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The subject of event-by-event fluctuations of charged particles produced in high-energy heavy-ion collisions has
recently gained considerable attention [1, 2, 3, 4, 5]. The focus has mainly been in the identification of a measure
that can differentiate a quark-gluon plasma (QGP) from a hadron gas (HG). No consideration has been given to the
fluctuations introduced by the phase transition (PT) itself. If the PT corresponds to the second-order chiral transition
that has the usual O(4) symmetry of two massless quarks, it has been argued that long-range correlation typical of
critical phenomena is unlikely to occur because the only scale in the problem is characterized by the realistic pion mass
that is roughly the same as the critical temperature [6]. As a result one does not expect large fluctuations, especially
in the charge sector. On the other hand, if the chiral transition takes place rapidly far from thermal equilibrium, then
the disorientation of the isovector order parameter can lead to long-wavelength modes and large fluctuations [7, 8, 9].
The usual signature for such disoriented chiral condensates (DCC) is the large fluctuation in the neutral-to-charge
ratio of the produced particles [10, 11, 12, 13]. In this paper we study the nature of the fluctuations within the
charge sector and identify measures that can be computed explicitly as well as being amenable to direct experimental
verification. They do not depend on the existence of long-range correlations that may be suppressed by the rapid
expansion in a heavy-ion collision.

The usual starting point of a consideration of DCC is the linear σ model, for which the potential is

V =
λ

4
(Φ2 − v2)2 −Hσ, (1)

where the chiral fields are represented by a vector Φ = (σ, ~π) in O(4) space. The parameters λ, v, and H are
determined by the masses mπ,mσ and the pion decay constant fπ. At temperature T far below the critical Tc, the
normal vacuum is characterized by 〈σ〉 6= 0, and 〈~π〉 = 0. At T well above Tc there is approximate O(4) symmetry
for which 〈Φ〉 = 0. If the QCD plasma is close to thermal equilibrium as it cools from above Tc to below, the PT
results in 〈Φ〉 becoming nonzero in the σ direction with no large fluctuations expected in the angular deviation from σ.
However, in the quench scenario far from thermal equilibrium [7], the plasma loses touch with the vacuum orientation
and 〈~π〉 becomes nonzero along arbitrary directions in isospin space in different spatial regions, thereby generating
large fluctuations in the charges of the pions produced. What we seek are the signatures of those fluctuations that
are independent of the details of the theory, specifically, the parameters governing the chiral transition. We show
the existence of a numerical index ν that can serve as a signature of DCC. As an alternative to the D measure that
has been suggested in [1, 4], we consider another measure B that can clearly distinguish the different types of charge
fluctuations.

It is convenient to start with the coherent-state representation for the statistical fluctuations since the multiplicity
distribution of a pure coherent state |α〉 is Poissonian, i.e., |〈n|α〉|2 = P 0

n , with average multiplicity

〈n〉 =

〈

α

∣

∣

∣

∣

∫

dza†(z)a(z)

∣

∣

∣

∣

α

〉

=

∫

dz |α(z)|2 , (2)

where the property a(z)|α〉 = α(z)|α〉 has been used. We generalize this formalism by incorporating isospin and treat
~φ as the eigenvalues of the isovector annihilation operators ~a(z) [14]. The total average density of hadrons (assumed
to be pions only) is then

〈

~φ
∣

∣~a†(z)~a(z)
∣

∣ ~φ
〉

=
∣

∣

∣

~φ(z)
∣

∣

∣

2

. (3)

The spatial coordinate z can be regarded as (pseudo) rapidity in heavy-ion collisions, as in [14], but at this point that
identification is unnecessary. Our theoretical results, expressed below by Eqs. (16), (17) and (21), are independent of
what z is exactly. For experimental analysis of the data, extensive discussion will be given below.

The application of coherent states and the Ginzburg-Landau formalism [15] to multiparticle production was con-
sidered many years ago [14]. We use the same approach here, as in [16, 17], to study the thermal fluctuations in the
chiral transition to DCC. We take the Ginzburg-Landau free energy to be

F [~φ] =

∫

δ

dz

[

a
∣

∣

∣

~φ(z)
∣

∣

∣

2

+ b
∣

∣

∣

~φ(z)
∣

∣

∣

4
]

, (4)

where only the isosymmetric part of the potential in Eq. (1) is adapted here. The derivative term in (4) is neglected
here, since our earlier studies of isoscalar φ(z) indicate that the inclusion of ∂φ(z)/∂z term in the free energy leads
to negligible effect on the scaling result [17, 18]. When T is lowered below Tc, a becomes negative, while b remains

positive, and the system makes a transition to the hadron phase whose density fluctuates around
∣

∣

∣

~φ
∣

∣

∣

2

= −a/2b. The

hadronic multiplicity distribution is then given by

P (n+, n−, n0) = Z−1

∫

D~φ P 0(n+, n−, n0,
∣

∣

∣

~φ
∣

∣

∣

2

)e−F [~φ] (5)
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where

Z =

∫

D~φ e−F [~φ], (6)

P 0(n+, n−, n0,
∣

∣

∣

~φ
∣

∣

∣

2

) =
∏

i=+,−,0

P 0(ni, |φi|2), (7)

P 0(ni, |φi|2) =
1

ni!

(
∫

δ

dz |φi|2
)ni

e−
∫

δ
dz|φi|

2

. (8)

Since these quantities are meaningful only in the hadron phase, we shall in the following consider only the situation
where a < 0.

The central aim of our proposed analysis is to find a measure of the charge fluctuations due to a chiral transition
to arbitrary 〈~π〉 directions with the property that the measure is independent of the details, more specifically, the

parameters a, b, and δ in Eq. (4). We shall assume that δ can be arranged to be small so that ~φ can be regarded as
constant inside δ. We then have

F [~φ] = δ

[

a
∣

∣

∣

~φ
∣

∣

∣

2

+ b
∣

∣

∣

~φ
∣

∣

∣

4
]

, (9)

where the value of each of |φi| is allowed to vary throughout the complex plane in the functional integrals in Eqs. (5)
and (6).

In our search for a quantity that is independent of δ, a, and b, we first consider the bivariate factorial moments

fq1,q2 =

∞
∑

n+=q1

∞
∑

n
−
=q2

∞
∑

n0=0

n+!

(n+ − q1)!

n−!

(n− − q2)!
P (n+, n−, n0), (10)

for integer values of q1 and q2. If P (n+, n−, n0) were the statistical distribution given in Eqs. (7) and (8), then (10)
would yield fq1,q2 = f q1

0,1f
q2
1,0 for any q1 and q2. Deviation from this trivial result on account of Eqs. (5) and (8) is then

a measure of the effect of the DCC on the charge fluctuations plus other effects to be discussed below. Making the
appropriate substitutions we obtain

fq1,q2 = Z−1δq1+q2 π3

∫ ∞

0

d |φ+|2
∫ ∞

0

d |φ−|2
∫ ∞

0

d |φ0|2

|φ+|2q1 |φ−|2q2 e−δ
(

a|~φ|2+b|~φ|4
)

. (11)

Changing the integration variables to the set s = |φ+|2, t = |φ+|2 + |φ−|2, and u = |~φ|2, so that only u is integrated
from 0 to ∞, we obtain a significantly simplified, closed form

fq1,q2 =

(

δ

b

)(q1+q2)/2 2B (q1 + 1, q2 + 1)

q1 + q2 + 2

Jq1+q2+2(x)

J2(x)
, (12)

where B(m,n) is the Euler-beta function, and

x = |a|
√

δ/b. (13)

The function Jp(x), defined by

Jp(x) =

∫ ∞

0

du up exu−u2

, (14)

can be related to the parabolic cylinder function, but is straightforwardly computable.
Although fq1,q2 has complicated dependence on δ, a and b, different (q1, q2) moments have the same dependence

if q1 + q2 ≡ q is the same. Furthermore, the factor (δ/b)(q1+q2)/2 is cancelled for the normalized factorial moments,
which we define as

Fq1,q2 ≡ fq1,q2
f q1
1,0f

q2
0,1

=
2B (q1 + 1, q2 + 1)

q1 + q2 + 2

[

3J2(x)

J3(x)

]q1+q2 Jq1+q2+2(x)

J2(x)
. (15)
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Evidently, Fq1,q2(x) is a function of x only. Its dependence on x is shown in Fig. 1 in a log-log plot. No scaling
behavior can be seen. However, if we plot lnFq1,q2 vs lnF2,2 as in Fig. 2, we find a substantial region in which the
relationship is linear. In that linear region we can write

Fq1,q2 ∝ F
βq1,q2

2,2 , (16)

which is a behavior that is independent of x. More explicitly, we can determine βq1,q2 by straightline fits of the curves
in Fig. 2 in the region 0.2 < lnF2,2 < 0.9. The result yields βq1,q2 as a function of only the sum, q1 + q2 = q, as can
be seen directly from Eq. (15). That dependence of βq on q is shown in Fig. 3. Apart from the point for q = 2, it is a
linear dependence of ln βq on ln(q − 1). Thus we can write

βq ∝ (q − 1)ν , ν = 1.29. (17)

This index ν is independent of x, and therefore of δ, a and b (so long as a < 0). The scaling behaviors (16) and (17)
summarize the properties of charge fluctuations in a chiral transition to DCC and culminate in a numerical index ν
that characterizes the phenomenon.

To verify the above behavior experimentally, it is necessary to vary x, which is the implicit variable in Eq. (16).
Since a and b in Eq. (13) are not subject to experimental control, only δ can be varied. A more extensive discussion
of the experimental cuts that are optimal for detecting the signal is postponed until another prediction independent
of x is presented.

A few remarks should first be made regarding the sensitivity of the above theoretical result to statistical fluctuations
in the experimental background. It was shown by Bia las and Peschanski [19] that the factorial moments filter out
the statistical fluctuations represented by the Poissonian distribution in Eq.(8). However, if the DCC is produced
in a background of conventionally produced hadrons, we have to consider an additional contribution to the mean
multiplicity. Thus we replace |φi|2 on the RHS of (8) by |φi|2 +S, where S denotes the mean density of the statistical
background. If there are statistical fluctuations in the orientations of the fields after the chiral transition, we shall
let S represent them also. We ask whether our result is sensitive to a small perturbation by S. Clearly, if S were
large, it would be hard to find the signature of DCC in the presence of a large non-DCC hadronization process. If
S is small, we can carry the above theoretical calculation to first order in S, and find that a term must be added to
Fq1,q2 in (15), which is proportional to S

√
bδ. At small δ the effect of S is expected to be negligible.

There is, however, a limitation on how small δ should be allowed to be. That can be seen from Eq.(11) where

the exponential damping term becomes ineffective at small δ. Without letting |~φ|2 become large enough to require
higher-order terms in the Ginzburg-Landau free energy, a rough lower bound on δ is derived in Ref. [16] and is equally

applicable here; it is δ > x2
0b/a

2, where x0 =
√

4 ln 2 = 1.67. That bound translates to S
√
bδ > (Sb/|a|)x0. Thus

the sensitivity to the statistical background depends on its strength relative to that of the dynamical strength |a|/b,
as is reasonable. Our conclusion is therefore that unless the mean multiplicity of the statistical background is small
compared to that of the DCC production, our approach of searching for scaling behavior would not be successful.

To put the curves in Fig.2 to experimental test, one inevitably has to deal with the inaccuracies in the determination
of Fq1,q2 , and in particular with F2,2. If the error bars are large, the effectiveness of this approach is clearly limited.
Even if they are not large, the data points may admit a larger scaling region than what we have consider in Fig.2 in
the derivation of ν = 1.29. In fact, our lower bound on δ mentioned above implies that the curves in Fig.1 are reliable
only for x < x0, or − lnx < −0.51. It translates to a restriction on the range of F2,2 to the region lnF2,2 < 0.65 in
Fig. 2. Thus fitting the curves in that region by straight lines with allowance for errors we find that it is necessary
to modify the value of ν to

ν = 1.42 ± 0.13. (18)

It is clear that we can no longer claim strict x-independence in our result, when the various complications discussed
above are taken into account. However, despite the limitations arising from theoretical considerations, we feel that
the proposal for the experimental measurement of Fq1,q2 may nevertheless yield interesting insight into the formation
of DCC.

To reduce the sensitivity to the details in the scaling analysis, we now consider a global measure that makes contact
with the observables proposed in [1, 2, 3, 4, 5]. Let us first list the simple identities:

f1,0 = 〈n+〉 , f0,1 = 〈n−〉 , f1,1 = 〈n+n−〉 ,
f2,0 = 〈n+(n+ − 1)〉 , f0,2 = 〈n−(n− − 1)〉 . (19)

In terms of the usual definitions, Nch = n+ + n−, Q = n+ − n−, and
〈

δX2
〉

=
〈

X2
〉

− 〈X〉2, we then have

〈

δQ2
〉

= 2 (f2,0 + f1,0 − f1,1) , (20)
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where the symmetry fi,j = fj,i has been used. Let us now consider the quantity

B =

〈

δQ2
〉

− 〈Nch〉
〈n+n−〉

. (21)

Using Eqs. (19) and (20), together with (12) we obtain

B = 2

(

f2,0
f1,1

− 1

)

= 2

[

B(3, 1)

B(2, 2)
− 1

]

= 2. (22)

On the other hand, in terms of D [1, 4], where

D = 4
〈

δQ2
〉

/ 〈Nch〉 , (23)

Eq. (21) implies

B =
D/4 − 1

〈n+n−〉 / 〈Nch〉
. (24)

It has been argued that D ≤ 4 whether the thermal system is a QGP or a HG [1], so in that scenario we have B ≤ 0
whatever 〈n+n−〉 / 〈Nch〉 may be. That prediction is distinctively different from 2 in our scenario. Qualitatively
speaking, the charge fluctuations in chiral transition to DCC are much greater than what can be expected from the
thermal fluctuations in either the QGP or the HG phases. Thus the measurement of B can decisively determine the
nature of the PT that the QGP system undergoes. The presence of statistical fluctuations in the background will
undoubtedly weaken this claim to an extent that is proportional to the strength of such fluctuations, as we have found
in the study of the scaling behavior.

In order that our theoretical prediction can be applied to the data, it is important that the data are analyzed in
the proper way, which is the subject we now address. The factorial moments can reveal scaling behavior if they can
capture the rare events with large spikes without being overwhelmed by the contributions from average multiplicities
[19]. In other words, if we, for simplicity, consider a single factorial moment

fq =
∞
∑

n=q

n(n− 1) · · · (n− q + 1)Pn, (25)

we see that fq probes the high end of the distribution Pn with n ≥ q; thus if q ≫ 〈n〉, only the less frequent events
with n ≫ 〈n〉 can contribute to Eq. (25). That can be achieved for heavy-ion collisions either by using extremely high
q, or by making severe cuts in data selection to reduce 〈n〉. Neither was done in previous analyses of the nuclear data
and nothing of interest was found in F2 or F3 in the bulk data.

To test the power-law behaviors (16)–(19) and the prediction B = 2, it is necessary to make cuts in the data to best
reveal the features of this analysis. To see what cuts to make, we first discuss multiparticle production in heavy-ion
collisions. If the quark-hadron PT is first-order, then what we have considered here is irrelevant. For a second-order
chiral transition it is likely that, if the DCCs are to be created at all, they would appear as clusters of hadrons in
different regions in space and time amidst other patches of hadrons produced as a result of the gradual cooling of
the QGP that undergoes the normal critical transition. If it is possible to restrict the observation to a very short
duration in the emission time, then we should see many regions of voids where no particles are produced, separating
the regions of particles produced either as oriented or disoriented condensates. Unfortunately, a selection in emission
time is not experimentally feasible. The event multiplicity integrates over all times and smooths out the fluctuations
in clusters and voids. Thus to detect the DCC by our fluctuation analysis it is necessary to make a severe cut in pT
and select only the particles emitted into a narrow pT window. Such a ∆pT cut achieves two goals: one, to reduce
the multiplicities to facilitate the factorial moment analysis discussed above; two, to minimize the overlap of hadron
emissions at different times. The correlation between pT and the emission time is discussed in Ref.[20], where a
simulation is done to exhibit the void patterns.

Now, suppose that in a narrow pT window n+ and n− charged particles are collected in ∆φ in azimuthal angle and
∆y = δ in rapidity. What we suggest is that 〈Nch〉 be only about 2 so that Fq1,q2 can be calculated for Nch ≥ q = q1+q2
up to q about 10, as shown in Fig. 1. Such values of Nch are large deviations from 〈Nch〉, but represent only a tiny
fraction of the total multiplicity produced in a typical event in heavy-ion collisions. Thus the problem of overlap from
different emission times is minimized, while the characteristics of charge fluctuations that convey the nature of the
chiral transition are retained. Of course, 〈Nch〉 depends on the sizes of the cuts. But our theoretical analysis based
on the Ginzburg-Landau formalism indicates that the scaling exponent βq1,q2 , the index ν, and the quotient B are
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all independent of the window sizes, so long as there is enough statistics to render accurate determination of fq1,q2 .
Since the charge fluctuations of DCC are much larger than those among the hadrons produced in the normal critical
transition, the contribution of the latter to our measure is expected to be negligible.

Recently, WA98 presented their data that reveal no correlated charge-neutral fluctuations in Pb-Pb collisions [21].
Unfortunately, they have no information on pT and cannot make the pT cut that we regard as essential. The absence
of any signature of DCC in the bulk events does not preclude the possibility of local condensates of the type we
consider here.

It is clear from Eqs. (20) and (21) that B involves order-sum q not greater than 2, whereas the power-law behavior
of βq shown in Fig. 3 is for q > 2. Although the former seems simpler to investigate, the smallness of q requires
〈Nch〉 ≪ 1 in order for the factorial moments to exhibit the fluctuation properties at the far edge of the multiplicity
distributions. That in turn requires the kinematical cuts to be very severe so that only in rare events can Nch exceed
q. As a consequence, the statistical errors may be large. For the latter study of βq, the values of q are larger, so the
cuts can be less severe to allow 〈Nch〉 to be larger. The experimental errors on βq then may hopefully be small enough
to render the determination of ν feasible. Whether q is small or large, our analysis probes large fluctuations from the
mean.

Despite the many complications that accompany heavy-ion collisions, our analysis suggests a possible way of finding
the DCC. If only the bulk events are examined, it is quite possible that the DCC, even if created, might escape
detection. The simple consideration done here based on the essentials of chiral transition offers a potentially effective
tool to initiate a first-round experimental exploration. Since the discovery of a DCC would provide a definitive
confirmation of the accepted ideas of chiral dynamics in a dense system, such an exploration is well worth undertaking.

We wish to acknowledge helpful communications with Drs. Q. H. Zhang and V. Koch. This work was supported, in
part, by the U. S. Department of Energy under Grant No. DE-FG03-96ER40972.
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FIG. 1: Fq1,q2
vs x for various orders of the moments.
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FIG. 2: Fq1,q2
vs F2,2 in log-log plot.
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FIG. 3: Power-law behavior of βq.


