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General properties of quantum field theory impose strong constraints on model building for

elementary particle phenomenology. Symmetry properties of interactions lie in the foundation

of the standard model [1], causality leads to restrictions on the analytic structure of scattering

amplitudes as functions of energy, the freedom of redefinition of ultraviolet subtraction proce-

dures in renormalizable theories leads to the renormalization group invariance which is a basic

property of theoretical quantities corresponding to physical observables [2]. While such general

properties are supposed to be valid in a full theory there is little known about the very existence

of realistic nontrivial quantum field models – only some simplified examples (mainly in two-

dimensional space-time) have been considered (e.g. [3]). The realistic four-dimensional models

suitable for particle phenomenology are analyzed within perturbation theory in the coupling

and only first few terms of perturbative expansions are usually available. Some general results

on asymptotic behavior at large orders of perturbation theory are obtained by the steepest

descent method for the functional integral determining the generating functional for Green’s

functions. The results are known in some models of quantum field theory where classical so-

lutions of equations of motion were found [4]. The classical solutions of field equations are

also known in nonabelian gauge theories [5] that provides the appropriate saddle-point config-

urations for the steepest descent method of evaluating the functional integrals [6] and allows

for deeper understanding the ground state structure in these models [7]. Besides the steepest

descent methods for evaluating functional integrals the all-order perturbation theory results are

also discussed using a particular way of resumming some special subsets of perturbation theory

diagrams [8, 9].

At present the problem of evaluating the high-order perturbation theory contributions be-

comes a practical issue for high-precision tests of the standard model and new physics search

as the accuracy of experimental data improves [10]. It is most important in perturbative QCD

because the strong coupling constant αs is numerically large. Since the perturbation theory

expansion in αs is, in general, asymptotic a resummation of all-order terms gives a possible way

to improve the accuracy of theoretical predictions. An example of the infinite resummation

of perturbation theory diagrams is an account for the Coulomb interaction for the processes

of heavy quark production near the threshold [11] that allowed for an essential improvement

in the description of top-antitop production [12]. Note that this resummation does not really

include the strong coupling regime of QCD. For light quarks and massless gluons with a genuine

strong interaction in the infrared domain there is no successful recipe of resumming the subsets

of perturbation theory diagrams that could lead to the description of observables in terms of

physical hadrons [13]. To deal with the region of strong coupling in the low-energy hadron phe-

nomenology one exploits an idea of averaging over some energy range. It is assumed that the

theoretical predictions for averaged quantities obtained with perturbation theory in the strong

coupling constant in terms of quark-gluon degrees of freedom can be well confronted with ex-

perimental data measured in terms of observed hadrons. This assumption is known as duality

concept (e.g. [14]). While the duality assumption is a real base for using perturbation theory
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in the low-energy hadron phenomenology it is, however, difficult to quantitatively control the

accuracy of this assumption in concrete applications. The most advanced quantitative study

of the validity of duality concept is for two-point correlators of hadronic currents because of

their simple analytic properties in momentum. The quality of the perturbation theory series for

two-point correlators can be essentially improved by the renormalization group resummation

that is an efficient tool of calculating various asymptotics of the Green’s functions and related

to the freedom of performing ultraviolet subtractions that leads to a possibility of redefinition

of the coupling. The technical way to implement the renormalization group improvement of

perturbation theory series is to use a running coupling normalized in the vicinity of a physical

scale of the process in question. Such a choice of normalization for the coupling allows one

to resum big logarithms related to the difference of scales in all orders of perturbation theory.

Because of the final average over the energy interval as duality requires one has a choice whether

the renormalization group improvement should be done before or after averaging. In general,

these two operations – duality averaging and renormalization group improvement – do not com-

mute. Performing renormalization group improvement before the final averaging allows one to

resum a lot of regular corrections relevant to running only; one can consider this procedure as a

determination of a proper scale for the averaged observables. The technique of renormalization

group improvement for two-point correlators before the final averaging necessary for physical

observables is known as the contour-improved perturbation theory and is especially important

at low energies where the QCD coupling constant is large and higher order perturbation theory

terms can be numerically important: they can change the results of finite-order perturbation

theory by an amount comparable with experimental precision [15]. The precision of present

experimental data on τ lepton decays, for instance, suffices for distinguishing the results of

contour-improved and finite order perturbation theory [16].

An account for running in perturbation theory by using the renormalization group improve-

ment under integration sign is close in spirit to the formulation of calculational scheme for the

Green’s functions within Schwinger-Dyson equations (skeleton expansion). Within Schwinger-

Dyson formulation of perturbation theory one can use for the irreducible vertices which con-

stitute the building blocks of the integral equations either finite-order perturbation theory or

renormalization group improved one. The Schwinger-Dyson technique was intensively used for

determination of the fermion propagator beyond the QCD perturbation theory approximation

in relation to the problem of mass generation in massless theories and spontaneous symmetry

breaking [17]. It is known that reiteration of running into loops can be infrared dangerous

(just to have an idea what happens one can think of perturbation theory expansions in terms

of a bare coupling in dimensional regularization and compare the results to the situation in

superrenormalizable theories with a dimensional coupling constant). The reason is that the

renormalization group summation is applicable to Green’s functions at some values of mo-

menta while the asymptotic behavior is determined by performing an analytic continuation

which is sometimes implicit. Therefore, analytic properties of amplitudes in the whole complex
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plane of momenta in finite-order perturbation theory can differ from those after renormalization

group improvement. This difference of analytic properties can lead to some singularities when

perturbative renormalization group running is extended to area where perturbation theory is

not valid [18]. For asymptotically free QCD in the leading order of running the situation was

discussed in [19].

In the present paper we discuss the resummation of effects of running on the example of

two-point correlators of hadronic currents. The two-point correlators are about the simplest

Green’s functions and have well-established analytic properties in momenta. Two-point cor-

relators are important for phenomenology, they are relevant for describing the processes of

e+e−-annihilation into hadrons and/or τ -lepton hadron decays [20]. Note that the correlators

of gauge invariant currents built from gluonic operators describe a spectrum of glueballs, the

experimental observation of which would give a strong additional support for QCD as theory of

hadrons. Gluonic current correlators is an actual choice for the analysis in the present paper.

We first discuss some generalities. The correlator of a hadronic current j(x) has the form

i
∫

〈Tj(x)j†(0)〉eiqxdx = Π(q2) (1)

where Π(q2) is an invariant scalar function. Analytic properties of the function Π(q2) in the

variable q2 are fixed by a dispersion relation (Källen - Lehmann, or spectral, representation)

Π(q2) =
∫

ρ(s)ds

s− q2
+ subtractions (2)

where the spectral density ρ(s) is determined by a sum over the states of the theory (e.g. [21])

and ultraviolet subtractions is a polynomial in q2. The spectrum of the correlator in eq. (1),

or the support of the function ρ(s) from eq. (2), is determined by singularities of the function

Π(q2) in the complex q2 plane. The spectral density ρ(s) is then given by the discontinuity of

the function Π(q2) across the spectrum

ρ(s) =
1

2πi
(Π(s+ i0)− Π(s− i0)), s ∈ [spectrum] . (3)

In QCD with massless quarks and gluons a general assumption about the spectrum (spectrality

condition) is s ≥ 0 or [spectrum] = [0,∞]. This assumption is based on the Fock representation

for the states in terms of massless quarks and gluons (e.g. [21]). Note that this is an assumption

and, in fact, analytic properties of Π(q2) and, therefore, the support of the spectral density ρ(s)

depend on interaction. The dependence of the spectrum on interaction can readily be seen in

the example of heavy charged particles with Coulomb interaction. For a pair of heavy particles

with masses m1 andm2 one would expect the spectrum start at the threshold sthr = (m1+m2)
2.

However, if the Coulomb interaction is present it is true only for the repulsive interaction while

the attractive interaction leads to the appearance of Coulombic poles below the threshold. In

QCD the shape of the spectrum near the heavy quark threshold depends also on definition of

the masses used to describe heavy quarks and other details of the interaction (e.g. theoretical
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spectrum can be different at different orders of perturbation theory [22]). Such a situation is

well known also from the analysis of simplified models [23]. Thus, the theoretical spectrum of

a hadronic correlator is a dynamical quantity and constraints on the support of the spectral

density coming from kinematical considerations based on values of masses of asymptotic states

are not always valid in the full theory.

In asymptotically free QCD the function Π(q2) is computable theoretically in Euclidean

domain (sufficiently far from the positive semiaxis q2 > 0) that allows one to find theoretical

predictions for observables. Still, to extract a theoretical prediction for the spectral density

ρ(s) from the function Π(q2) is not straightforward. The point is that Π(q2) is only known as a

perturbation theory expansion at large Euclidean q2 while ρ(s) is given by a discontinuity across

singularities of Π(q2) in the complex q2 plane. However, the perturbation theory calculation of

the function Π(q2) is not justified near its singularities. Therefore, the analytic continuation in

the complex q2 plane to the vicinity of positive semiaxis and into infrared region is necessary.

The analytic continuation is an incorrectly set operation, i.e. small errors of the initial func-

tion Π(q2) at Euclidean points can produce large errors in ρ(s). This instability is especially

important for a theoretical evaluation of ρ(s) at low energy. The problem of performing an

analytic continuation can be also reformulated in the language of integral equations since the

dispersion relation in eq. (2) gives the correlation function Π(q2) as an integral transformation

of the spectral density ρ(s). The relation (2) is a Fredholm integral equation of the second kind

which is known to lead to an incorrectly set problem. Thus, the errors of ρ(s) (as a solution of

equation (2)) are not continuously related to the errors of Π(q2) (as initial data of equation (2))

and can be large even if errors of Π(q2) in Euclidean points are sufficiently small. The general

procedure of constructing the approximate solutions to incorrectly set problems was suggested

by Tikhonov and is known as regularization. Averaging the spectral density over a finite energy

interval (sum rules) can be considered as a particular realization of Tikhonov’s regularization

procedure. One wants to theoretically study the function ρ(s) at low energy because its exper-

imental counterpart – the hadronic spectral density ρhad(s) – can be directly measured at low

energy with high precision. Thus, while a pointwise description of the spectral density ρ(s) at

low energy is beyond perturbation theory, the appropriate quantities to analyze theoretically

in perturbative QCD are the moments or integrals of ρ(s) with a set of weight functions. This

is a manifestation of the fact that the theoretical spectral density is, in general, a distribution

rather than a continuous function of energy.

The moments of the spectral density ρ(s) over a finite energy interval are defined by the

relation

Mn = (n + 1)
∫ s0

ρ(s)
snds

(s0)n+1
. (4)

The factor (n + 1) in the definition of the moments is chosen to have all contributions of the

leading order of perturbation theory uniformly normalized to unity. Equivalently one can say
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that all measures defined on the interval [0, s0]

(n+ 1)
sn

sn+1
0

ds = d
(

s

s0

)n+1

(5)

are normalized to unity. Note that the accuracy of perturbation theory evaluation of a given

moment depends on a particular weight function.

With the dispersion relation given in eq. (2) one can rewrite moments in eq. (4) as integrals

over a contour in the complex q2 plane [24]. For practical calculations of moments a conve-

nient contour is a circle with the radius s0 though the results are independent of the shape

of the contour when it is deformed in the analyticity domain of the correlator. The contour

representation of the moments reads

Mn = (n+ 1)
(−1)n

2πi

∮

|z|=s0
Π(z)(z/s0)

ndz/s0

= (n+ 1)
(−1)n

2πi

∮

|z|=1
Π(s0z)z

ndz

= (n+ 1)
(−1)n

2π

∫ π

−π
Π(s0e

iϕ)ei(n+1)ϕdϕ . (6)

Note that the moments on the circle as given in eq. (6) are just Fourier coefficients of correlation

functions that allows one to use a well-developed mathematical technique of Fourier analysis

to study them.

Theoretical calculations of the moments are usually performed within operator product

expansion (OPE) for the correlation function Π(q2) [25, 26, 27]. The OPE expression for the

correlator contains a perturbation theory part and power corrections. The perturbation theory

part can be further improved using renormalization group summation. In this paper we consider

only the perturbation theory part of the theoretical correlator, or Π(q2)-function, for analyzing

the moments. If the renormalization group improved Π(q2) is used under integration sign for

the moments this means a resummation of the effects of running [15]. This technique was

used for tau decay analysis [15, 28]. Power corrections within OPE – nonperturbative terms

– appear by prescribing the nonvanishing vacuum expectation values to the local operators of

higher dimensionality [27]. The contributions of these terms into the moments can be found

with Cauchy theorem (e.g. [29]). At present the qualitative change in the phenomenology

of sum rules is that high-order perturbation theory terms for hadronic correlators are known

in various hadronic channels and the experimental value for the strong coupling constant is

larger than that of the original papers therefore perturbation theory corrections are important

numerically. It was already noticed that in some channels the perturbation theory corrections

can numerically dominate over the power corrections that makes the study of perturbation

theory corrections important for the present phenomenology [30].

As a concrete example we take a correlator of the gluonic current G2 = Ga
µνG

a
µν where

Ga
µν is a strength tensor of the gluon field. To the leading order of perturbation theory the
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renormalization group invariant expression for the current can be chosen in the form

jG = αsG
2 (7)

where αs is the strong coupling constant of QCD. This current is related to the trace of the QCD

energy-momentum tensor θµµ and can serve as interpolating operators for glueballs. The full

renormalization group invariant expression for θµµ in QCD with massless quarks is (β(αs)/2αs)G
2

where β(αs) is the QCD β-function; this is not important for us in the following. The correlator

reads
π2

2
i
∫

〈TjG(x)j
†
G(0)〉e

iqxdx = q4ΠG(q
2) . (8)

Note that a kinematical factor q4 is removed from the definition of the function ΠG(q
2) which

is justified within perturbation theory. The Adler’s function

DG(Q
2) = −Q2 d

dQ2
ΠG(Q

2) , Q2 = −q2 (9)

has a simple form at the leading order of perturbation theory

DG(Q
2) = αs(Q

2)2(1 +O(αs)) . (10)

A theoretical prediction for the function DG(Q
2) has been calculated up to the third order of

perturbation theory [31, 32]. Our main aim is to take into account the effects of running of

the coupling for evaluating the moments of the spectral density, therefore, the introduction of

an effective charge is convenient [33]. Indeed, high-order corrections can be accounted for by

introducing the effective charge αG(Q
2) in all orders of perturbation theory by the relation [31]

DG(Q
2) = −Q2 d

dQ2
ΠG(Q

2) = αG(Q
2)2 . (11)

The effective strong coupling αG(Q
2) obeys the renormalization group equation

Q2 d

dQ2

αG(Q
2)

π
= β(

αG(Q
2)

π
) (12)

with

β(a) = −a2
(

β0 + β1a+ βG
2 a

2 + βG
3 a

3
)

+O(a6) . (13)

First two coefficients of the β-function are scheme independent, the higher order terms βG
2 , β

G
3

depend on the effective charge definition in eq. (11). In QCD with nf light quark flavors one

has

β0 =
1

4

(

11−
2

3
nf

)

. (14)

For our purpose it suffices to use only the leading order running that contains all essential

features of the whole phenomenon. Effects due to higher order corrections of the β-function

are small and do not change the basic picture, slightly affecting the values of the moments
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numerically [34]. Thus, we consider the leading order renormalization group equation for the

effective charge

Q2 d

dQ2

αG(Q
2)

π
= −β0

(

αG(Q
2)

π

)2

. (15)

The renormalization group resummed correlation function reads

ΠG(Q
2) =

π

β0

αG(Q
2) + subtractions (16)

where

αG(Q
2) =

α0

1 + (β0α0/π) ln(Q2/s0)
(17)

with α0 = αG(s0). Note that for the process of e
+e− annihilation into hadrons the corresponding

renormalization group resummed correlation function reads

Πe+e−(Q
2) = ln

(

µ2

Q2

)

+
1

β0

ln

(

αe+e−(Q
2)

π

)

+ subtractions (18)

with the first term being a parton contribution independent of αs. Setting Q2 = s0e
iϕ on the

contour one obtains an explicit expression for the correlator as a function of the angle ϕ

ΠG(s0e
iϕ) =

π

β0

α0

1 + iβ0α0ϕ/π
+ subtractions (19)

With an explicit expression for the function ΠG(z) from eqs. (16,19) the analysis of the moments

Mn is straightforward. The explicit expression for the moments written through the contour

representation reads

Mn = (n + 1)
(−1)n

2π

∫ π

−π

π

β0

α0

1 + iβ0α0ϕ/π
ei(n+1)ϕdϕ . (20)

Eq. (20) is a basic relation for further study. Note that the form of the representation in eq. (20)

is rather general and gives a basis for other applications: higher powers of the running coupling

αs can be easily generated.

Let us discuss the above expressions in some detail. The main feature of the contour

representation for the moments is that everything is explicit as it is in finite-order perturbation

theory. After formulating the particular way of resummation for the moments, i.e. by defining

them on the contour, there is no ambiguity in these quantities (they are not given by series

in αs but by close formulae). Therefore, the moments are explicit functions of α0 that can be

rigorously studied. One should, however, remember that a particular definition of the moments

on the contour has been used.

Expanding eq. (20) in α0 one reproduces all results of finite-order perturbation theory

(e.g. [35]). Indeed, expanding the function ΠG(Q
2) from eq. (16) one finds

ΠG(Q
2) =

π

β0
α0

{

1 + β0
α0

π
ln(

s0
Q2

) + β2
0

(

α0

π

)2

ln2(
s0
Q2

) +O(α3
0)

}

+ subtractions . (21)
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The first term (Q2 independent) can be added to subtractions. Then, finally one has

ΠG(Q
2) = α2

0 ln

(

s0
Q2

)

+ β0
α3
0

π
ln2

(

s0
Q2

)

+O(α4
0) + subtractions . (22)

While the expansion of the integrand in eq. (20) in α0 with further integration gives nothing

new in comparison with the finite-order perturbation theory analysis, new features appear if

one retains a resummed expression under integration sign.

The moments in eq. (20) are expandable in a convergent series in α0 for β0α0 < 1. The

existence of a finite radius of convergence in the complex α0 plane within the contour technique

of resummation for the moments is a general feature that persists for the running with the

high-order perturbative β-function. However, in QCD the convergence radius in α0 decreases

when higher orders of the β-function are included [34]. Thus, the explicit result eq. (20) allows

for an analytic continuation in the complex α0 plane leading to the functions Mn(α0) which

are analytic in α0 at the origin, i.e. near the point α0 = 0. This sounds a bit unusual as one

implicitly assumes that perturbation theory objects should have an essential singularity in α0

at the origin usually a cut along the negative semiaxis (e.g. [36]). Note that the moments of

the heavy quark production with infinite resummation of Coulomb interaction are also given

by convergent series in αs (the explicit result at the leading order of perturbation theory is

presented in [37]). The exact expression given in eq. (20) without expansion in α0 provides

one with an analytic continuation beyond the convergence radius even when α0 lies outside the

convergence circle.

Looking at eqs. (2,3,16,17,19) one notices that analytic properties in the variable q2 declared

for a general function Π(q2) built from massless fields in eqs. (2,3) differ from that of the explicit

result given in eqs. (16,17,19): the explicit renormalization group improved expression ΠG(q
2)

has a pole in the Euclidean region of q2 which is supposed to be the analyticity region from

general assumptions about the spectrum. This is an important feature to notice: a concrete

approximation ΠG(q
2) in eq. (16) has different analytic properties in the whole complex q2

plane than it is declared by general requirements. Contrary to the resummed expression given

in eq. (16), at any finite order of perturbation theory given in eq. (21) one has only powers of

logarithms that have correct analytic properties in the variable q2 – a cut along the positive

semiaxis. It is just a consistency feature – finite-order perturbation theory is a (trivial) example

of the model of quantum field theory where all general requirements are valid. Thus, the

renormalization group resummation for the hadronic correlator in asymptotically free QCD can

change its analytic structure in the infrared region as compared to the finite-order perturbation

theory approximation. In the leading order of the running in QCD a (Landau) pole is usually

generated. This pole is included into the definition of the moments in eqs. (6,20) because one

encircles the origin with a large contour. There is no other possibility to work consistently

in perturbation theory because the infrared region is completely nonperturbative and one is

not allowed to move the integration contour to that region. The requirement of integrating

only along the positive axis is an external constraint on the theory rather than its attribute.
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It cannot be realized in perturbation theory – the integration contour should go sufficiently

far from the infrared region which is a requirement of the applicability of perturbation theory

approximations. Note that if s0 is not large enough in order the circular contour includes all

infrared singularities the contour should be deformed to do so. To give the results for the

moments that are justified in perturbation theory (at least formally) the integration contour

should be chosen such that no singularity incompatible with general requirements lies outside

it in the complex q2 plane.

After defining the moments properly (written as eq. (20), for instance) the practical calcula-

tion of explicit functions Mn(α0) can be done in different ways. Technically, one can shrink the

integration contour back to singularities of ΠG(q
2) which is a uniquely defined mathematical

operation for the explicit function ΠG(q
2) in the complex q2 plane. Then one discovers a pole

which is a pure computational fact without any meaning for the structure of the perturbation

theory at high orders. The perturbation theory moments are constructed at high energies and

cannot decipher the point-by-point structure of the spectrum in the infrared region (or sin-

gularities of ΠG(q
2) at small q2) – they just give a contribution from this region as it is seen

from large energies (on the contour). If a high-order β-function is used for the renormalization

group improvement of the correlator then the structure of singularities in the infrared region

can drastically change [38]. However, this has little effect on the moments – they develop some

small perturbation theory corrections independent of a particular structure of the correlation

function in the infrared region obtained as a perturbation theory approximation. Of course,

the parameter s0 should be sufficiently large in order the perturbation theory expansion in the

coupling α0 would be justified. A discussion of the pointwise behavior of Π(q2) in the infrared

region is beyond the scope of perturbation theory. Note that the possibility to restore moments

as exact functions of the coupling from their (asymptotic) perturbation theory series depends

on the behavior of Π(q2) in the infrared region.

Still some convenient representations of eq. (20) are worth studying for practical calculations.

Let us first consider the leading order moment M0(α0) that reads

M0 =
1

2π

∫ π

−π

π

β0

α0

1 + iβ0α0ϕ/π
eiϕdϕ =

α0

2β0

∫ π

−π

eiϕdϕ

1 + iβ0α0ϕ/π
. (23)

With the expression (23) given one can work out an efficient computation technique for it. In

applications the moments are usually computed numerically [15, 28, 34]. For a general analysis

one can consider also analytical computations of the moments in various limits. Integrals of

the type (23) are related to the exponential integral function and have been well studied [39].

Formally one can use a convergent series in α0 but if an experimental value of α0 is larger than

the convergence radius then the expansion in α0 is of no use and an analytic continuation of

the function given by the series in α0 beyond the convergence radius is necessary. Let us look

at this issue closer. The convergence radius of the function M0(α0) in the complex α0 plane for

the leading order β-function is given by |α0| < 1/β0. For a full perturbative β-function up to

the fourth order in the MS scheme it is smaller [34]. In a realistic case of τ decays, for instance,
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s0 = M2
τ = (1.777 GeV)2 and β0 = 9/4 that leads to

α0 ≡ α0(s0 = M2
τ = (1.777 GeV)2) <

4

9
= 0.44 . . . (24)

i.e. the experimental value of the coupling α0 ≈ 0.3 [40] lies rather close to the boundary of

the convergence circle. Taking the scale s0 for the moments smaller than the squared τ lepton

mass M2
τ one can get the value of α0 lying outside the convergence circle. The convergent

power series may not be the best way of computing the moments for such numerical values of

the coupling constant. The more efficient approximation can be obtained by constructing an

asymptotic expansion for the zero moment. Integrating by parts one finds

M0 =
α2
0

1 + β2
0α

2
0

+
α2
0

2π

∫ π

−π

eiϕdϕ

(1 + iβ0α0ϕ/π)2
. (25)

Here the first term gives a perturbation theory expression for the spectral density at s0 with

all corrections due to analytic continuation resummed (so called π2 corrections) [41]. This

contribution can be obtained from the leading order running by retaining the highest power of

π at every order of perturbation theory. It also corresponds to the calculation of the moments

on the cut through the boundary value of the perturbation theory spectrum [35]. Further

integration by parts gives

M0 =
α2
0

1 + β2
0α

2
0

+
α2
0

π

n
∑

j=2

(j − 1)!

(

β0α0

π

)j−2
sin{j arctan(β0α0)}

(1 + β2
0α

2
0)

j/2

+n!
α2
0

2π

(

β0α0

π

)n−1
∫ π

−π

eiϕdϕ

(1 + iβ0α0ϕ/π)n+1
. (26)

This result can be obtained using the recurrence relation

1

2

∫ π

−π

eiϕdϕ

(1 + iβ0α0ϕ/π)k
=

sin(kχ)

rk
+ k

(

β0α0

π

)

1

2

∫ π

−π

eiϕdϕ

(1 + iβ0α0ϕ/π)k+1
(27)

with quantities r and χ defined by

1 + iβ0α0 = reiχ, r =
√

1 + β2
0α

2
0, χ = arctan(β0α0) . (28)

Retaining only leading powers of α0 at every order of the expansion (26) one recovers an

asymptotic series often discussed in the literature. Indeed, taking only the leading asymptotics

of every term in eq. (26) one finds

M leading asym
0 = α2

0

(

1 + 2β0
α0

π
+ . . .+ (n + 1)!βn

0

(

α0

π

)n)

+O(αn+3
0 ) . (29)

The expansion (29) shows a nonalternating factorial growth of the coefficients that leads to

a Borel nonsummable asymptotic series [42]. The approximation (29) for the expansion (26)

is not accurate. Note that Borel summation (with some recipe for treating nonsummable
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singularities) of the leading asymptotics (29) cannot restore the exact function (23) from some

general principles.

The representation (26) gives an efficient way to numerically compute the result (23), it

represents an asymptotic expansion of the function M0(α0) which is analytic at the origin

α0 = 0. It is known that an asymptotic expansion of a function can be more efficient for its

numerical evaluation than a convergent series even inside the convergence circle, it also gives an

efficient way for the calculation outside the convergence circle (not too far though). One can see

that the result (26) is an efficient asymptotic expansion which can give a better accuracy than

a direct power series expansion in α0 for some α0 and n. Note that when the analytic structure

of the function is known, or a concise expression for the function is given as in eq. (23), the

asymptotic expansions which converge fast for the first few terms are more useful for practical

calculations than formal convergent series that require many terms for getting a reasonable

numerical accuracy [43]. Still one is left with the residual term which is represented by the

integral in eq. (26). In practical calculations one can simply neglect it. However, in some cases

one can do better than that. By extending the integration range in the variable ϕ from −∞ to

+∞ the integral over ϕ can be readily computed

n!

(

β0α0

π

)n−1
∫ ∞

−∞

eiϕdϕ

(1 + iβ0α0ϕ/π)n+1
= 2π

(

π

β0α0

)2

e
− π

β0α0 . (30)

Using the decomposition

∫ π

−π
dϕ =

∫ ∞

−∞
dϕ−

(∫ −π

−∞
dϕ+

∫ ∞

π
dϕ
)

(31)

one can write

n!

(

β0α0

π

)n−1
∫ π

−π

eiϕdϕ

(1 + iβ0α0ϕ/π)n+1

= 2π

(

π

β0α0

)2

e
− π

β0α0 − n!

(

β0α0

π

)n−1 (∫ −π

−∞
+
∫ ∞

π

)

eiϕdϕ

(1 + iβ0α0ϕ/π)n+1
(32)

for any n. Therefore, the residual term in eq. (26) is transformed into a sum of an explicit

nonperturbative term proportional to e−π/β0α0 and the term which can be smaller than the

original residual term for some values of α0 and n. One has

M0 =

(

π

β0

)2

e
− π

β0α0 +
α2
0

1 + β2
0α

2
0

+
α2
0

π

n
∑

j=2

(j − 1)!

(

β0α0

π

)j−2
sin{j arctan(β0α0)}

(1 + β2
0α

2
0)

j/2

−n!
α2
0

2π

(

β0α0

π

)n−1 (∫ −π

−∞
+
∫ ∞

π

)

eiϕdϕ

(1 + iβ0α0ϕ/π)n+1
. (33)

The explicit nonperturbative term e−π/β0α0 has appeared in the asymptotic expansion of the

moment (23) written in the form of eq. (33). The difference between the expansions in eq. (26)

and eq. (33) is not very noticeable, in fact, they are almost identical up to the residual terms.

12



What happened is the change of the residual term. Therefore, the choice of the representation

for the moment (23) (eq. (26) or eq. (33)), i.e. with or without the explicit nonperturbative term

e−π/β0α0 , is a question of the choice of a particular form of the residual term. It can happen that

after dropping the residual term (which is a common practice in asymptotic series calculations)

the representation in the form of eq. (33) is more accurate numerically than that in the form

of eq. (26) for some particular values of α0 and n. However, a quantitative conclusion about

the accuracy of the asymptotic series representation for a function can only be drawn if one

has a concise expression for the function as eq. (23) in our case when the explicit form of the

residual term is also known (see also ref. [44] where a simplified model in quantum mechanics

was considered). Any conclusions based on the terms of the series itself (for instance, based

on the representation (29)) can be not accurate numerically; they can also be unjustified in a

general sense of analytic behavior as one can see from eq. (32).

The above results are valid for any moment Ml. Namely, the recurrence relation can be

generalized to read

(l + 1)
1

2

∫ π

−π

ei(l+1)ϕdϕ

(1 + iβ0α0ϕ/π)k
=

sin{k(l + 1)χ}

rk
+ k

(

β0α0

π

)

1

2

∫ π

−π

ei(l+1)ϕdϕ

(1 + iβ0α0ϕ/π)k+1
. (34)

The representation with integration by parts analogous to one given in eq. (26) shows an

improvement in the convergence for large l moments equivalent to the replacement α0 → α0/l.

This agrees with conclusions drawn from the analysis of finite-order perturbation theory [35].

In general, one can also modify the residual term for any moment Mn. In the literature there

are also some moments defined on the final energy interval with different weight functions [45];

our conclusion can be generalized to that moments as well.

Now we discuss the spectrum of the explicit resummed function ΠG(q
2). The structure of

the spectrum in the infrared domain is most interesting. Note that this part of the spectrum

is obtained by the analytic continuation from the Euclidean region where ΠG(q
2) is calculated

as a perturbation theory expansion to a region where perturbation theory is not valid that

means that the structure of the spectrum has no general physical meaning at small s pointwise.

The spectrum of the explicit function ΠG(q
2) given in eq. (16) is a well-defined mathematical

quantity. It is straightforward to calculate it. Using the expression for the leading order

coupling constant in the form

αG(Q
2) =

α0

1 + (β0α0/π) ln(Q2/s0)
=

π

β0 ln(Q2/Λ2
G)

(35)

where

Λ2
G = s0 exp

(

−
π

β0α0

)

(36)

one finds

ΠG(Q
2) =

π

β0

αG(Q
2) + subtractions =

π2

β2
0 ln(Q

2/Λ2
G)

+ subtractions . (37)

13



Therefore, the spectrum (a discontinuity across singularities) reads

ρG(s) =
1

2πi
(ΠG(s+ i0)−ΠG(s− i0)) =

π2

β2
0

(

Λ2
Gδ(Λ

2
G + s) + θ(s)

1

π2 + ln2(s/Λ2
G)

)

(38)

where δ(s) is a Dirac δ-distribution and θ(s) is a step-distribution. Explicit functions given in

eqs. (37,38) satisfy integral equation (2). Note that the explicit spectrum in eq. (38) contains

a contribution δ(Λ2
G + s) corresponding to a pole 1/(q2 + Λ2

G) of the function ΠG(q
2) in the

region q2 < 0 which is supposed to be the analyticity domain of the two-point correlators from

general requirements. The position of the pole Λ2
G is specific for a given channel if an effective

charge is used. The expression for the theoretical spectrum given in eq. (38) can be used in

a mathematical sense for calculating integrals (moments) in eq. (20) (an analogous approach

may be used for the general case in eq. (4)) but a physical interpretation of the spectrum at

small s is rather meaningless because perturbation theory is not applicable at small momenta.

The part of the spectrum on the positive real axis is a discontinuity of the function ΠG(q
2)

across the cut [41]. It can be conveniently written in the form

ρcontG (s) =
π2

β2
0

1

π2 + ln2(s/Λ2)
=

α(s)2

1 + β2
0α(s)

2
(39)

with a function

α(s) =
π

β0 ln(s/Λ
2
G)

. (40)

Note that the function α(s) has a pole on the physical cut at s = Λ2
G. This is this pole

that leads to problems of Borel nonsummability in the resummation of the effects of running

directly on the cut when one integrates through the infrared region (cf. eq. (29)). However, the

pole of the auxiliary function α(s) from eq. (40) has no physical meaning within perturbation

theory. For instance, the spectral density (39) is a smooth function at this point. While the

spectral density explicitly given in eq. (38) allows one to compute the moments by the direct

integration in a pure mathematical sense it is not productive to ask whether this spectrum

is physical or not because there is no possibility to answer this question within perturbation

theory. Interpretations of this spectrum at low energies like specific recipes of resummation

for Borel non-summable series (as in eq. (29), for instance, are additional assumptions beyond

perturbation theory.

The continuous part of the spectral density in eq. (39) can be obtained uniquely from the

finite-order perturbation theory expansion. However, the pole remains hidden and cannot be

restored from the summation on the cut if only the discontinuity across the cut along the

positive semiaxis is considered. Note that this is also a situation in heavy quark physics –

no Coulombic poles can be restored from the summation on the cut (see discussion in [46] in

relation to the precision determination of heavy quark masses).

It is worth stressing again that the moments in eq. (20) are analytic functions of the coupling

α0 at the origin. It means that the nonanalytic piece in eq. (32) cancels the corresponding part
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in the residual term. Depending on a particular form of the residual term the formal analytic

structure of the expansion for the moments in the coupling constant α0 drastically changes.

This demonstrates a danger of making conclusions about infrared power corrections emerging

from the extrapolation of the running to the infrared region. Because the infrared region is

not the perturbation theory domain the formal perturbative expansions originating from the

integration over the infrared region can strongly be modified by making small changes in pertur-

bation theory quantities like effective β-functions [38]. In practice, or from a phenomenological

point of view, the use of power corrections stemming from the infrared modification of per-

turbation theory is difficult to appreciate if high order terms in the perturbative α0 expansion

are taken into account. For such observables as the moments of the spectral density one can-

not distinguish numerically high-order perturbation theory corrections from power corrections

(nonperturbative part of the expansion): the power corrections are numerically hidden by the

high-order perturbation theory corrections.

Thus, for the observables related to two-point correlators the problem of resumming the

running effects in perturbation theory is solved by the contour integration. We stress that

the pole (or any singularity that may occur upon the formal analytic continuation of the per-

turbation theory expressions into the infrared region) is inside the integration circle (cf. the

discussion in ref. [47]). One is not allowed to use integration contours that go close to the origin

because this region is completely nonperturbative and should be avoided: perturbation theory

cannot decipher the structure of amplitudes in this region pointwise, only contributions to the

integrals are perturbative and can be computed. This situation is to some extend analogous

to the situation with Coulombic poles especially for not very heavy quarks. For perturbation

theory applications any type of infrared singularity should be avoided by moving the integra-

tion contour far from the origin and keeping infrared nonperturbative region inside, thereby

including also the contribution of this region into the integral. The possibility to accurately

apply perturbation theory for averaged quantities is a specific feature of two-point correlators

with simple analytic properties in the momentum variable. In the cases when observables are

obtained by the averaging of more complicated Green’s functions where the analytic structure

is not transparent the effects of running are accounted for by considering a model field theory

with a one-loop gluon propagator reiterated in all orders of perturbation theory. To respect

gauge invariance in QCD in such a model the technique of naive nonabelianization is used

[48]. Note that in pure gluodynamics which is a proper theoretical model for studying glueballs

this trick is not straightforward. If analytic properties of the amplitude are unknown one has

no clear way to avoid going through infrared singularities of the running coupling and one is

trying to perform the integration across the infrared region directly (as in applications of in-

frared renormalons [49]). In this case an infrared structure of the running is important for the

analysis, however, it is completely nonperturbative. Therefore, the obtained results depend on

additional assumptions about the infrared behavior of the running coupling.

As a last remark we give an expression for the resummed function ΠG(q
2) in the second
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order of the β-function. Taking the approximation for the β-function in the form

β(a) ≡ β2(a) = −a2 (β0 + β1a) (41)

one finds the expression for the resummed function ΠG(q
2):

ΠG(Q
2) =

π2

β1

ln



β0 + β1
α
(2)
G (Q2)

π



+ subtractions (42)

where the function α
(2)
G (Q2) is a solution of the renormalization group equation with the second

order β-function

Q2 d

dQ2





α
(2)
G (Q2)

π



 = −β0





α
(2)
G (Q2)

π





2

− β1





α
(2)
G (Q2)

π





3

. (43)

The generalization of our analysis to this case is straightforward.

To conclude, it has been shown that for the observables related to two-point current cor-

relators the summation of the effects of running can be done in perturbation theory. In more

complicated cases without simple analytic structure of the respective Green’s functions the

interpretation of running in the infrared region is not unique and is outside the scope of pertur-

bation theory. The asymptotic structure of the perturbation theory series depends on the actual

treatment of the observables (there is no true asymptotic structure unless explicit assumptions

are formulated). The series can be analytic at the origin for some approximations as it is for the

widely used approximation with resummation on the contour. Possible power corrections stem-

ming from such resummation are of rather computational origin and simply reflect a particular

way of approximating the relevant integrals; no general conclusions on the analytic structure

of the exact theory can be drawn. Theoretically, there is no invariant meaning in splitting the

results into nonperturbative infrared power corrections and perturbation theory part (as oppo-

site to OPE where power corrections are related to high-dimension operators and determined

by the projections onto other perturbation theory states than the vacuum). Phenomenologi-

cally, the high-order perturbation theory terms (with high powers of inverse logarithms) can

numerically mimic the renormalon-type power corrections well. In this situation, the way to go

beyond perturbation theory for improving the accuracy of theoretical formulae would be just

a convention to use for the observables an effective scheme where all perturbative corrections

are explicitly resummed into the redefinition of the coupling.
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