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INTRODUCTION TO LOW x PHYSICS AND DIFFRACTION a
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The basic concepts relevant for the theoretical description of deep inelastic scatter-
ing within the QCD improved parton model are introduced. Recent developments
in low x DIS and in deep inelastic diffraction are briefly summarised. This includes
discussion of the BFKL dynamics including the subleading effects and of the sat-
uration model. The dedicated measurements, which probe the QCD pomeron are
also discussed.

The aim of this talk is to discuss the following issues:

1. Low x physics in QCD.

(a) BFKL equation.

(b) Saturation model.

2. Deep inelastic diffraction.

We shall discuss the low x physics in QCD on the example of deep inelastic
ep scattering, i.e. the process:

e(pe) + p(p) → e(p′e) + X . (1)

The conventional kinematical variables for the description of this process
are

s = (pe + p)2, q = pe − p′e, Q2 = −q2, W 2 = (q + p)2 (2)

y =
pq

pep
, x =

Q2

2pq
. (3)

The ep inelastic scattering is controlled by the virtual photon exchange
mechanism and the total γ∗p cross-section is closely related to the structure
function F2

σγ∗p =
4π2αem

Q2
F2 .

aIntroductory talk presented at the 30th International Symposium on Multiparticle Dynam-
ics (ISMD 2000), 9-15 Oct 2000, Tihany, Lake Balaton, Hungary.
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It should be observed that the small x behaviour of F2 is related to the large
W 2, i.e. Regge limit of σγ∗p.

The ep DIS is conventionally described within the QCD improved parton
model. In this model, the structure function F2 is directly related to the quark
and antiquark distributions in the nucleon:

F2(x,Q2) = x
∑

f

e2f [qf (x,Q2) + q̄f (x,Q2)] + O(αs) . (4)

The parton (i.e. quark and gluon) distributions satisfy the DGLAP equa-
tions, which in LO have the following structure:

Q2 dqi(x,Q
2)

dQ2
=

αs(Q
2)

2π
(P (0)

qq ⊗ qi + P (0)
qg ⊗ g)

Q2 dg(x,Q2)

dQ2
=

αs(Q
2)

2π
[P (0)

gq ⊗
∑

i

(qi + q̄i) + Pgg ⊗ g] . (5)

Beyond LO (i.e. at NLO + ...) we have:

αs(Q
2)

2π
P

(0)
ij →

αs(Q
2)

2π
P

(0)
ij +

(

αs(Q
2)

2π

)2

P
(1)
ij + .... (6)

At low x, the dominant role is played by the gluons. That follows from
the singular behaviour of the splitting function Pgg(z) for z → 0,

P (0)
gg (z) ∼

2Nc

z
.

The small x behaviour of the parton distributions depends upon the structure
of their small x behaviour at the reference scale Q2

0, i.e.

xpi(x,Q
2
0) ∼ x−λ → xpi(x,Q

2) ∼ x−λ

λ > 0 (7)

xpi(x,Q
2
0) ∼ const → xpi(x,Q

2) ∼ exp[2
√

ξ(Q2) ln(1/x)] , (8)

where

ξ(Q2) =

∫ Q2

Q2

0

dq2

q2
Ncαsq

2

π
.
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In both cases, xg, x(q + q̄), F2... etc. are found to increase in the limit
x → 0.

The LO and NLO, the DGLAP formalism which sums the leading and
next-to-leading powers of ln(Q2/Q2

0) is incomplete at low x. In this region one
has to resum (leading and subleading) powers of ln(1/x). Small-x resumma-
tion of leading (+subleading) powers of ln(1/x) generates the QCD pomeron.

Diagramatically, the QCD Pomeron corresponds to gluon ladder exchange.
The basic dynamical quantity in this case is the unintegrated gluon distribu-
tion f(x, k̂2) where k̂2 denotes the square of the transverse momentum of
the gluon. The unintegrated gluon distribution satisfies the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) equation, which, in the leading ln(1/x) approxima-
tion, has the following form:1,2

f(x, k̂2) = f0(x, k̂2) +
3αs

π
K ⊗ f , (9)

where

K ⊗ f =

∫ 1

x

dz

z

∫

d2q̂

πq̂2
[f(z, (k̂ + q̂)2) − Θ(k̂2 − q̂2)f(z, k̂)] . (10)

The conventional (integrated) gluon ditribution is given by:

xg(x,Q2) =

∫ Q2

dk̂2

k̂2
f(x, k̂2) . (11)

The following properties of the BFKL dynamics should be mentioned:

1. Diffusion of transverse momentum along the chain which should reflect
itself in the hadronic final state.

2. Characteristic rise with decreasing x.

In LO f ∼ x−λ, λ = 4 ln(2)3αs/π

3. Large subleading effects. Their major part is understood and is under
control.

4. The BFKL equation embodies (part of the) LO DGLAP evolution.
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One of the most important recent theoretical developments in the low x
physics has been the completion of the calculation of the NLO ln(1/x) effects.3,4

Those effects were found to be very important and in particular they were
found to reduce significantly the QCD pomeron intercept, which in the NLO
approximation is given by

λ = 4 ln(2)ᾱs(1 − 6.3ᾱs) , (12)

where

ᾱs =
3αs

π
.

It is, therefore, obvious that resummation of subleading ln(1/x) beyond
NLO is needed. It has been found, however, that the dominant part of the
subleading corrections is generated by the phase-space limitations. They can
be taken into account exactly, i.e. beyond NLO.4,5,6

The observable quantities, as the structure function F2 are obtained from
the unintegrated gluon distributions through the kt factorisation:7

F2 ∼ F γg ⊗ f , (13)

where ’⊗’ denotes in this case convolution in transverse and longitidinal mo-
menta. At leading twist, the kt factorisation theorem can be recast into con-
ventional collinear factorisation form:

Q2 ∂F2

∂Q2
∼

αs

2π
P resummed
qg (αs) ⊗ xgBFKL , (14)

where the leading (and possibly also subleading) ln(1/x) effects are included
to all orders in xgBFKL and in the splitting function P resummed

qg . They include
in particular (part of) conventional DGLAP NNLO effects. Small-x resumma-
tion in P resummed

qg has important implications for the extraction of xg from the
scaling violations.8 The recent NNLO analysis of the DGLAP equations which
embodies those effects shows that the gluon distributions in NNLO approxima-
tion are significantly smaller at small x than those obtained within the NLO
framework.9

It is possible to obtain a very economical description of the F2 HERA
data within the BFKL - kt factorisation framework.6 One can, however, get
an equally good description of the data staying within the conventional NLO
DGLAP formalism. The measurement of the structure function alone is, there-
fore, not a sensitive discriminator of the underlying dynamics. In order to
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probe the details of the QCD pomeron, it is particularily useful to study the
high energy processes characterised by two comparable scales Q2

1 and Q2
2 at

the ’ends’ of the gluon ladder which corresponds to the QCD pomeron. In this
kinematical configuration, the conventional LO DGLAP evolution from the
scale Q2

1 to Q2
2 is suppressed and the corresponding cross-sections are sensitive

to the diffusion of the transverse momenta along the chain, which is a chacter-
istic feature of the BFKL dynamics. The following dedicated measurements
are particularily useful for this purpose:

• Two-jet production in high energy hadronic collisions with k2T1 ∼ k2T2.10

• Forward jet (k2jT ∼ Q2) (or forward π0) production in ep DIS.11

• Doubly tagged e+e− events which are related to the γ∗(Q2
1)γ∗(Q2

2) total
cross-section.12,13,14

Indefinite increase of parton distributions xp(x,Q2) with decreasing x can-
not hold forever. The QCD improved parton model based upon linear evolution
equations has to break down when

xp(x,Q2)

Q2
∼ πR2 ,

where R denotes the (transverse) radius describing the size of the region within
which the partons are concentrated. In the small x region, the linear evolution
equations have to be modified by the non-linear screening corrections which
eventually lead to parton saturation.2,15 A semi-phenomenological approach
to saturation has recently been developed within the colour dipole model by
K. Golec-Biernat and M. Wüsthoff.16,17 This formulation, that has proved to
be phenomenologically very successful, utilises the picture in which the high
energy γ∗p total cross-section is driven by the interaction of the qq̄ colour
dipole into which the virtual photon fluctuates,15 i.e.

σγ∗p(Q2, x) ∼

∫

dzdr2|Ψ(r,Q, z)|2σqq̄(r, x) . (15)

In equ. (15), Ψ(r,Q, z) denotes the wave function of the virtual photon, σqq̄(r, x)
is the total cross-section describing the interaction of the qq̄ dipole with the
proton target, r is the transverse size of the dipole and z is the momentum
fraction of the virtual photon carried by a quark (antiquark). In the leading
ln(1/x) approximation, the dipole picture corresponds to the kt factorisation
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formula (partially) transformed into the coordinate representation.18 In the
formulation of the model discussed in ref. 16, we have

σqq̄(r, x) = σ0[1 − exp(−r2/R2
0(x))] ,

where the saturation radius R0(x) is a decreasing function of the parameter x
and is parametrised in the following form:

R2
0(x) ∼ xλ . (16)

The parameter σ0 denotes the magnitude of the dipole cross-section in the
large r limit. The behaviour of the γ∗p cross-section (15) in the region of large
(small) values of Q2 is linked with the properties of the dipole cross-section
σqq̄(r, x) for small (large) values of the dipole size r. To be precise, we have:16

r2 ≪ R2
0(x) ↔ Q2 ≫ 1/R2

0(x) ,

where
σqq̄(r, x) ∼ r2/R2

0(x) , (17)

that gives

σγ∗p(Q2, x) ∼
1

Q2R2
0(x)

(18)

and
r2 > R2

0(x) ↔ Q2 < 1/R2
0(x) ,

where
σqq̄(r, x) ∼ σ0 , (19)

that gives
σγ∗p(Q2, x) ∼ ln[Q2R2

0(x)] . (20)

The latter behaviour corresponds to the saturation of the cross-section. The re-
markable property of the saturation model is geometric scaling of σγ∗p(Q2, x),19

which means that at low values of x this cross-section becomes the function of
only one dimensionless variable, i.e.

σγ∗p(Q2, x) → Φ(τ) , (21)

where
τ = Q2R2

0(x) . (22)

The geometric scaling (21) is very well supported by experimental data.19
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Deep inelastic diffraction in ep inelastic scattering is a process:

e(pe) + p(p) → e′(p′e) + X + p′(p′) , (23)

where there is a large rapidity gap between the recoil proton (or excited proton)
and the hadronic system X .20,21 To be precise, process (23) reflects the diffrac-
tive disssociation of the virtual photon. Diffractive dissociation is described
by the following kinematical variables:

β =
Q2

2(p− p′)q
(24)

xP =
x

β
(25)

t = (p− p′)2. (26)

Assuming that diffraction dissociation is dominated by the pomeron exchange
and that the pomeron is described by a Regge pole, one gets the following
factorizable expression for the diffractive structure function:22

∂F diff
2

∂xP∂t
= f(xP, t)F

P
2 (β,Q2, t) (27)

where the ”flux factor” f(xP, t) is given by the following formula :

f(xP, t) = N
B2(t)

16π
x
1−2αP(t)
P , (28)

with B(t) describing the pomeron coupling to a proton and N being the nor-
malisation factor. The function FP

2 (β,Q2, t) is the pomeron structure function,
which, in the (QCD improved) parton model, is related in a standard way to
the quark and antiquark distribution functions in a pomeron:

FP
2 (β,Q2, t) = β

∑

e2i [q
P
i (β,Q2, t) + q̄Pi (β,Q2, t)] , (29)

with qPi (β,Q2, t) = q̄Pi (β,Q2, t). The variable β, which is the Bjorken scaling
variable appropriate for deep inelastic lepton-pomeron ”scattering”, has the
meaning of the momentum fraction of the pomeron carried by the probed quark
(antiquark). The quark and gluon distributions in a pomeron are assummed
to obey the standard Altarelli-Parisi evolution equations: The deep inelastic
diffraction may therefore probe the quark-gluon content of the Pomeron.

7



The deep inelastic diffraction is sensitive to the interplay between the soft
and hard pomerons.23 It turns out that the effective pomeron intercept ex-
tracted from the diffractive data is higher than that of the soft pomeron , i.e.
(effective) αeff

P (0) ∼ 1.2. This implies an important contribution of the hard
pomeron exchange. One also finds important higher twist contribution to the
diffractive structure functions.

Important diffractive processes which can probe the hard pomeron are the
following ones:21

• γ∗ + p → V + p

• (γ, γ∗) + p → J/Ψ + p

• diffractive jet production .

One of the still open problems of the theory of hard diffraction processes
is the violation of the QCD (collinear) factorisation in hadronic collisions.24

Finally, let us point out that within the saturation model the total diffractive
cross-section is given by:

σdiff
γ∗p(Q2, x) ∼

∫

dzdr2|Ψ(r,Q, z)|2σ2
qq̄(r, x) . (30)

The fact that σdiff
γ∗p(Q2, x) is given in terms of σ2

qq̄(r, x) implies that it is sensi-
tive to the contribution from the large r region.

To sum up, we have introduced in this talk the basic concepts of low x
physics and of hard diffraction. We have also summarised some of the most
recent developments including NLO BFKL, the saturation model, etc. The-
oretical QCD predictions for low x phenomena have been intensively studied
both at HERA and Tevatron25 as well as at LEP.13,14 Most of those predictions
are also extremely relevant for the measurements at future colliders, which will
open up hitherto unexplored regime(s).
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