properties is defined by the 4–
momenta of initial and final states only: we have no
other vectors to our disposal. So Aµ(s,Q

2, s′) is a lin-
ear combination of 4–momenta of initial and final states
and is defined by the current transformation properties
(the Lorentz–covariance and the conservation law):

Aµ =
1

Q2
[(s− s′ +Q2)Pµ + (s′ − s+Q2)P ′

µ] . (37)

Thus, in the basis (9) the electromagnetic properties of
the free two–particle system are defined by the free two–
particle form factor g0(s,Q

2, s′).
So, in both representations (defined by the basis (8) as

well as by the basis (9)) we pass from the description of
the system in terms of matrix elements to that in terms
of Lorentz–invariant form factors.
One can see that (32) and (36) describe electromag-

netic properties in terms of only one form factor. Both

of these descriptions are, certainly, equivalent from the
physical point of view. Let us consider the difference be-
tween these descriptions. As we will show below by direct
calculation the free two–particle form factor g0(s,Q

2, s′)
is not an ordinary function but has to be considered in
the sense of distributions in variables s , s′, generated
by a locally integrable function. So, g0(s,Q

2, s′) is a reg-
ular generalized function. Let us remind that regular
generalized function is that defined through an integral
in the space of test functions. So, all the properties of
g0(s,Q

2, s′) have to be considered as the properties of a
functional given by the integral over the variables s , s′

of the function g0(s,Q
2, s′) multiplied by a test function.

As test functions it is sufficient to take a large class of
smooth functions that give the uniconvergence of the in-
tegral. In particular, the limit (34) giving the total charge
of the system through two–particle form factor is now the
weak limit:

lim
Q2→0

〈g0(s,Q2, s′) , φ(s, s′)〉. (38)

Here φ(s, s′) is a function from the space of test func-
tions. The precise definition of the functional will be
given below.
As the invariant variables s , s′ contain the energies of

the relative motion of particles in initial and final states,
one can consider the integral in (38) as an integral over
these energies.
At the first glance it seems that the description of

the two–particle free system in terms of the form factor
g0(s,Q

2, s′) is too complicated. However, so is the real-
ity, as we will see later in the Subsection III.F. In fact,
this kind of description is used implicitly for a long time
in nonrelativistic theory of composite systems, without
calling things by their proper names. It is this kind of
description that makes it possible to construct the elec-
tromagnetic current operator with correct transforma-
tion properties for interacting systems.

B. The form factor of the system of two free particle.

The locally integrable function g0(s,Q
2, s′) can be eas-

ily obtained by use of CG decomposition (19) for the
Poincaré group. Using (19) we obtain for (36):

〈~P ,
√
s, | j(0)µ (0) | ~P ′,

√
s′〉

=

∫

d~p1
2 p10

d~p2
2 p20

d~p1
′

2 p′10

d~p2
′

2 p′20
〈~P ,

√
s, | ~p1; ~p2〉

× 〈~p1; ~p2|j(0)µ (0)|~p ′
1; ~p

′
2〉〈 ~p ′

1; ~p
′
2|~P ′,

√
s′〉 . (39)
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To calculate the free two–particle form factor one has to
use (32), (33), (36) and the explicit form of CG coeffi-
cients (19) for quantum numbers of the system. As the
particles of the system under consideration are spinless,
now (19) does not contain D – functions.
It is convenient to integrate in (39) using the coordi-

nate frame with ~P ′ = 0 , ~P = (0, 0, P ). As the result
we obtain the following relativistic invariant form for the
function g0(s,Q

2, s′):

g0(s,Q
2, s′)

=
(s+ s′ +Q2)2Q2

2
√

(s− 4M2)(s′ − 4M2)

ϑ(s,Q2, s′)

[λ(s,−Q2, s′)]
3/2

f1(Q
2) .

(40)

Here ϑ(s,Q2, s′) = θ(s′ − s1) − θ(s′ − s2), and θ is the
step function. The result, naturally, does not depend on
the choice of the coordinate frame.

s1,2 = 2M2 +
1

2M2
(2M2 +Q2)(s− 2M2)

∓ 1

2M2

√

Q2(Q2 + 4M2)s(s− 4M2) .

The functions s1,2(s,Q
2) give in the plane (s, s′) the

kinematically available region. The position of this re-
gion depends strongly on the momentum–transfer square
t = −Q2 2. The simplest way to obtain the functions s1,2
is a geometrical one [33].

FIG. 1. Kinematical triangle

2 The ϑ – function is a purely kinematical factor for IA.
This fact does not depend on relativism and takes place in
nonrelativistic case, too. See Subsection III.F for details.

Let us construct the triangle schematically presented
on the Fig.1. The side OB presents the vector p2µ, and
p′2µ, as following (32) p2µ = p′2µ. The side CB presents
the vector p1µ and AB – p′1µ. Now the sides of the
large triangle AOC present the vectors P ′

µ , Pµ and (Pµ−
P ′
µ), with the norms

√
s′,

√
s,
√
t, respectively. Vectors

of initial state p′1µ , p2µ = p′2µ, P ′
µ are fixed. Let

us fix the norm of vector (Pµ − P ′
µ). So , because the

norm of vector p1µ , p
2
1µ =M2 is constant, the triangles

ABO and ABC are determined unambiguously by three
sides. But the triangle ABC can be rotated around the
side AB (p′1µ). It is possible to find the minimal

√
s1

and maximal
√
s2 lengths of OC (norm of vector Pµ)

under this rotation. The value of the s1 , s2 give the
kinematically available region in the plane (s , s′) which
is symmetric under interchange s↔ s′.

FIG. 2. The kinematically available region in the plane s, s′

(inside the parabolae). The calculation is performed for: 1)
Q2 = 2M2. 2) Q2 = M2/2. 3) Q2 = M2/64. The constituent
mass is M = 0.25 GeV.

In Fig.2 the domain where the generalized function
(40) is nonzero in the plane s , s′ is given for different
values of the momentum–transfer square. One can see
that the free two–particle form factor g0(s,Q

2, s′) (40)
has in fact to be interpreted in terms of the distributions:
The ordinary limit as Q2 → 0 is zero because of the
cutting ϑ – functions and the static limit exists only as
the weak limit (38).
Let us calculate this limit. Let us define the functional

giving regular generalized function as a functional in R
2

as follows:
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〈g̃0(s,Q2, s′) , φ(s, s′)〉 =
∫

dµ(s, s′) g̃0(s,Q
2, s′)φ(s, s′) .

(41)

Here

g̃0(s,Q
2, s′)

= 16 θ(s− 4M2) θ(s′ − 4M2) g0(s,Q
2, s′) . (42)

dµ(s, s′) =
4
√
ss′ dµ(s) dµ(s′) , dµ(s) =

1

4
k d

√
s . (43)

The θ – functions in (42) give the physical region of possi-
ble variations of the invariant mass squares in the initial
and final states explicitly. The measure (43) is due to
the relativistic density of states (22), (25). φ(s , s′) is a
function from the test function space. So, for example,
the limit of g0(s ,Q

2 , s′) as Q2 → 0 (the static limit) has
the meaning only as the weak limit (compare with (34)):

lim
Q2→0

〈 g̃0, φ 〉 = 〈eδ(µ(s′)− µ(s))ϑ(s− 4M2), φ 〉 . (44)

It is this weak limit that gives the electric charge of the
free two–particle system. If the test functions are nor-
malized with the relativistic density of states, then the
r.h.s. of the Eq. (44) is equal to the total charge of the
system.

C. Electromagnetic structure of the system of two
interacting particles.

Now let us consider the electromagnetic structure of
our simple model (26) in the case of interacting particles.
As we have mentioned in Sec.II when constructing the

bases (8) and (9) in the frame of RHD the state vector
| pc 〉 belongs to the direct product of two one–particle
spaces. We can write the decomposition of this vector
with J = l = S = mJ =0 in the basis (9). Now (26) has
the form:

∫

d~P d~P ′

NCGN ′
CG

d
√
s d

√
s′ 〈pc|~P ,

√
s 〉〈~P ,

√
s|jµ(0)|~P ′ ,

√
s′〉

× 〈~P ′ ,
√
s′|p′c〉 = (pc + p′c)µ Fc(Q

2) . (45)

Here 〈~P ′ ,
√
s′|p′c〉 is the wave function in the sense of the

instant form of RHD (21).
Using (21) we obtain for (45):

∫

NcN
′
c

NCGN ′
CG

d
√
s d

√
s′ ϕ(s)ϕ(s′)

× 〈~pc ,
√
s|jµ(0)|~pc ′ ,

√
s′〉 = (pc + p′c)µ Fc(Q

2) . (46)

We have omitted in the wave function (22) the variables
with zero values: J = S = l =0 (see (35) too).
Using (22), (43) we can rewrite (46) in the form of the

functional in R
2:

∫

dµ(s , s′)u(k(s))Jµ(~pc ,
√
s; ~pc

′ ,
√
s′)u(k(s′))

= (pc + p′c)µ Fc(Q
2) , (47)

Jµ(~pc ,
√
s; ~pc

′ ,
√
s′) = 16 θ(s− 4M2) θ(s′ − 4M2)

× NcN
′
c

NCGN ′
CG

〈~pc ,
√
s|jµ|~pc ′ ,

√
s′〉 .

In the previous cases the state vectors and the op-
erators entering matrix elements transformed following
one and the same representation of the Poincaré group
(namely, following the universal covering subgroup of the
Poincaré group – nonuniform group SL(2, C) [12]). Now
in the matrix element in the integrand of (47) the state
vectors and the operator transform following the differ-
ent representations of this group. The current operator
describes the transitions in the system of two interact-
ing particles and transforms following the representation
with the generators of Lorentz boosts depending on the
interaction (7). The state vectors belong to the basis
(9) and physically describe the system of two free par-
ticles and, so, transform following a representation with
generators which do not depend on the interaction (20).
That is why the current operator matrix element in (47)
can not be represented in the form (36), (37): we can
not construct the 4–vector defining the matrix–element
transformation properties under Lorentz boosts from the
variables which the state vectors depend on.
Nevertheless, as we show below, the problem of the

parameterization of the current matrix element in (47)
can be solved if one consider this equality as the equality
of two functionals. The l.h.s. contains a functional in
R2 generated by the Lorentz–covariant function (current
matrix element). Let us denote

ψ(s , s′) = u(k(s))u(k′(s′)) . (48)

The functional in the l.h.s. of (47) is given on the set of
test functions ψ(s , s′) through an integral in R2 and de-
fines a Lorentz–covariant (regular) generalized function
with the values in the Minkowski space (see, e.g., [41]).
Here Q2 is a parameter. The test–function space can be
(in general) larger than (48). However, the uniconver-
gence of (47) has to be guaranteed.
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Let us write the matrix element in the form analogous
to (36):

Jµ(~pc ,
√
s; ~pc

′ ,
√
s′) = Bµ(s ,Q

2 , s′)G(s ,Q2 , s′) . (49)

The covariant part in (49) (as well as in (36)), the vec-
tor Bµ(s ,Q

2 , s′), is supposed to be an ordinary smooth
function and the invariant part G(s ,Q2 , s′) is general-
ized function. In fact, G(s ,Q2 , s′) is the reduced ma-
trix element containing the information on the process.
This kind of representation of a Lorentz covariant gener-
alized function as a product of a Lorentz covariant ordi-
nary smooth function and a Lorentz invariant generalized
function was described in [41]. Let us remark that all
normalization constants enter the vector Bµ. Contrary
to (36), now it is impossible to construct the 4–vector
Bµ, describing the transformation properties of the ma-
trix element, in terms of the variables entering the state
vectors (as was pointed out before).
Using (49) we can rewrite (47) in the following form:

∫

dµ(s , s′)ψ(s , s′)Bµ(s ,Q
2 , s′)G(s ,Q2 , s′)

= (pc + p′c)µ Fc[ψ](Q
2) . (50)

To obtain the vector Bµ let us require the Eq.(50) to be
covariant in the sense of distributions, that is to be valid
for any test function ψ(s , s′) in any fixed frame. The
variation of test function in the functional (50) means in
fact, following (48), the variation of the wave function of
the internal motion. Under such a variation the vector
in the r.h.s of (50) is unchanged as it is constructed with
4–vectors describing the motion of the system as a whole,
independent of the internal constituent motion. As to the
form factor in the r.h.s it varies under the test function
variation. So, under a variation of the test function the
r.h.s. of (50) remains to be collinear to the vector (pc +
p′c)µ. At the same time, under arbitrary variation of the
test function the vector in the l.h.s. in general changes
the direction. So, for the validity of the equality (50)
with arbitrary test function it is sufficient to require that
the following equation

Bµ(s ,Q
2 , s′) = (pc + p′c)µ (51)

holds. This choice of the vector Bµ in (51) ensures that
the l.h.s. of (47) satisfies the condition of Lorentz covari-
ance for the current as well as the condition of current
conservation.
Let us discuss the physical meaning of the representa-

tion (49), (51) for the matrix element. As this represen-
tation is explicitly Lorentz covariant and also satisfies the
current conservation law, then it means that the current

operator for the composite system contains the contribu-
tion not only of one–particle currents but of two–particle
currents, too (see, e.g., [4]):

j(x) =
∑

k

j(k)(x) +
∑

k<m

j(km) . (52)

Here the first term is the sum of one–particle currents and
the second – of two–particle currents. In the case of our
simple model each sum in (52) contains only one term. It
is well known that if one approximates j(x) ≈ ∑

k j
(k)(x)

then the current operator in IF dynamics does not satisfy
the condition of Lorentz covariance and the conservation
law [4]. So, from the physical point of view, the covariant
part of the current matrix element (51) which defines the
transformation properties of the current in (47) is given
by (52) and contains the contributions of one– and two–
particle currents.
The invariant part of the decomposition (49) is the

form factor or the reduced matrix element G(s ,Q2 , s′)
and contains the information on the dynamics of the scat-
tering of test particle by each of the constituents (the first
term in (52)), i.e. by the free two–particle system, as well
as by two constituent simultaneously (the second term).
So, the form factor contains the contribution of the free
system form factor (40) and the contribution of some ex-
change currents analogous to meson currents in nucleon
systems [7].

G(s ,Q2 , s′) = g0(s,Q
2, s′) +Gc(s ,Q

2 , s′) . (53)

Here Gc is the reduced matrix element containing the
contribution of two–particle currents (52).
Using (22), (43), (48), (51) one can obtain from (50)

the scalar equation of the following form:
∫

d
√
s d

√
s′ ϕ(s)G(s ,Q2 , s′)ϕ(s′) = Fc(Q

2) . (54)

The form factor G(s ,Q2 , s′) includes all possible mech-
anisms of the transition described by the matrix element
(26). So, the representation (54) for the charge form fac-
tor of the system is quite general.
Now let us proceed with the approximate calculation

of the form factor (54).

D. Modified impulse approximation (MIA)

The problem of the calculation of the form factor
G(s ,Q2 , s′) (54) including exchange currents is a very
difficult problem. We propose an approximation which
is a kind of analog of relativistic impulse approximation.
We propose to omit the contribution of the two–particle
currents to the form factor G(s ,Q2 , s′).
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However we will not change the covariant part Bµ of
the current matrix element in (49), so that this covari-
ant part will contain the contribution of the two–particle
currents and so that the transformation properties of the
matrix element will not be changed.
So, we approximately change the generalized function

G(s ,Q2 , s′) in (49), (53) for the generalized function
g0(s,Q

2, s′) (36), (40), which describes, as we have shown
before, the electromagnetic properties of the free two–
particle system. Nevertheless, the matrix element (45),
(49) as a whole will contain the contributions of two–
particle currents, although not the full contribution but
such that ensures its correct transformation properties.
Let us note that our approximation does not contra-

dict general statements (see [4]) that to obtain correct
description of electromagnetic current of composite sys-
tem which satisfy the Lorentz–covariance condition and
the current conservation law one has to take into account
many–particle currents.
Let us discuss now the meaning of our approximation

from the point of view of the Wigner–Eckart theorem
for the Lorentz group. The matrix element of a current
including many–particle currents, following the Wigner–
Eckart theorem for the Lorentz group, can be presented
in the form (49), (51). The dynamical information
on many–particle currents is contained in the reduced
matrix element – the form factor, while the transforma-
tion properties of the contributions of many–particle cur-
rents are defined by the covariant part of the form (49).
So, our approximation means that the dynamical part
of the contribution of the many–particle currents to the
total current is omitted while the covariant part of the
contributions remains. The dynamics of many–particle
currents remains out of the limits of the approximation,
while the transformation properties of the total current
remain intact.
Thus, in our approximation the scalar equality (54)

transforms into approximate scalar equality which cor-
responds, from the physical point of view, to relativis-
tic impulse approximation. In the developed mathemat-
ical formalism we have not broke the Lorentz covariance
of the current nor the current conservation law. Let us
point out that to calculate form factor we do not use a
special current component as it is done in other mathe-
matical formulations of RHD (see, e.g., [8]). Let us re-
mark that, from the physical point of view, the form fac-
tor g0(s,Q

2, s′) contains the contributions of one–particle
currents only (see Equations (36), (39), (40)) and in this
sense our approximation corresponds to the known im-
pulse approximation. In order to emphasize that our ap-
proximation differs from the usual IA we will refer to it
as to modified impulse approximation (MIA). The form
factor of the composite system in MIA has the form:

F(Q2) =

∫

d
√
s d

√
s′ ϕ(s) g0(s ,Q

2 , s′)ϕ(s′) . (55)

It is worth to notice that the Eq.(51) and the form (55)
can be formally obtained if we write in (45) the current
of the free system (36) instead of that of the interaction
system and change the covariant part of (37) for

Aµ(s,Q
2, s′)

∣

∣

P=pc ,P ′=p′

c
= (pc + p′c )µ . (56)

The Eq.(56) gives a simple prescription to write the
current matrix elements for interacting system in the ba-
sis (9) in MIA using the current parameterization (36)
for the free system. The prescription is as follows: in
the vectors in the parameterization (36), (37) one has
to use the momenta of composite system instead of the
center–of–mass momenta of the free two–particle system.
Note that this prescription works for more complicated
systems, too.
We do not discuss in this paper the problem of going

beyond the limits of MIA and of obtaining corrections to
g0(s ,Q

2 , s′) in (53), (55). This means that if considering,
for example, nucleon systems we do not take into account
meson current.
Let us consider now the fulfilling of the conditions (i)–

(vi) for the electromagnetic current.
The conditions (i)–(iii) are satisfied by construction.

For example the fulfilling of (i) and (iii) is ensured by
the correct transformation properties of the 4-vectors in
(36), (49), and (51).
The condition (iv) is satisfied immediately as the

form factor g0(s ,Q
2 , s′) in (36) and the form factor

G(s ,Q2 , s′) in (49) are scalars in our simple model 3.
The condition of cluster separability (v) needs a more

detailed consideration. At large distances (or if the
interaction is switched off) the contribution of two–
particle currents has to go to zero: Gc(s ,Q

2 , s′) → 0
in (53). This means that in the form (53) the form fac-
tor G(s ,Q2 , s′) has to transform into g0(s ,Q

2 , s′). Let
us remark that the condition of cluster separability is
fulfilled in MIA, too, as in this approximation the use
of g0(s ,Q

2 , s′) instead of G(s ,Q2 , s′) is supposed from
the very beginning. When the interaction is switched off
the generalized function g0(s ,Q

2 , s′) for the free two–
particle system acts on a larger space of test functions
than (48). As g0(s ,Q

2 , s′) contains only the one–particle
current contributions (39) the condition (v) is satisfied

3 The currents which do not conserve the parity also can be
considered in our formalism. In that case one can separate
not only the scalar part of current matrix element but the
pseudoscalar part, too. This case is considered elsewhere.
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and the composite–system current go to the sum of the
one–particle currents.
The condition on the charge to be nonrenormalizable

also is fulfilled directly in MIA because the weak limit
(44) does exist on test functions (48).
So, our prescription for the construction of the cur-

rent in MIA satisfies all the conditions for the current
operator.

E. MIA versus IA

Let us compare the approximation MIA with the well
known IA.
To do this let us first calculate the form factor in IF

RHD not using the canonical parameterization. In par-
ticular, let us formulate IA in terms of operators as it is
formulated usually (not in terms of form factors). Let us
decompose the matrix element (26) through the complete
set of states (8):

〈 pc |jµ(0)| p′c 〉 =
∫

d~p1 d~p2
2p10 2p20

d~p1
′ d~p2

′

2p′10 2p
′
20

×〈 pc |~p1; ~p2 〉〈~p1; ~p2 |jµ| ~p1 ′; ~p2
′〉

× 〈 ~p1 ′; ~p2
′|p′c〉 . (57)

Here 〈 ~p1; ~p2|pc〉 is wave function of constituents in com-
posite system.
If the current matrix element in (57) is taken in the

IA approximation (52) and contains one–particle cur-
rents only, then the Eq. (57) is selfcontradicting [4]. In
fact, one can show this in the following way. In our sim-
ple model all the dynamical information about the cur-
rent (i.e. the composite system form factor) can be ob-
tained from only one matrix element in the Breit frame.
However, to go to the Breit frame one has to perform
the transformation which is interaction depending. This
means that in Breit system two–particle currents appear
along with one–particle ones. The form factors calculated
in arbitrary coordinate frames using different matrix el-
ements will be of different forms.
To write the form factor in terms of wave functions

(21) one has to perform the CG decomposition of the
basis (8) in terms of the basis (9) in the wave functions
(57) and to use the explicit form for CG coefficients (10)
for the quantum numbers of the system:

〈 ~p1; ~p2 |pc〉 =
√

2

π
〈 ~P ,

√
s , J , l , S ,mJ |pc〉. (58)

The current matrix element in (57) has the form (32).
The one–particle currents are expressed through the form
factors (33).

The Eq.(57) is an equality for two 4–vectors. Taking
different components of this equality and exploiting δ–
functions in integrals, one can calculate the form factor
of the composite system. The result of calculation of the
form factor in this way is not unambiguous. In particular,
it depends on the actual choice of the component of the
current (57) to be used in the calculation. Moreover, the
result depends on the coordinate frame chosen to perform
the integration in (57). This is the general feature of IA
in the usual formulation of IF RHD (see, e.g., [4]).
Let us write the final result of the calculation of the

form factor from the equation for the null–component of
the current and performing the integration in the coordi-
nate frame where ~pc

′ = 0 , ~pc = (0, 0, p). If now we write
the integral in terms of the invariant variables s, s′ the
obtained form factor has the form:

Fc(Q
2) =

Mc

4

√

2 (2M2
c +Q2)

4M2
c +Q2

×
∫

√

s

s′
d
√
s d

√
s′

√

(s− 4M2)(s′ − 4M2)

(s+ s′ +Q2)4Q2

[λ(s ,−Q2 , s′)]3/2

× 1

(s s′)1/4
θ(s,Q2, s′)√
s′ (s+Q2)

ϕ(s)ϕ(s′) f1(Q
2) . (59)

The Eq.(59) differs from (55), obtained with the use of
the two–particle free form factor. In the case of wave
functions satisfying the conditions (22), (23), the form
factor (59) satisfies the normalization: Fc(0) = ec. Let
us note that the form factor obtained in this way from
the third current component in (57) does not satisfy this
condition.
Let us compare IA and MIA results. Let us note once

again that in MIA we separate (by use of the scheme of
canonical parameterization) the covariant part of the cur-
rent matrix element in (50) prior to perform any calcu-
lations. This covariant part ensures the correct transfor-
mation properties of the corresponding decompositions
in terms of free–particle states. The difference between
(55) and (59) is:

∆Fc(Q
2) =

∫

d
√
s d

√
s′ ϕ(s)ϕ(s′)

× g0(s,Q
2, s′)

[

1−R(s,Q2, s′)
]

. (60)

R(s,Q2, s′) =
Mc

2

√

2 (2M2
c +Q2)

4M2
c +Q2

√

s

s′

× (s+ s′ +Q2)2

(s s′)1/4
1√

s′ (s+Q2)
. (61)
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The value R(s,Q2, s′) presents an additional factor to
one–particle currents, that is in reality the two–particle
current contributions. This term ensures the Lorentz co-
variance of the electromagnetic current matrix element
and the current conservation law in (47). Let us note that
this additional term contains no dynamical information
on the interaction of test particle with two constituents
simultaneously. It does not depend, for example, on the
interaction constants for such a process.
So, to summarize, we can write the following schematic

equations:

(IA)Breit 6= (IA)Lab

(MIA)Breit = (MIA)Lab

It is well known that the standard IA depends strongly on
the coordinate frame used for the calculation. The MIA
results do not depend on it at all. So, the differences
between IA and MIA results for different IA coordinate
frame can be rather significant.
Notice that IA and MIA coincide in the nonrelativis-

tic limit. As this takes place, the nonrelativistic limits
of form factors, which were obtained from the different
current components, are identical. Hence the difference
between IA and MIA is connected with the breaking of
relativistic covariance conditions really.
We give the quantitative comparison of the form fac-

tors obtained in IA and in MIA in the Section IV where
the realistic calculation of the pion electromagnetic struc-
ture is given.

F. The nonrelativistic limit

The description of composite–system form factors in
terms of distributions is not a specific feature of our rel-
ativistic approach. The similar formalism is used in non-
relativistic theory of composite systems [42] for a rather
long time (although not referring to the mathematics of
distributions). In the nonrelativistic limit our approach
gives the formalism developed in [42].
In the nonrelativistic limit the relativistic charge form

factor (55) has the following form:

FNR(Q
2) =

∫

k2 dk k′ 2 dk′ u(k) g0NR(k,Q
2, k′)u(k′) ,

(62)

g0NR(k,Q
2, k′) =

f1(Q
2)

k k′Q
θ(k,Q2, k′) , (63)

ϑ(k,Q2, k′) = θ

(

k′ −
∣

∣

∣

∣

k − Q

2

∣

∣

∣

∣

)

− θ

(

k′ − k − Q

2

)

.

Here g0NR(k,Q
2, k′) is the free relativistic form factor

obtained from (40) in the nonrelativistic limit. f1(Q
2)

is the charged–particle form factor. The obtained result
coincides with that derived in standard nonrelativistic
calculations [42].
In [42] the same formulae are obtained from the equa-

tions for form factors in terms of coordinate representa-
tion wave functions:

FNR(Q
2) = f1(Q

2)

∫ ∞

0

dr r u2(r) j0

(

Qr

2

)

. (64)

The Eqs.(62), (63) can be obtained from (64) by use of
the Bessel transformation:

u(k) =

√

2

π

∫ ∞

0

r dr u(r) j0 (k r) (65)

and the normalization condition:
∫ ∞

0

u2(r) dr =

∫ ∞

0

k2 u2(k) dk = 1 .

Rigorously speaking, the Eq.(62) has to be interpreted
as a functional in the sense of distributions generated by
the function g0NR(k,Q

2, k′) and defined on test functions
u(k)u(k′). The ordinary function (63) generates regular
generalized function defined generally on the larger class
of test functions ψ(k, k′) in R2, providing the uniform
convergence of the integral. One needs the uniform con-
vergence to take limits in the integrands.
Let us define the functional in R2 by the following

regular distribution (compare with (41)–(43)):

〈 g̃0NR(k,Q
2, k′) , ψ(k, k′)〉

=

∫

dµ(k, k′) g̃0NR(k,Q
2, k′)ψ(k, k′) , (66)

g̃0NR(k,Q
2, k′) = ϑ(k)ϑ(k′)g0NR(k,Q

2, k′) ,

dµ(k, k′) = dµ(k) dµ(k′) , dµ(k) = k2 dk .

The function g0NR(k,Q
2, k′) which appears in [42]

quite formally, here has a definite physical meaning
and describes the electromagnetic properties of non-
relativistic free system of two spinless particles in the
S – state, one of particle having no charge (compare
with g0(s,Q

2, s′) in (36), (40), (41)). The static limit
limQ2→0 g0NR(k,Q

2, k′) giving the system charge exists
only in the weak sense as the limit of the functional (66):

lim
Q2→0

〈 g̃0NR(k,Q
2, k′) , ψ(k, k′)〉
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= 〈 ec δ(µ(k′)− µ(k))ϑ(k), ψ(k, k′)〉 . (67)

On the test functions ψ(k, k′) = u(k)u(k′) (with u(k)
– being the normalized bound state wave function), the
functional (66) defines the bound state form factor in the
nonrelativistic IA (62). The weak limit (67) is equal to
the system charge:

lim
Q2→0

〈 g̃0NR(k,Q
2, k′) , ψ(k, k′)〉

= ec

∫ ∞

0

k2 dk u2(k) = ec . (68)

So, one can see that the description of the system in
terms of form factors in IA by the Eq.(62) (as in [42]) in
fact defines the form factor in the sense of distributions
as a functional defined on the set of the wave functions
of bound system.
To go beyond nonrelativistic IA one has to addend

some terms to g0NR(k,Q
2, k′). For example, such terms

cause the meson exchange currents in two–nucleon sys-
tems. So, in the standard nonrelativistic theory the dy-
namical treatment of exchange currents is performed in
the same way as in our relativistic approach (53).
So, to conclude, one can consider our approach to IA to

be a relativistic generalization of nonrelativistic IA, and
our equations for form factors in this approximation to be
a relativistic generalization of the equations of [42]. Let
us remark that in more complicated systems (e.g., in ρ
– meson and deuteron) our relativistic form factors also
have correct nonrelativistic limits which coincide with
[42].

G. A bridge to dispersion relations

Let us discuss now one of the unsolved problems of
RHD – the possible links between RHD and quantum
field theory (QFT) [4]. The fact, that RHD, contrary to
QFT itself, operates with the finite number of degrees of
freedom, makes it to be in some way similar to the disper-
sion approach of QFT, which is dealing in principle with
a finite number of degrees of freedom, too. However, the
dispersion relations, based on the analytic properties of
the scattering amplitudes, matrix elements, form factors
in the complex energy plane, are rather correctly derived
in the frame of QFT [43]. So, it seems to us, that one can
look for links between RHD and QFT not only directly
but through the dispersion approach, too.
Here, using the simple model of the previous Subsec-

tions, we compare our version of RHD with the so called
modified dispersion approach. Dispersion-relation inte-
grals over composite-particle mass are used in this ap-
proach. This approach enabled one to write the deuteron

electromagnetic form factors in terms of the physical
hadron scattering phase shift and gave the results for
the elastic ed–scattering in good agreement with experi-
mental data. The details of the modified dispersion ap-
proach can be found in [33,44–46] (see also [47]). Let us
note that an immediate application of the approach to
quark systems is difficult to realize because of the fact
of quark confinement. However, there are some inves-
tigations based on similar ideas where the form factors
of hadrons as constituent–quark bound states are con-
sidered in the frame of the dispersion technique of the
integral over composite particle mass [48].
For convenience of reader let us describe briefly, omit-

ting the proofs, the essence of the modified dispersion
approach and obtain the electromagnetic form factor of
composite system for our simple model following the pa-
per [33].
The Heisenberg current operator of the system of two

particles interacting as in (52) can be written in the form

jµ = j(0)µ + j(int)µ . (69)

Here j
(0)
µ is the current of the free two–particle system

(see (32), (36)). The operator j
(int)
µ is interaction depen-

dent. Let us suppose that our model constituent system
has scattering states and let us calculate the matrix ele-
ment of the operator (69) between in– and out– states.
Let us suppose that the scattering states are the S– states
of relative motion. The matrix element of the operator

j
(0)
µ can be written in terms of the free two–particle form
factor (36) calculated previously (40). The matrix ele-
ment of the operator containing the interaction

〈~P (±) | j(int)µ | ~P ′(±) 〉
can be written in terms of the form factor

Gi(s∓ iε,Q2, s′ ± iε) . (70)

Here sign ”+” stands for in– state and sign ”−” for out–
state. The form factor in (70) has kinematic cuts in the
complex plane of the variables s , s′. The cuts go along
the real axis from the point 4M2 to infinity. The notation
Gi(s+ iε,Q

2, s′− iε) means that there exists the analytic
continuation of this form factor from the physical region
of the variable s into the upper complex half–plane, and
to the lower half–plane in s′. One can check this fact
considering simple models. The form factor entering the
parameterization of the total current (69) can be written
as the sum of the form factors:

G(s,Q2, s′) = g0(s,Q
2, s′) +Gi(s,Q

2, s′) . (71)

Let us consider the matrix element of the total current.
Let us fix the variable s and let us connect by S–matrix
the in– and out– vectors of the basis in the variable s′:
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〈~P | jµ | ~P ′(+) 〉 = 〈~P | jµ | ~P ′(−) 〉S(s′) . (72)

S(s) = exp(2 i δ), δ is the scattering phase shift. S –
matrix can be written in the form:

S(s) =
B(s− iε)

B(s+ iε)
. (73)

Here B(s) is the relativistic analog of the Jost function.
Taking into account Eqs.(70), (73) one can rewrite (72)
as:

Gi(s,Q
2, s′ − iε)B(s′ − iε)−Gi(s,Q

2, s′ + iε)B(s′ + iε)

= − g0(s,Q
2, s′) (B(s′ − iε)−B(s′ + iε)) . (74)

The equation (74) presents the so called Riemann–
Hilbert problem for half–axis. The solution has the form
[49]:

Gi(s,Q
2, s′)B(s′) = G̃(s,Q2, s′) + C1(s,Q

2, s′) , (75)

G̃(s,Q2, s′) = − 1

2 π i

∫ ∞

4M2

ds′′ g0(s,Q
2, s′′)∆(s′′)

s′ − s′′
,

(76)

∆(s) = (B(s+ iε)−B(s− iε)) ,

Here C1(s,Q
2, s′) is an unknown function, regular in s′

in the neighbourhood of the real axis for 4M2 ≤ s′ <∞.
Now let us connect the in – and out – bases in the variable
s. Taking into account the explicit form of Gi (75), (76)
we obtain the boundary value Riemann–Hilbert problem
for the function C1 in the variable s with the solution:

C1(s− iε,Q2, s′)B(s− iε)− C1(s+ iε,Q2, s′)B(s+ iε)

=
[

g0(s,Q
2, s′)B(s′) + G̃(s,Q2, s′)

]

∆(s) , (77)

B(s)C1(s,Q
2, s′) = − 1

2 π i

∫ ∞

4M2

ds′′′

×

[

g0(s
′′′, Q2, s′)B(s′) + G̃(s′′′, Q2, s′)

]

∆(s′′′)

s− s′′′

+ C(s,Q2, s′) . (78)

The unknown function C(s,Q2, s′) is regular in the neigh-
bourhood of the real axis for 4M2 ≤ s, s′ <∞ in s′ as
well as in s. Now let us consider the matrix element of

the total current (69), (71) between in–states. Substitut-
ing (75), (76), (78) in (71) we obtain finally the following
form for the form factor of the total current (69) in in–
basis:

G(s,Q2, s′) = g0(s,Q
2, s′)

− 1

2 π iB(s′ + i ε)

∫ ∞

4M2

ds′′
g0(s,Q

2, s′′)∆(s′′)

s′ − s′′ + i ε

− 1

2 π iB(s− i ε)

∫ ∞

4M2

ds′′′
g0(s

′′′, Q2, s′)∆(s′′′)

s− s′′′ − i ε

− 1

4 π2B(s− i ε)B(s′ + i ε)

×
∫ ∞

4M2

ds′′′
∫ ∞

4M2

ds′′
g0(s

′′′, Q2, s′′)∆(s′′′)∆(s′′)

(s− s′′′ − i ε)(s′ − s′′ + i ε)

+
C(s,Q2, s′)

B(s− i ε)B(s′ + i ε)
. (79)

The Eq.(79) provides the correct analytic properties of
the form factor obtained in QFT approach [43]. In partic-
ular, this form contains the anomal branch points known
from the dispersion approach to composite systems (e.g.,
to the deuteron). The Eq.(79) can be used to obtain the
form factor of the constituent bound state for the case
of the S–state of relative motion. Now it is necessary
to perform the analytic continuation of (79) in the vari-
ables s, s′ to the bound state point s = s′ = M2

c (Mc

is the bound state mass) and to take the residues in the
poles. As the result we obtain the bound–system form
factor directly in terms of the S–scattering phase shift
for constituents:

Fc(Q
2) = Γ2

∫ ∞

4M2

ds ds′
g0(s,Q

2, s′)∆(s)∆(s′)

(s−M2
c )(s

′ −M2
c )

. (80)

Now the constant Γ2 is determined by the condition
Fc(0) = ec and indirectly takes into account the contribu-
tions of the so called unphysical cuts. The Jost–function
discontinuities can be written in terms of experimental
scattering phase shift. The free two–particle form factor
for our model has the form (40). Fc(Q

2) is the functional
generated by the generalized function g0(s,Q

2, s′) on the
test functions ∆(s)/(s −M2

c ). The described formalism
was applied to the deuteron in Ref. [46] and gave a good
agreement with experimental data.
Let us note, that the form (80) obtained through the

modified dispersion approach is in close analogy to the
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forms (55), (62) obtained in the frame of IF RHD. This
analogy can be made even more obvious using the results
of the Ref. [45] where neutron-proton system was con-
sidered in nonrelativistic case. In [45] it is shown that
if the deuteron electrodisintegration amplitude satisfies
Mandelstam representation, then the wave function of
the system has the well fixed form and can be expressed
in terms of np -scattering phases. This wave function
satisfies a dispersion relation. The analytical properties
used during the derivation of this relation are the same
for the large group of phenomenological potentials. So
the obtained dispersion relation can be used to find ex-
plicit form for real two-nucleon systems wave functions.
As one can see from the solution structure, such a re-
construction of wave function is stable both in the usual
sense and in the sense of the large energy phases influ-
ence. Finally, the bound state wave function u(r) is of
the form:

u(r) = Γ̃

∫ ∞

−∞

dx
∆(x)

(x − κ)
[sin(xr)]. (81)

(See [45] for details.) Here κ2 is the deuteron binding
energy and the nonphysical cuts contribution enters the
normalization constant Γ̃.
In nonrelativistic case the Jost–function discontinuity

multiplied by the pole term in (80) gives the nonrelativis-
tic wave function up to nonphysical cuts contribution
[45]. When these contributions are taken into account
the equations (62) and (80) do coincide.
So, the relativistic Eq.(55) can be motivated (at least

for composite systems which have the scattering states)
in the frame of modified dispersion approach, that is on
the usual level of correctness for obtaining the analytical
properties of the form factors of composite systems in the
frame of QFT.

IV. THE ELECTROWEAK STRUCTURE OF
PION

Now we apply the method of previous sections to the
calculation of the electroweak structure of pion. There
exists a lot of experimental data on pion, so the effec-
tiveness of the method can be checked by the comparison
with the data (see, e.g., [16] and references therein).

A. The electromagnetic form factor of pion

There are many facts that make it interesting to con-
sider the pion in the frame of the formalism developed
in the previous sections. First, the pion is an important

object in the particle physics and is in the focus of inter-
est for years. Second, the pion consists of light quarks
and thus has to be considered in the frame of relativistic
approach. Third, at the present time the large program
on the pion structure is on line in JLab [50].
We consider the pion as a system of two constituent

quarks. The system is described by a phenomenological
wave function.
In theoretical treatment of the pion electromagnetic

structure one has to make difference between ”soft” and
”hard” parts of the form factor. The ”soft” part which
dominates at small and intermediate momentum trans-
fers, needs nonperturbative approaches. The ”hard” part
which defines the form factor at asymptotically large val-
ues of momentum transfers can be calculated from per-
turbative QCD. However, a controversy still exists con-
cerning the scale of momentum transfers characteristic of
the transition from the nonperturbative to the perturba-
tive regime (see, e.g. [51]). It is pointed out by different
authors that the existing experimental data are defined
by the ”soft” part of the form factor and can be described
by use of phenomenological wave functions of constituent
quarks without involving the perturbative QCD. Usually
such calculations were performed in the frame of light–
front relativistic quantum mechanics. In the present pa-
per we calculate the ”soft” part of the charge form factor
of pion in the frame of IF RHD. We obtain a good de-
scription of the behaviour of the form factor in the wide
region of momentum transfers where the experimental
data exist 0 ≤ Q2 ≤ 8(GeV/c)2 [20].
We pay a special attention to the role of relativistic

properties of quark spins for the pion structure. The
relativistic spin rotation effect (Wigner rotation) caused
by the summation of quark spins gives large contribution
to the pion form factor ( 10 – 20% depending on the
value of momentum transfer) [24]. It is interesting that
spin rotation effect vanishes as Q2 → 0 but gives large
contribution (∼ 30%) to the pion charge radius [17],
which is defined by the slope of the form factor at Q2 = 0.
In our version of IF RHD the meson form factor asymp-

totics at large momentum transfer is the same as in per-
turbative QCD. The asymptotics is now determined by
relativistic kinematics only, specifically by the relativis-
tic effect of spin rotation, and does not depend on the
choice of the quark wave function, that is of the quark
interaction model.
Our version of IF RHD approach gives, in agreement

with the experimental data, an adequate description of
the pion electromagnetic structure in large region of mo-
mentum transfers.
The pion is spinless, so the electromagnetic current ma-

trix element has the form (26) with pc → pπ , Fc(Q
2) →

Fπ(Q
2). In the frame of composite quark model pion is
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considered as the bound state of u– and d̄– quarks. We
suppose that quark masses are equal: mu = md =M .
To calculate in MIA the composite–system form factor

one needs to construct first the free two–particle form
factor (36), (40), (55). Contrary to the simple model of
the previous Section now we consider the system of two
charged particles with spins 1/2. This gives the follow-
ing complications. First, the Eq. (32) for the current
operator of the free system is now transformed to the
form:

j(0)µ (0) = j1µ ⊗ I2 ⊕ j2µ ⊗ I1 . (82)

Here j(1,2)µ - the electromagnetic currents of particles,
I(1,2) – the unity operators in the one–particle state
Hilbert spaces. The Eq.(82) can be rewritten in terms
of matrix elements:

〈~p1,m1; ~p2,m2|j(0)µ (0)|~p ′
1,m

′
1; ~p

′
2,m

′
2〉 =

= 〈~p2,m2|~p ′
2,m

′
2〉〈~p1,m1|j1µ|~p ′

1,m
′
1〉+ (1 ↔ 2) . (83)

Second, the matrix element of one–particle current
contains now, contrary to (33), the magnetic form factors
of quarks as well as the charge ones. Now the parame-
terization (the elementary–particle one following [4]) is
of the form:

〈~p, m|jµ(0)|~p ′, m′〉

= u~pmγ
µu~p ′m′ F1(Q

2)− u~pmσ
µνqν u~p ′m′ F2(Q

2) ,

(84)

u~pm - the Dirac bispinor, γµ - Dirac matrix,

σµν =
1

2
(γµγν − γνγµ) , qν = (p− p′)ν ,

Using multipole parameterization we can write the one–
particle current matrix element in terms of Sachs form
factors:

GE(Q
2) = F̃1(Q

2) +
κQ2

4M2
F̃2(Q

2) ,

GM (Q2) = F̃1(Q
2) + κF̃2(Q

2) ,

F1(Q
2) = eF̃1(Q

2) , F2(t) =
κ

2M
F̃2(Q

2) . (85)

Here GE,M - Sachs electric and magnetic form factors,
respectively, e is the particle charge, κ is the anomalous
magnetic moment.
It is convenient to use the canonical parameterization

of matrix elements [32]:

〈 ~p, m | jµ(0) | ~p ′, m′ 〉

=
∑

m′′

〈m|Dj(p, p′)|m′′〉〈m′′| f1(Q2)K ′
µ+i f2(Q

2)Rµ|m′〉 ,

K ′
µ = (p+ p′)µ , Rµ = ǫµ ν λ ρ p

ν p′ λ Γρ(p′) . (86)

Γ(p) is 4–vector of spin:

~Γ(p) =M~j +
~p(~p~j)

p0 +M
, Γ0(p) = (~p~j) .

The form factors f1(Q
2) f2(Q

2) are the electric and mag-
netic form factors of particles. They are connected with
Sachs form factors [52]:

f1(Q
2) =

2M
√

4M2 +Q2
GE(Q

2) ,

f2(Q
2) = − 4

M
√

4M2 +Q2
GM (Q2) . (87)

Third, now the CG coefficients are of more complicated
form. They are given by (19) with J = S = l = 0. Con-
trary to the previous simple case, now the CG coefficients
contain the Wigner rotation matrices.
Finally, the free two–particle form factor for the system

of two particles with spin 1/2 and quantum numbers J =
S = l = 0 is of the form (see also [20]):

gqq̄0 (s,Q2, s′) = nc
(s+ s′ +Q2)Q2

2
√

(s− 4M2)(s′ − 4M2)

× θ(s,Q2, s′)

[λ(s,−Q2, s′)]3/2
1

√

1 +Q2/4M2

×
{

(s+ s′ +Q2)(Gu
E(Q

2) +Gd̄
E(Q

2)) cos(ω1 + ω2)+

+
1

M
ξ(s,Q2, s′)(Gu

M (Q2) +Gd̄
M (Q2)) sin(ω1 + ω2)

}

,

(88)

Here

ξ(s,Q2, s′) =
√

ss′Q2 −M2λ(s,−Q2, s′) ,

nc is the number of quark colours, ω1 ω2 – the Wigner
rotation parameters:

ω1 = arctan
ξ(s,Q2, s′)

M
[

(
√
s+

√
s′)2 +Q2

]

+
√
ss′(

√
s+

√
s′)

,
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ω2 = arctan
α(s, s′)ξ(s,Q2, s′)

M(s+ s′ +Q2)α(s, s′) +
√
ss′(4M2 +Q2)

,

(89)

with α(s, s′) = 2M +
√
s+

√
s′, and Gu,d̄

E,M (Q2) are Sachs

form factors for quarks. The θ – function in (88) is the
same as in (40).
An interesting effect follows from (88): due to the rel-

ativistic Wigner spin rotation effect the pion charge form
factor contains the contribution of quark magnetic form
factors.
The pion charge form factor can be calculated using

(55), with (88) for the free two–particle form factor:

Fπ(Q
2) =

∫

d
√
s d

√
s′ ϕ(s) gqq̄0 (s ,Q2 , s′)ϕ(s′). (90)

B. The lepton decay constant of pion

Let us calculate now the lepton decay constant of pion
in the frame of our approach. The interest to such a cal-
culation is threefold. First, this constant is measured in
experiment with great accuracy [53], so that it can be
a test for the model, and give the limits for parameters
of models. Second, it is interesting to describe the elec-
tromagnetic form factors and the weak decay constant
in the frame of one and the same approach: the decay
constant indirectly, through the parameters of the model,
defines the behavior of form factors at large values of mo-
mentum transfers Q2. Third, it is interesting to estimate
relativistic effects in the lepton decay.
The lepton decay constant fπ is defined by the

electroweak–current matrix element [16]:

〈0|jµ(0)| pπ 〉 = ifπ pπ µ
1

(2π)3/2
. (91)

pπ – 4-momentum of meson. Let us decompose the l.h.s.
of (91) in the basis (9). Using the explicit form of the
meson wave function (21) one can obtain for (91):

∫

Nc

NCG
d
√
s 〈0|jµ(0)|~pπ ,

√
s〉ϕ(s)

= ifπ pπ µ
1

(2π)3/2
. (92)

As in Section II (Eq.(49)) one can divide the integrand in
(92) into two parts: the covariant part (smooth ordinary
function) and the invariant part.

Nc

NCG
〈0|jµ(0)|~pπ ,

√
s〉 = iG(s)Bµ(s)

1

(2π)3/2
. (93)

The invariant form factor G(s) is a generalized func-
tion. In the same way as in calculating (54) of the previ-
ous section, we now obtain the lepton decay constant of
pion in the form

∫

d
√
sG(s)ϕ(s) = fπ . (94)

In general, the form factor G(s) can be calculated in
the frame of the standard model for electroweak inter-
actions. However, in this paper we limit ourselves by
4-fermion interaction. We take for G(s) the form factor
which parameterizes the decay of free two–quark system:

〈0|j(0)µ (0)|~P ,
√
s〉 = iG0(s)Pµ

1

(2π)3/2
. (95)

The explicit form (95) is written by analogy to (36) not
taking into account the current conservation law. The
form (95) is quite similar to (91) but instead of the con-
stant fπ the form factor depending on invariant variables
is written. To calculate G0(s) let us decompose (95) in
the one–particle basis (8). Now we obtain for (95):

iG0(s)Pµ
1

(2π)3/2

=
∑

m1 ,m2 ,ic

∫

d~p1
2p10

d~p2
2p20

〈0|j(0)µ ic
|~p1 ,m1 ; ~p2 ,m2〉

× 〈~p1 ,m1 ; ~p2 ,m2|~P ,
√
s〉. (96)

ic = 1, 2, 3, the sum over ic is the sum over the colours.
The CG coefficients are known (19). The current matrix
element in the basis (8) can be written in the standard
way in terms of the lepton decay current matrix element
[16]:

〈0|j(0)µ |~p1 ,m1 ; ~p2 ,m2〉

=
1

(2π)3
v̄(~p2 ,m2)γµ(1 + γ5)u(~p1 ,m1) . (97)

We integrate in (96) in the coordinate frame with ~P = 0.
Finally, we obtain:

G0(s) =
nc

2
√
2π P0

(p0 +M)

[

1− k2

(p0 +M)2

]

, (98)

p0 =
√

k2 +M2 .

Substituting (98) in the Eq.(94) we obtain the result
which has the following form if written in invariant vari-
ables:
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fπ =
2M nc

2
√
2 π

∫

d
√
s
1√
s
ϕ(s) . (99)

Let us notice that the Eq.(99) coincides with that ob-
tained in the frame of light–front dynamics [16]. How-
ever, although all forms of RHD are unitary equivalent
[10], nevertheless after the physical approximations are
made in more complicated cases the results, e.g. for
form factors, can be different. This is possibly due to
the fact that the unitary operators connecting different
forms of RHD are interaction dependent [10] and so the
RHD forms realize one and the same approximation in
different ways.
Let us remark that the nonrelativistic limit of the

Eq.(99) gives the standard form in terms of coordinate
space wave function at zero value.

C. The results of calculations

To calculate the electroweak structure of pion using
(90), (88), (99), (22) the following meson wave functions
were utilized:
1. A gaussian or harmonic oscillator (HO) wave func-

tion

u(k) = NHO exp
(

−k2/2b2
)

. (100)

2. A power-law (PL) wave function

u(k) = NPL (k2/b2 + 1)−n , n = 2 , 3 . (101)

3. The wave function with linear confinement from
Ref. [54]:

u(r) = NT exp(−αr3/2 − βr) , α =
2

3

√
M a ,

β =
M

2
b . (102)

a, b – parameters of linear and Coulomb parts of potential
respectively.
In the Ref. [20] in the calculation of pion electromag-

netic structure we supposed the quarks to be point–like.
The results of [20] can be considered as preliminary re-
sults. However, one has to take into account the structure
of constituent quarks [55], in particular, the anomalous
magnetic moment. As anomalous magnetic moments are
connected with finite size of quark, one has to take into
account the explicit form of quark form factors entering
(88) and the pion charge form factor (90). As in [19] let
us use the following forms for quark form factors:

Gq
E(Q

2) = eq f(Q
2) ,

Gq
M (Q2) = (eq + κq) f(Q

2) . (103)

Here eq – the quark charge, κq – the quark anoma-
lous magnetic moment (in natural units). To obtain
the explicit form of the function f(Q2) let us consider
the asymptotics of pion charge form factor as Q2 →
∞ , M → 0.
To obtain the asymptotic behavior let us first make

the asymptotic estimation of the integrals in (90) in the
point–like quark approximation (f(Q2) = 1 , κ = 0
in(103) ). Omitting the details of calculation (given in
[56]) we write the final result for the asymptotics in the
form:

Fπ(Q
2) ∼ Q−2 . (104)

The asymptotics does not depend on the actual form of
the wave function and coincides with that obtained in
QCD. The actual form we obtain, e.g. for (100) is:

Fπ(Q
2) ∼ 32

√
2

[

Γ
(

5
4

)]2

√
π

b2

Q2
. (105)

It is worth to compare the form (105) with the detailed
QCD result [57]:

Fπ(Q
2) =

8 π αs f
2
π

Q2
. (106)

If αs/π ∼ 0.1 then (105) and (106) coincide at b ∼
0.1. So the asymptotics (104) is quite realistic.
In the case of non–point–like quarks we obtain another

asymptotics because the form factor depends upon the
momentum transfer. It is known that QCD gives log-
arithmic corrections to (106). To agree with this QCD
corrected asymptotics we can, for example, choose the
following form for f(Q2):

fq(Q
2) =

1

1 + ln(1 + 〈r2q〉Q2/6)
. (107)

Here 〈r2q 〉 is the MSR of the constituent quark which can
be considered as the model parameter. Let us fix it (as
in [19]) to be: 〈r2q〉 ≃ 0.3/M2.
For the constituent quark mass in pion we use the value

which is usually used in the calculations in RHD: M =
0.25 GeV.
The quark anomalous magnetic moments can be taken

from [55]: κu = 0.029 , κd = − 0.059.
We choose the parameters b in (100), (101) and a in

(102) in such a way as to fit the pion MSR: 〈r2π〉 =

(0.432 ± 0.016 ) Fm
2

[58]. We choose this way to fix
the model parameters because the pion MSR is defined
by the form factor at small values of Q2, that is the range
where potential models work well.
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The fit of the pion MSR gives the following parameters
of the wave functions: in the model (100) b= 0.2784 GeV,
model (101) at n = 2 b = 0.3394 GeV, model (101) at n
= 3 b = 0.5150 GeV, model (102) b = (4/3)αs, αs = 0.59
at light meson mass scale, a = 0.0567 GeV2.
The results of calculation are presented on Figs.3 and

4.

FIG. 3. The square of the pion form factor at small values
of momentum transfers for different models.

The square of the pion form factor at small values of
momentum transfers for different models (100) – (102) is
presented on Fig.3. Results of calculation in the models
(100), (101) at n = 3 and (102) coincide very closely.
The calculations of product Q2 Fπ(Q

2) at high mo-
mentum transfers for different models (100) – (102) are
presented on Fig.4. Legend is following: 1 – harmonic os-
cillator wave function (100), 2 – power–law wave function
(101) at n = 2, 3 – power–law wave function (101) at n =
3, and wave function from model with linear confinement
(102) (these curves coincide very closely).
All the models for the interaction (100), (101), (102)

give a good description of the existing experimental data
4.
The dependence of the results on the actual model

is much less pronounced that in the case of point–like
quarks [20].
The lepton decay constants calculated following Eq.

4TheJLab new results [59] are discussed in connection with
our approach in [60]

(99) with different wave functions have the following val-
ues: fπ = 0.1210 GeV in the model (100), fπ = 0.1327
GeV in the model (101) with n = 2, fπ = 0.1282 GeV in
the model (101) with n = 3, and fπ = 0.1290 GeV in the
model (102). Let us emphasize that we have used no fit-
ting parameters to calculate the lepton decay constant.
Nevertheless, the obtained values are very close to the
experimental value: fπ exp = 0.1307± 0.0005 GeV [53].

FIG. 4. Electromagnetic form factor,Q2 Fπ(Q
2), at high

momentum transfers.

Now let us compare the numerical results for the pion
form factor obtained in MIA (90) with that of the tradi-
tional IA. Let us choose for the comparison, for example,
the null–component of the current.
To obtain the pion form factor in IA we proceed in

the same way as while obtaining (59) of the preceding
Section. Now, however,
1) the decomposition (26) of the IA matrix current

element over the state set (8) is realized following (83),
2) the parameterization of the one–particle matrix el-

ement is given by (86), (87) (instead of (33)),
3) the CG coefficient (19) in (58) are for pion quantum

numbers.
Acting in the same way as while obtaining (59), and

using the null–component of the current matrix element,
we can write the pion form factor in IA in the following
form:

Fπ(Q
2) =

Mπ

4

√

2 (2M2
π +Q2)

4M2
π +Q2

nc
√

1 +Q2/4M2

×
∫

√

s

s′
d
√
s d

√
s′

√

(s− 4M2)(s′ − 4M2)

23



× (s+ s′ +Q2)3Q2

[λ(s ,−Q2 , s′)]3/2
1

(s s′)1/4
1√

s′ (s+Q2)
ϕ(s)ϕ(s′)

×
{

(s+ s′ +Q2)
[

Gu
E(Q

2) +Gd̄
E(Q

2)
]

cos(ω1 + ω2)

+
1

M
ξ(s,Q2, s′)

[

Gu
M (Q2) +Gd̄

M (Q2)
]

sin(ω1 + ω2)
}

.

(108)

Here Mπ = 139.5702±0.0004 MeV [53] is mass of pion.
The normalization condition Fπ(0) = 1 is satisfied for

the form factor (108) if the wave functions (22) satisfy
(24).
To compare the numerical results given by the

Eqs.(90), (88) with that given by (108) let us calculate
the pion form factor using the wave function (100) with
the parameters of the calculations presented in Figs.3 and
4. The results are shown in the Fig.5. The results ob-
tained with the use of the parameterization (55), (88)
differ essentially from that obtained without such pa-
rameterization (108). The form factor calculated in our
approach describes the existing experimental data ade-
quately.

FIG. 5. Q2F (Q2) for MIA (1) and for IA (2). Results
of calculation with wave function (100). Parameters are the
same as in Fig.3.

Let us emphasize once again that the form factor ob-
tained in MIA does not depend on the choice of coor-
dinate frame. This is an important advantage of our
relativistic MIA.

V. CONCLUSION

Let us summarize the results.

1. A new approach to the electromagnetic proper-
ties of two–particle composite systems is developed.
The approach is based on IF RHD.

2. The main novel feature of this approach is the new
method of construction of the matrix element of
the electroweak current operator. The electroweak
current matrix element satisfies the relativistic co-
variance conditions and in the case of the electro-
magnetic current also the conservation law auto-
matically.

3. The method of the construction of the current op-
erator matrix element consists of the extraction of
the invariant part – the reduced matrix element on
the Lorentz group (form factor) – and the covariant
part defining the transformation properties of the
current. The form factors contain all the dynamical
information about transition. The properties of the
system as well as the approximations used are for-
mulated in terms of form factors, which in general
have to be considered as generalized functions.

4. The approach makes it possible to formulate rela-
tivistic impulse approximation (modified impulse
approximation – MIA) in such a way that the
Lorentz–covariance of the current is ensured. In
the electromagnetic case the current conservation
law is ensured, too.

5. The results of the calculations are unambiguous:
they do not depend on the choice of the coordinate
frame and on the choice of ”good” components of
the current as it takes place in the standard form
of light–front dynamics.

6. The formalism enables one to solve in part the
problem of connection of RHD and QFT by com-
parison of RHD with the dispersion approach.
In this paper RHD is compared with a modified
approach where dispersion–relation integrals over
composite–particle mass are used.

7. The effectiveness of the approach is demonstrated
by the calculation of the electroweak structure of
the pion. Our approach gives good results for the
pion electromagnetic form factor in the whole range
of momentum transfers available for experiments at
present time.
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