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Abstract.

We review the experimental limits on those hypothetical interactions where the
fundamental particles could exhibit non point-like behavior. In particular we have
focused on the QED reaction measuring the differential cross sections for the process
e+e− → γγ(γ) at energies around 91 GeV and 209 GeV with data collected from the L3
detector from 1991 to 2001. With a global fit L3 set lower limits at 95% CL on a contact
interaction energy scale parameter Λ > 1.6 TeV, which restricts the characteristic QED
size of the interaction region to Re < 1.2 × 10−17 cm. All the interaction regions are
found to be smaller than the Compton wavelength of the fundamental particles. This
constraint we use to estimate a lower limit on the internal density of particle-like
structure with the de Sitter vacuum core. Some applications of obtained limits to the
string and quantum gravity scales are also discussed.

INTRODUCTION

When one starts to think about unification of all known interactions the question
whether the quarks and leptons are structureless, or we will find that they have an
extended structure, becomes very important. The point is that the renormaliza-
tion procedure which allows to extract finite predictions for processes involving the
strong, weak and electro–magnetic interactions fails when gravitational interaction
is taken into account. Thus we are forced to use frameworks like the string theory
[1] to incorporate gravity with other interactions. As an essential part of string
theory is that the particles of standard model must have an extended structure.
The strings have new degrees of freedom that often take the classical geometry
description of propagation in extra dimensions. This means that, there will be
additional modifications of standard model amplitudes. In particular, some of the
string excitations could be visible in low energetic limit as a contact interaction
[2,3]. Some other phenomenological approaches, dealing with the explanation of
mass spectrum of fermions families (see for example [4] and references therein) or
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De Sitter-Schwarzschild behavior of particle–like objects [6], to which we pay par-
ticular attention in this paper, also could require non point–likeness of fundamental
particles1. Thus it turns to be very important to study possible experimental sig-
natures of operators causing the non point–like behavior of electron.
To test the size of fundamental particles (FP) two experimental approaches have

been developed. In one approach a search is performed for excited states of FP and
corresponding mass is estimated [7]. This test would indicate a new substructure of
the FP. In the second approach a characteristic scale parameter Λ [8] or formfactor
F [9] is determined, constraining the characteristic size of the interaction region
for the reaction [10]. All these tests search for physics beyond the Standard Model
(SM).
In the first part of this paper we summarize the stringent experimental restric-

tions set on the mass of excidet states of FP [11,13–15]. The obtained limits on
the parameters of exited states and contact interaction set bounds on possible ex-
tensions of interactions areas and hence on the sizes of FPs. It turns out that all
these limits are much smaller than the Compton wavelengths λ−c of FPs.
Further we apply the experimental limits, obtained for exited states of FP, to

study TeV scale quantum gravity in superstring theory framework, like it has been
proposed in [2,3].
The rest of the paper is dedicated to the modeling of an extended particle-like

objects by de Sitter-Schwarzschild self-gravitating core [16].

EXPERIMENTAL LIMITS ON THE SIZES OF

FUNDAMENTAL PARTICLES

To test the finite size of fundamental particles, experiments are performed to
search for compositeness, to investigate a non-pointlike behavior or form factors in
strong, electromagnetic and electroweak interactions. Each interaction is assumed
to have its characteristic energy scale related to the characteristic size of interaction
region. In the following sub-sections we review the experimental limits on excited
particle masses, energy scales Λ and form factors R for all three interactions.

STRONG INTERACTION- To test the color charge of the quarks, the
entrance channel and the exit channels of the reaction in the scattering exper-
iment should be dominated by the strong interaction. This condition is ful-
filled by the CDF pp̄ data [14] which exclude excited quarks q∗ with a mass
between 80 and 570 GeV at 95% CL. The UA2 data [15] exclude u∗ and d∗

quark masses smaller than 288 GeV at 90% CL. In this case characteristic en-
ergy scale is given by the mass of the excited quark. Associated characteristic size
is rq ∼ h̄/(m∗

qc) < 3.5× 10−17 cm.

1) Some alternative, non gauge approach, to the explanation of the mass hierarchy of fermions
families can be found in [5].



ELECTROMAGNETIC INTERACTION- In the case of electromagnetic
interaction the process e+e− → γγ(γ) is ideal to test the QED because it is not
interfered by the Zo decay [26]. This reaction proceeds via the exchange of a
virtual electron in the t - and u - channels, while the s - channel is forbidden due
to angular momentum conservation. Total and differential cross-sections for the
process e+e− → γγ(γ), are measured at the

√
s energies from 91 GeV to 209 GeV

using the data collected with the L3 detector from 1991 to 2001 [11]. Similar studies
at

√
s up to 202 GeV were reported by ALEPH, DELPHI and OPAL [13]

To search for a deviations from the Standard Model, the agreement between the
measured cross section and the QED predictions is used to constrain the existence
of an excited electron of mass me∗ which replaces the virtual electron in the QED
process [7], or to constrain a model with deviation from QED arising from an
effective interaction with non-standard e+e−γ couplings and e+e−γγ contact terms
[8].
In the case of the heavy exited electron the effective Lagrangian

Lexcited =
e

2Λe∗
ψe∗σ

µν(1± γ5)ψeF
µν + h.c. (1)

is used. Where Λe∗ is the effective scale of the interaction, F µν the electromagnetic
field tensor, ψe∗ and ψe are the wave function of the heavy electron and the electron
respectively.
In the case of the non-standard coupling a cut-off parameter Λ is introduced to

parameterize the scale of the interaction with the following effective Lagrangian,

Lcontact = iψeγµ(Dνψe)(

√
4π

Λ2
6

F µν +

√
4π

Λ̃2
6

F̃ µν) (2)

the Lagrangian chosen in this case has an operator of dimension 6, the wave function
of the electrons is ψe, the QED covariant derivative is Dν , the tilde on Λ̃6 and F̃

µν

stands for dual.
Setting the interaction scale Λe∗ to me∗ L3 derived at 95% CL a lower limit for

an exited electron mass to me∗ > 0.31 TeV [11,12]. Also L3 performed in the case
of non-pointlike coupling an overall fit of the last years data [11,27–29,12].
A lower limit at 95% CL for the cut-off parameter Λ limiting the scale of the

interaction region of Λ > 1.6 TeV is reported [11].
Characteristic size related to the case of interaction via excited heavy electron

is re ∼ h̄/(me∗c) <6 × 10−17 cm. In the case of direct contact term interaction
re ∼ (h̄c)/Λ = 1.2 × 10−17cm. The size of the interaction region must be smaller
than re because the behavior of fit’s as functions of Λ indicated a limit only.

ELECTROWEAK INTERACTION- The ep accelerator HERA and the
e+e− accelerator LEP searched for excited and non-pointlike couplings of quarks
and leptons. In particular LEP tested the compositeness of quarks and leptons
with form factors. In the entrance channel the reaction proceeds via magnetic and



weak interaction and in the exit channel all three interaction participate. In the
following we focus separately on quarks and leptons cases.
Excited and non-pointlike quarks- The electron-proton interaction at high

energies allows us to search for excited quarks. The magnetic transition coupling
of quarks includes a single production of excited quarks through t−channel gauge
boson exchange between the incoming electrons and quarks. At the LEP, excited
quarks could be produced via a Z0, γ coupling to fermions. No signal was found in
both cases [30–34].
The L3 searched for new effects involving four fermion vertices contact interac-

tions in all exit channels at center-of-mass energies between 130 GeV and 172 GeV
[35]. As in the case of the QED contact interaction, an effective Lagrangian is
introduced [36]:

Lcontact =
1

1 + δef

∑

i,j=L,R

ηij
g2

Λ2
ij

(ēiγ
µei)(f̄jγ

µfj) (3)

The four-fermion contact interaction is characterized by a coupling strength, g,
and by an energy scale Λ. The Kronecker symbol δef is zero except for the e

+e− final
state when it is equal to 1. The parameter ηij defines the contact interaction model
by choosing the helicity amplitudes which contribute to the reaction e+e− → f f̄ .
The wave function ei and fj denote the left- and right-handed initial-state electron
and final-state fermion. The value of g/Λ determines the characteristic scale of the
expected effects. In a general search the energy scale Λ is chosen by convention
such that g2/4π = 1 and |ηij| = 1 or |ηij| = 0 is satisfied.
Four helicity amplitudes ηLL, ηRR, ηLR and ηRL are investigated for nine different

models each. Limits in the f f̄ final state range from Λ > 2.5 TeV to Λ > 7.1 TeV,
for qq̄ from Λ > 2.0 TeV to Λ > 4.3 TeV, for uū from Λ > 1.2 TeV to Λ > 4.3 TeV
and for dd̄ from Λ > 1.4 TeV to Λ > 3.5 TeV. These scales allow us to estimate
an upper limit on characteristic size rq related to strong interaction of the quarks.
Depending on the different helicity amplitudes and models this scale ranges from
Rq < 1.6× 10−17 cm to Rq < 2.8× 10−18 cm.
Probing the compositeness via the form factor operators an another type of

effective Lagrangian incorporating the properties of non pointlike interaction can be
constructed from the high dimension operators with derivatives [37]. The simplest
explicit form of this Lagrangian reads [38]

Leff =
1

Λ2

{

gLcLf̄Lγ
µfδνZµν + gRcRf̄Rγ

µfδνZµν

}

(4)

where Zµν are the γ, Z and W fermion vertices, δν the derivatives, gL,R are the
coupling constants and Λ the cut off parameter. cL and cR can be incorporated in
the cross section

dσ(e+e− → f f̄)

d cos θ
∝
(

dσ(e+e− → f f̄)

d cos θ

)

SM

f(FL, FR) (5)



with the form factors

F
(e;f)
L,R = (1 + c

(e;f)
L,R

Q2

Λ2
) (6)

where Q2 are the Mandelstam variables s or t for s- or t-channel exchange.
The last upper limit on the fermion radii has been obtained from the L3 [9,10]

data, assuming a single form factor for all fermions. In particular for the qq̄ final
states. The upper limit on the quark radius at 95% confidence level is

rqq̄ =

√
6

cΛ
h̄ < 2.8× 10−17cm (7)

Excited and non-pointlike leptons- The electron-proton interaction at high
energies allows us to search, as in the quark case, for excited leptons. For example
excited electrons e∗ and neutrinos ν∗ can be probed via the same magnetic type
coupling of the quarks. At LEP, excited leptons can be produced via s− and t−
channel for Z0, γ and W coupling to fermions, in particular to e∗ ν∗. No evidence
for excited leptons was found [30,32,39].
The L3 investigated the pure contact interaction amplitudes e+e− → l+l− and

related deviations from the Standard Model as in the quark case above [35]. Four
helicity amplitudes ηLL, ηRR, ηLR and ηRL are investigated for nine different models
each. Limits in the l+l− final state ranging from Λ > 2.1 TeV to Λ > 7.1 TeV, for
e+e− from Λ > 1.9 TeV to Λ > 6.4 TeV, for µ+µ− from Λ > 1.5 TeV to Λ > 5.3 TeV
and for τ+τ− from Λ > 1.4 TeV to Λ > 4.5 TeV. These scales result in estimates
of characteristic size for weak interaction area Rl of the leptons. Depending on the
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FIGURE 1. In the left side the most stringent experimental limits of FPs are presented. The

right side shows the comparison of Compton wavelengths of FPs with the current experimental

limits measured for strong, electromagnetic and weak interaction.



different helicity amplitudes and models this scale ranges from Rl < 1.4×10−17 cm
to Rl < 2.8× 10−18 cm as in the quark case.
The last upper limit on the lepton radii has been obtained from the L3 [9,10]

data, assuming a single form factor for all fermions in particular for the µ+µ− and
τ+τ− final states. The upper limit on the electron radius at 95% confidence level
is

re =

√
6

cΛ
h̄ < 2.9× 10−17cm (8)

All the experimental tests of the finite size of fundamental particles so far have
not shown any deviation from SM. The experimental results display in Fig. 1 on
right side that all measured limits of sizes of FPs are fare below the Compton
wavelengths. We will use this fact in the next chapter.

LIMITS TO THE STRING THEORY IN QUANTUM

GRAVITY

The limits on the mass of excited electron obtained in [11,12] is usefully to
study TeV scale quantum gravity [25]. As it was recently suggested in [25], the
fundamental scale of gravitational interaction M cold be as low as TeV, whereas
the observed weakness of the Newtonian coupling constant GN ∼ M−2

P l is due to
the existence of N large (ℓ≫ TeV−1) extra dimensions into which the gravitational
flux can spread out. At the distances larger than the typical size of these extra
dimensions the gravity goes to its standard Einstein form, and the usual Newtonian
low can be recovered via the relation MP l = MN+2ℓN [25] between Plank scale
and scale M . It means that, such kind of quantum gravity becomes strong at
the energies M , where presumably all the interactions must unify, without any
hierarchy problem.
The phenomenological implications of large extra dimensions is concentrated on

the effects of real and virtual graviton emission. The basic assumption is, that
gravitons can propagate in extra dimensions [25]. The quantum states of such
gravitons are characterized by quantized momentum in the large extra dimensions.
In the same time, the only known framework that allows a selfconsistent descrip-

tion of quantum gravity is string theory. As an essential part of the structure of
string theory [1] is that the gravitons and the particles of standard model must have
an extended structure. This means that, there will be additional modifications of
standard model amplitudes due to string excitations which can compete with or
even overwhelm the modifications due to graviton exchange [2,3]. An important
effects of simple model of string theory with large extra dimensions [3] come from
the exchange of string Regge (SR) excitations of standard particles. In standard
model scattering processes, contact interactions due to SR exchange produce their
own characteristic effects in differential cross section, and these effects typically
dominate the effects due to Kaluza – Klein (KK) exchange [25]. The SR excitation



effects can be visible as contact interactions [2,3] well below the string scale MS.
The deviation from the standard model, we investigated, has been performed in the
terms of Drell’s parameterization (ref. [8]). Actually, this parameterization is ap-
plicable to any beyond standard model at short distances. It was turned out, that
from the comparison of string theory result [3] to the (ref. [8]) the following identi-

fication can be deduced: Λ =
(

12
π2

)1/4
MS. The last updated limit on Λ > 415 GeV

[11,12] corresponds to MS > 386 GeV at 95% C.L. Using the connection between
string scale and quantum gravity scale M [3] we find M > 1188 GeV.

PARTICLE-LIKE STRUCTURE RELATED TO

GRAVITY

In this section we will discuss the modeling of an extended particle-like objects by
de Sitter-Schwarzschild self-gravitating core [16]. This issue is actually inspired by
the efforts to bound only gravitationally objects which have masses comparable with
the masses of FPs. Indeed, the size a FP cannot be defined by the Schwarzschild
gravitational radius rg = 2Gmc−2 (m is the gravitational mass as measured by a
distant observer). A size is constrained from below by the Planck length lP l ∼ 10−33

cm, and for any elementary particle its Schwarzschild radius rg is many orders of
magnitude smaller than lP l. The Schwarzschild gravitational radius comes from
the Schwarzschild solution which implies point-like mass and is singular at r =
0. The Schwarzschild metric can be modified by replacing a singularity with de
Sitter regular core [16,18,19,6,20]. This modified solution, de Sitter-Schwarzschild
geometry, depends on the limiting vacuum density ρvac at r = 0, satisfying the
equation of state p = −ρvac. The idea goes back to the mid-60s papers by Sakharov
who suggested that p = −ρ can arise at superhigh densities [21], by Gliner who
interpreted it as the vacuum equation of state and suggested that it can be achieved
as a result of a gravitational collapse [22], and by Zeldovich who connected ρvac
with gravitational interaction of virtual particles [23].
In the context of spontaneous symmetry breaking ρvac is related to the potential

of a scalar field in its symmetric (false vacuum) phase. In the context of Einstein-
Yang-Mills-Higgs (EYMH) self-gravitating non-Abelian structures including black
holes, ρvac is related to symmetry restoration in the origin. In a neutral branch
of EYMH black hole solutions a non-Abelian structure can be approximated as a
sphere of a uniform vacuum density ρvac whose radius is the Compton wavelength
of the massive non-Abelian field (see [24] and references therein).
The exact analytic solution describing de Sitter-Schwarzschild geometry, was

found in the Ref. [16]. It appeared that the critical value of the mass mcr exists
which selects two types of objects described by de Sitter-Schwarzschild geome-
try: a neutral non-singular black hole for m ≥ mcr, and for m < mcr a neutral
self-gravitating particle-like structure with de Sitter vacuum core related to its
gravitational mass [6]. This fact is generic for de Sitter-Schwarzschild geometry.



This geometry has two characteristic surfaces. The surface of zero scalar curvature
r = rs defines the gravitational size rs of a particle-like structure. Now a mass
is not point-like but distributed, and most of it is within rs. The surface of zero
gravity, r = rc < rs, defines a size of an inner vacuum core. Both of them are at
the characteristic scale ∼ (m/ρvac)

1/3.
Selfgravitating particle-like structure with de Sitter vacuum core- De

Sitter-Schwarzschild geometry has been studied as describing a black hole whose
singularity is replaced with de Sitter core of some fundamental scale [16,18,19,6].
Several solutions have been obtained by directly matching de Sitter metric inside

to Schwarzschild metric outside of a junction surface [19]. Typical for matched
solutions is that they have a jump at the junction surface since the O’Brien-Synge
junction condition T µνnν = 0 is violated there [18]. The exact analytical solution
avoiding this problem for a neutral spherically symmetric black hole with a regular
de Sitter interior was found in the Ref. [16].
The main steps to find this solution are to insert the spherically symmetric metric

ds2 = eνc2dt2 − eµdr2 − r2(dθ2 + sin2θdφ2) (9)

into the Einstein equations Rµν − 1
2
Rgµν = 8πG

c4
Tµν which then take the form

−eµ
r2

+
µ′e−µ

r
+

1

r2
=

8πG

c4
T t
t (10)

−eµ
r2

− ν ′e−µ

r
+

1

r2
=

8πG

c4
T r
r (11)

1

2
e−µ(ν ′′ +

ν ′2

2
+
ν ′ − µ′

r
− ν ′µ′

2
) =

8πG

c4
T θ
θ =

8πG

c4
T φ
φ (12)

To match smoothly the de Sitter metric inside to the Schwarzschild metric outside,
the boundary conditions are imposed on the stress-energy tensor such that Tµν → 0
as r → ∞ and Tµν → ρvacgµν as r → 0, with ρvac as de Sitter vacuum density at
r = 0. For both de Sitter and Schwarzschild metrics the condition µ = −ν is
valid, which defines the class of spherically symmetric solutions with the algebraic
structure of the stress-energy tensor Tµν such that

T t
t = T r

r and T θ
θ = T φ

φ (13)

The stress-energy tensor of this structure describes a spherically symmetric vacuum,
invariant under the boosts in the radial direction (Lorentz rotations in (r, t) plane)
[16], and can be interpreted as r−dependent cosmological term [40]. It smoothly
connects the de Sitter vacuum at the origin with the Minkowski vacuum at infinity,
and satisfies the equation of state [16,18]



pr = −ρ; p⊥ = pr +
r

2

dpr
dr

(14)

where pr = −T r
r is the radial pressure and p⊥ = −T θ

θ is the tangential pressure. In
this class of solutions the metric Eq.(9) takes the form

ds2 =
(

1− Rg(r)

r

)

dt2 −
(

1− Rg(r)

r

)−1

dr2 − r2dΩ2, (15)

where dΩ2 is the metric on the unit two-sphere, and

Rg(r) =
2GM(r)

c2
; M(r) =

4π

c2

∫ r

0
T t
t (r)r

2dr (16)

In the model of Ref. [16] the density profile T t
t (r) = ρ(r)c2 has been chosen as

ρ = ρvace
−4πρvacr3/3m (17)

which describes, in the semiclassical limit, vacuum polarization in the gravitational
field [6]. Inserting Eq.(17) into Eq.(16) shows that Rg(r) takes the form

Rg(r) = rg(1− e−4πρvacr3/3m) = rg(1− e−r3/r2
0
rg) (18)

where

r20 =
3c2

8πGρvac
(19)

is the de Sitter horizon, rg = 2Gm/c2 is the Schwarzschild horizon, and m is the
gravitational mass of an object. In the limit of r << (r20rg)

1/3 Eq.(18) shows that
Rg → r3/r20, and the metric of Eq.(15) takes the de Sitter form with

gtt = 1− Rg(r)

r
= 1− r2

r20
(20)

In the de Sitter geometry the horizon r0 bounds the causally connected region. An
observer at r = 0 cannot get information from the region beyond the surface r = r0.
For r ≫ (r20rg)

1/3 the metric takes the Schwarzschild form

gtt = 1− Rg(r)

r
= 1− rg

r
(21)

in agreement with boundary conditions.
The metric gtt (r) is shown in Fig.2. The fundamental difference from the

Schwarzschild case is that de Sitter-Schwarzschild black hole has two horizons, the
black hole horizon r+ and the internal Cauchy horizon r−. The object is a black

hole for m ≥ mcr ≃ 0.3mP l

√

ρP l/ρvac, which looses energy via Hawking radiation
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corresponds to the extreme black hole, and configuration with m < 1 represents a recovered

self-gravitating particle-like structure.

until a critical mass mcr is reached where the Hawking temperature drops to zero
[6]. At this point the horizons come together. The critical value mcr puts the lower
limit for a black hole mass. Below mcr de Sitter-Schwarzschild geometry Eq.(15)
describes a neutral self-gravitating particle-like structure made up of a vacuum-like
material Eq.(13) with Tµν → ρvacgµν at the origin [6]. This fact does not depend
on particular form of a density profile [6,40] which must only satisfy boundary con-
ditions at the origin and at the infinity, and guarantee the finiteness of the mass as
measured by a distant observer

m = 4π
∫

∞

0
ρ(r)r2dr (22)

The interest of this paper is focused on the particle-like structure. The case of
m ≥ mcr is discussed in [6,40].
De Sitter-Schwarzschild geometry has two characteristic surfaces at the charac-

teristic scale r ∼ (r20rg)
1/3 [6]. The first is the surface of zero scalar curvature. The

scalar curvature R = 8πGT changes sign at the surface

r = rs =
(

m

πρvac

)1/3

=
1

π1/3

(

m

mP l

)1/3( ρP l

ρvac

)1/3

lP l (23)

which contains the most of the mass m. Gravitational size of a self-gravitating
particle-like structure can be defined by the radius rs. The second is related to the
strong energy condition of the singularity theorems. It reads (Tµν −gµνT/2)uµuν ≥
0, where uν is any time-like vector. The strong energy condition is violated, i.e.,
gravitational acceleration changes sign, at the surface of zero gravity



r = rc =
(

m

2πρvac

)1/3

=
1

(2π)1/3

(

m

mP l

)1/3( ρP l

ρvac

)1/3

lP l (24)

The globally regular configuration with de Sitter core instead of a singularity arises
as a result of the balance between attractive gravity outside and repulsion inside of
the surface r = rc. This surface defines the characteristic size of an inner vacuum
core. For a particle-like structure with m << mP l, both these sizes are much bigger
than the Schwarzschild radius rg. The ratio of a size of a vacuum core to the
Schwarzschild radius rg is given by

rc
rg

=
1

2

1

(2π)1/3

(

mP l

m

)2/3( ρP l

ρvac

)1/3

(25)

The horizons and characteristic surfaces of de Sitter-Schwarzschild geometry are
shown in the Fig.3 where they are normalized to r0.
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FIGURE 3. Horizons r± and surfaces of zero curvature rs and zero gravity rc of de Sit-

ter-Schwarzschild geometry. Schwarzschild radius rg and de Sitter radius r0 are also shown.

Thus one can see from Eq.(23), Eq.(24) and Fig.3, that the proper matching of
de Sitter and Schwarzschild geometry gives rise for a stable particle-like structure.
The size of such particle-like structure is defined by its mass m and the vacuum
density ρvac in the vicinity of r = 0.
Modeling of FPs with extended structure by an object with a vacuum

interior- Let us consider a toy model of FP with extended structure represented
by a size of the De Sitter-Schwarzschild stable configuration described in the last
paragraph. It is natural to believe that in the simplest realization of the De Sitter-
Schwarzschild particle-like object the energy density of a ”vacuum-like material”



inside it can be attributed to the energy density of some scalar field. We use Higgs
ansatz to specify the potential of a scalar field governing by the vacuum interior

V (φ) = −1

2
µ2φ2 +

1

4
λφ4 + Ṽ (26)

So the energy density inside the object is given by ρvac = V (φ) while the term Ṽ is
added just to normalize the vacuum energy density outside the object to the total
density the of the Universe, which is fixed by observations.
The density profile of the vacuum core Fig.2. can be described by the following

function

V (r) = Vo · gtt = Vo(1− Rg(r)/r) (27)

where r is the distance from the center of the object and Vo = ρvac assigns the energy
density of the scalar field in the vicinity of the center of the vacuum core. Using
the metric Eq.(20) deeply inside the vacuum interior one arrives to the following
profile

V (r → 0) = ρvac · gtt = ρvac · (1−
Rg(r)

r
) = ρvac · (1−

r2

r20
) (28)

Splitting the Eq.(28) into three terms by the following manner

V (r → 0) = − 1

rr20

∫ r

0
ρ(R)R2dR + ρvac + C (29)

and taking into account the fact that the integral in Eq.(29) is just the mass inte-
grated over the distance r from the center of the object.

∫ r

0
ρ(R)R2dR = m(r)/4π, (30)

we finally arrive to the following expression of the energy density in the vicinity of
the center

V (r → 0) = − 1

rr20

1

4π
m(r) + ρvac + C. (31)

The last expression actually allows us to compare different contributions of the
energy content of the vacuum interior with terms governing by the Higgs potential
Eq.(26).
Let us do such comparison for the term λφ4, which is responsible responsible

for the selfinterraction of our scalar field. Taking as a pilot parameter the vacuum
expectation value v = 246 GeV measured in SM, one arrives to the following
equation

ρvac = λv4/4 (32)



From the other side Eq.(23) if we believe in vacuum interior imposes the following
relation

rs =
(

m

πρvac

)1/3

, (33)

allowing in fact to calculate the coupling constant λ if we know the size of the
vacuum-like object we consider. Recall, that in the experimental part of this paper
we tested very carefully Fig. 1. that the gravitational size of FPs rs confining most
of its mass, is restricted by its Compton wavelength,

rs ≤ λ−c = h̄/mc (34)

This is also a natural assumption, since for a quantum object λ−c constrains the
region of its localization. Inserting Eq.(33) and Eq.(32) and into the condition
Eq.(34) one can impose a limit on self-interaction constant λ to

1 ≥ rs
λ−c

=
(

16λ

π

)1/3

; λ ≤ π

16
(35)

The limit Eq.(35) is also based on the assumption that the mass of thevacuum-like
object we consider can be related to the parameters of potential Eq.(26) by the
following manner

m =
√
2λv2 =

√

−2µ2, (36)

which is quite natural in our setup. Finaly we arrive to the conclusion that if we
believe that an extended structure of FPs is constricted out of some a scalar field
with the scale of symmetry breaking closed to the electroweak scale, the mass of
the constituents of such vacuum interior (scalar field) can not exceed the level

mscalar ≤ 154GeV (37)

In the framework of our assumption the masses of FPs are related to its grav-
itationally induced core with de Sitter vacuum ρvac at r = 0. This allows us to
estimate the smallest size of FPs as defined by de Sitter-Schwarzschild geometry,
a size of its vacuum core rc, if we know ρvac and m. We assume that only one
mechanism exist in both models to generate the mass of FPs, namely a particle
gets its mass from the electroweak scale v. Thus its inner core is determined by
this scale. Putting Eq.(32) into the Eq.(24) we get for a size of a vacuum core of a
lepton with the mass ml

rc =
(

2ml

πλv4

)1/3

(38)

Then the constraint on λ (Eq.(35)) sets lower limits for the sizes of lepton vacuum
cores by r(e)c > 1.5× 10−18 cm, r(µ)c > 0.9× 10−17 cm, and r(τ)c > 2.3× 10−17



cm. Upper limits for sizes of vacuum cores we estimate from the experimental
constraint on a Higgs mass mH > 107.0 GeV [41]. This gives r(e)c < 2.4× 10−18cm,
r(µ)c < 1.4× 10−17cm, and r(τ)c < 3.6× 10−17cm.
Most stringent limit to the sizes of leptons- To make our consideration

complete let us estimate the most stringent limit on ρvac by taking into account
that quantum region of localization λ−c must fit within a casually connected region
confined by the de Sitter horizon r0. The requirement

λ−c ≤ r0 (39)

gives the limiting scale for a vacuum density ρvac related to a given mass m

ρvac ≤
3

8π

(

m

mP l

)2

ρP l (40)

This condition connects a mass m with the scale for a vacuum density ρvac at which
this mass could be generated in principle, whichever would be a mechanism for its
generation.
In the case if FP have inner vacuum mass cores generated at the scale of Eq.(40)

e

µ

τ

[GeV]Mass of Lepton

[c
m

]
L

im
it

 o
n 

si
ze

10
-27

10
-25

10
-23

10
-21

10
-19

10
-17

10
-15

10
-13

10
-11

10
-3

10
-2

10
-1

1

FIGURE 4. Compton wavelength of leptons, experimental limits of electromagnetic and weak

interaction, and estimated lower limits for the size of leptons.

(for the electron this scale is of order of 4× 107 GeV), we get from the Eq.(40) the
most stringent, model-independent lower limit for a size of vacuum core (Eq.(24))



rc >
(

4

3

)1/3 (mP l

ml

)1/3

lP l (41)

Inserting the masses of the leptons ml into Eq.(41), we find r(e)c > 4.9 × 10−26

cm, r(µ)c > 8.3× 10−27 cm, and r(τ)c > 3.3× 10−27 cm.
The limits on the sizes of FP are summarized in Fig.4, compared to the Comp-

ton wavelength and to current experimental limits. Let us emphasize that the most
stringent limits on sizes of FP as estimated in the frame of de Sitter-Schwarzschild
geometry, are much bigger than the Planck length lP l. This fact supports our as-
sumption to compare the SM and de Sitter-Schwarzschild model what we discussed
at the beginning of this section.
Let us finally estimate an upper limit on a mass of a scalar at the energy scale

given by Eq.(40). For a scalar of φ4 theory we put Eq.(32) and mscalar =
√
2λv

into Eq.(40) and get the limit on the vacuum expectation value v, valid for any
self-coupling λ

v ≤
√

3

π
mP l (42)

A self-coupling λ for a scalar in φ4 theory is restricted by Eq.(35). Then an upper
limit for a scalar mass is

mscalar ≤
√

3/8mP l (43)

These numbers give constraints for the case of particle production in the course
of phase transitions in the very early universe. In this sense they give the upper
limits for relic scalar particles of φ4 theory.

CONCLUSION

All the experimental tests of the finite size of fundamental particles so far have
not shown any deviation from SM. This is in particular the case for excited states
of fermions or non-pointlike behavior of fermions in strong, electromagnetic and
electroweak interactions. This is demonstrated from the measured most stringent
limits from excited states of fermions, non-pointlike couplings and form factors.
The size of a FP can not only be defined by an interaction area r. The wave
character of the FP requests a characteristic wafelenght of the FP. We test here
the assumption that this wafelenght is the Compton wavelengths λ−c = h̄/mc. All
experiments confirm the assumption that the Compton wavelength λ−c ≥ R, the
characteristic size of contact interaction region of FP.
The experimental limits on the size of FP are in the case of strong interaction for

quarks Rq < 3.5×10−17 cm. For the case of pure QED interaction the characteristic
size for electrons Re is restricted by e+e− → γγ(γ) reaction to Re < 1.2×10−17 cm.



The direct contact term measurements for the electroweak interaction constrain
the characteristic size for the quarks to Rq < 2.8 × 10−18 cm, and the leptons
to Rl < 2.8 × 10−18 cm. So far in all experiments no signal could be measured
indicating a finite size of FP.
The limits on the QED cut - off parameters Λ are used to study TeV quantum

gravity scale M . The last L3 update shows that M > 1188 GeV.
All the actual limits depend only on the energy, luminosity of the accelerator

and the cross section of the reaction under investigation.
In the framework the modeling of FPs by de Sitter-Schwarzschild geometry wit

vacuum interior governed by a Higgs scalar field the condition λ−c ≥ R restricts the
self-coupling of corresponding potential to λ ≤ π/16. If the scale of the generation
of the FP masses is the electroweak scale and if we use the experimental limit for
the Higgs mH > 77.5 GeV then our model constrains characteristic sizes of leptons
to 1.5 × 10−18cm< re < 2.4 × 10−18cm, 0.9 × 10−17cm< rµ < 1.4 × 10−17cm, and
2.3× 10−17cm< rτ < 3.6× 10−17cm. The mass of the corresponding scalar should
be under the level mscalar ≤ 154 GeV.
Self-gravitating particle-like structure with de Sitter core is generic. It is obtained

from the Einstein equations with the boundary conditions of the de Sitter vacuum
at r = 0 and Minkowski vacuum at the infinity. For the case of maximum possible
scale for ρvac at which a particle could get its mass, it gives model independent
constraints on sizes of vacuum cores for leptons which are re > 4.9 × 10−26 cm,
rµ > 8.3× 10−27 cm, rτ > 3.3× 10−27 cm. In the case of generation in the early de

Sitter phase of the universe mscalar ≤
√

3/8mP l. The characteristic sizes as defined
by de Sitter-Schwarzschild geometry are several order of magnitude bigger than the
Planck size, which justifies estimates for gravitational sizes given in the frame of
classical general relativity.
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