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Abstract

The known ratio of the branching fractions for D∗
s → Dsπ

0 and D∗
s → Dsγ may be used to extract

the coupling of η mesons to strange quarks once the value of the π0
−η mixing angle is known. This

requires that realistic models for the spectra as well as the magnetic dipole (M1) decays of the heavy-
light (Qq̄) mesons are available. The coupling of η mesons to light quarks may then be estimated
using SU(3) flavor symmetry. Applied to the quark model for the baryons, an ηNN pseudovector
coupling constant of fηNN = 0.35 +0.15

−0.25 is obtained. If the charm quark couples significantly to the
η meson, as is suggested by the decay mode ψ′

→ J/ψ η, then somewhat larger values of fηNN can
be obtained. These values are sufficiently small to be consistent with phenomenological analysis of
photoproduction of the η on the nucleon and the reaction pp→ ppη.
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1 Introduction

The flavor symmetry breaking D∗
s → Dsπ

0 decay mode is mainly due to a small isoscalar η meson
component in the physical π0 meson as only the η meson can couple to the strange quark in the strange-
charm mesons [1, 2]. As the magnitude of the π0−η mixing angle has been at the focus of a considerable
amount of theoretical and phenomenological analysis, its value is now rather well known [3, 4]. The
expression given by chiral perturbation theory to lowest order [5] is, for small θm,

θm =

√
3

4

md −mu

ms −m0

≃ 0.010 (1)

where m0 is the average of the u and d current quark masses. To this should be added the contribution
from π0−η′ mixing, which is smaller because of the larger mass of the η′, and which may increase the
value of θm by at most about 30% [3, 6]. The resulting effective π0−η mixing angle is therefore about
∼ 0.012.

Combination of the notion of the spontaneously broken approximate chiral symmetry of QCD with
SU(3) flavor symmetry implies that the coupling of the baryons to the octet of light pseudoscalar mesons
(π,K, η) takes the form

LNNM = i
gA
2fm

ψ̄N γ5γµ∂µ maλa ψN , (2)

where ψN denotes the baryon octet field, ma the meson octet field, λa the SU(3) Gell-Mann matrices,
fm the decay constants of the mesons, and gA the axial coupling constant of the baryons. The current
experimental value of gA as determined from low energy nuclear beta decays is gA = 1.2573 [7], while
the phenomenological value is gA = 1.267 ± 0.004 [8]. If these values are employed together with the
Goldberger-Treiman relations for nucleons, then ”effective” pseudovector coupling constants may be
defined as

fπNN =
mπ

2fπ
gA ≃ 0.95, fηNN =

1√
3

mη

2fη
gA ≃ 1.79. (3)

The above value for the πNN coupling constant agrees completely with that used in the most recent
realistic phenomenological nucleon-nucleon interaction models, the parameters of which have been de-
termined by fits to nucleon-nucleon scattering data [9, 10]. Such fits do not, however, constrain the
value of fηNN very well, and therefore its value remains uncertain. Different realistic phenomenological
potential models give values between ∼ 0.5 and ∼ 3.6 for this coupling [11], while analysis of data on
photoproduction of the η on the nucleon indicate that the value for fηNN should not exceed 0.64 [12],
a value which also seems to be consistent with data on η production near threshold in proton-proton
collisions [13].

The point of the present paper is to show that it is possible, given the value of the π0−η mixing angle,
to estimate the strength of the coupling of the η meson to strange quarks from the empirically known
ratio of the branching fractions for D∗

s → Dsπ
0 and D∗

s → Dsγ. This requires that realistic models
for the respective hadronic matrix elements and Qq̄ wavefunctions are at hand. From the ηss coupling
obtained, the corresponding ηqq coupling may be estimated using flavor SU(3) symmetry. One may
then, by standard quark model relations, obtain useful and constraining information on the η−baryon,
and in particular, the η−nucleon coupling fηNN . The main source of error in this analysis is the rather
large uncertainty in the empirical determination of the π0 and γ branching fractions for the D∗

s meson.
This error is likely to be much larger than that introduced by SU(3) breaking effects into the current
analysis.
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If one considers the coupling of the octet of light pseudoscalar mesons to the light (u, d, s) quarks,
one obtains analogously to eq. (2) the couplings

LqqM = i
gqA
2fm

ψ̄q γ5γµ∂µ maλa ψq, (4)

where gqA denotes the axial coupling constant for constituent quarks. For the pions and the η meson,
the empirical values of the decay constants are fπ = 93 MeV and fη = 112 MeV, respectively, so at
least in this case the SU(3) flavor symmetry is broken only at the 10% level. Combination of the chiral
coupling (4) with the representation

maλa =
√
2









π0

√
2
+ η0√

6
π+ K+

π− − π0

√
2
+ η0√

6
K0

K̄− K̄0 −
√

2
3
η0









, ψq =





u
d
s



 (5)

leads to the following definitions for the quark-level pseudovector coupling constants fmqq, which are
analogous to those given by eq. (3):

fπqq =
mπ

2fπ
gqA, fηqq =

mη

2
√
3fη

gqA, fηss = − mη√
3fη

gqA. (6)

The above relations then suggest that the magnitude of the coupling of η mesons to u, d quarks should
be one-half that of the η coupling to strange quarks, independently of the η meson mass. The numerical
value of gqA is not very well known, although typical values fall in the range 0.87 - 1 [14, 15]. Calculations
of the pionic decay widths of the D∗ mesons show that value range to be realistic [16, 17]. In the static
quark model the meson-quark coupling constants eq. (6) are related to the meson-nucleon coupling
constants given by eq. (3) as (see e.g. ref. [17])

fπNN =
5

3
fπqq, fηNN = fηqq. (7)

Thus for gA ∼ 1.26 one would predict a value of gqA ≃ 0.75, which may be considered as a lower bound
for the constituent quark axial coupling [17]. If the relation (6) is employed with values of gqA in the
range 0.87 - 1.0 [14, 15], then the corresponding values of fηss would fall between -2.5 and -2.8. Note
that the value of gqA is conventionally extracted from the axial (spatial) current coupling, as the value of
the effective axial charge coupling of confined constituent quarks depends on the form of the confining
interaction [16].

The empirical observation of the charmonium decay modes ψ′ → J/ψ π0 and ψ′ → J/ψ η indicates
that charm quarks also couple to the π0, and may potentially influence the D∗

s → Dsπ
0 decay. The

fairly large empirical width for ψ′ → J/ψ η of ∼ 7.5 keV which corresponds to a branching fraction
of ∼ 3% suggests that besides qq̄ and ss̄ the η meson may have a cc̄ admixture. While this would
allow direct coupling of the η meson to charm quarks, the charm components of the η and η′ mesons
are phenomenologically, as well as theoretically, constrained to be rather small [8, 18, 19]. The known
decay width for ψ′ → J/ψ η [20, 21] and the Hamiltonian model for the cc̄ spectrum of ref. [22] may
nevertheless be used to explore the consequences of a nonzero ηcc coupling for the decay D∗

s → Dsπ
0

and thereby the resulting value for fηNN . For this purpose the effective ηcc coupling is here taken to
have the form (4).
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This paper is divided into 5 sections. In section 2, the method for extracting the ηss coupling from the
ratio of the empirically known branching fractions for the decaysD∗

s → Dsπ
0 andD∗

s → Dsγ is described,
along with the models for the π0 and γ decays of the D∗

s . It is shown that a relativistic treatment of both
the γ and π0 decays of the D∗

s is called for. In section 3 it is shown that the two-quark exchange current
contributions to the γ decay amplitude, which are associated with the scalar confining and vector one-
gluon exchange (OGE) components of the Qq̄ interaction, provide a way of obtaining a realistic value
for the matrix element for γ decay, which is not possible in the impulse approximation. These two-
quark contributions appear here because of the explicit elimination of negative energy components in the
Blankenbecler-Sugar (BSLT) reduction of the Bethe-Salpeter equation. Section 4 contains the numerical
results for the π0 and γ matrix elements, and an estimated upper bound for the ηcc coupling. Section
5 contains a concluding discussion of the results obtained for the coupling of η mesons to quarks and
nucleons.

2 The D∗
s → Dsπ

0 and D∗
s → Dsγ Decays

2.1 Extraction of the ηss coupling

Application of the relations (6) together with eq. (4) yields a coupling of η mesons to strange quarks in
terms of fηss. The coupling of the π0 meson to the strange quark may then be expressed in terms of the
”effective” mixing angle θm as

Lssπ0 = i
fηss
mη

θm ψ̄s γ5γµ∂µφπ0 ψs, (8)

where sin(θm) has been replaced by θm, which is a very good approximation for values of θm ∼ 0.015
rad. In eq. (8), θm now corresponds to the sum of the π0−η and π0−η′ contributions as discussed in the
previous section.

The differential decay width of an excited heavy-light (Qq̄) meson may be expressed in the form

dΓ

dΩ
=

q

8π2

Mf

Mi
|Tfi|2, (9)

where q denotes the momentum of the emitted particle, Tfi is the hadronic decay amplitude for the
process in question, and Mf/Mi is a normalization factor for the quarkonium states analogous to that
employed in ref. [17]. The width for the process D∗

s → Dsπ
0 may then be obtained directly from the

expression for D±∗ → D±π0 given in ref. [16] by the replacement gqA/2fπ → fηssθm/mη, giving

Γ(D∗
s → Dsπ

0) =
1

6π

MDs

MD∗

s

f2
ηss

m2
η

θ2mq
3
π |Mπ|2, (10)

if the π0 emission takes place at the strange quark. Here Mπ is a radial matrix element for pion emission.
Similarly, using eq. (9) the decay width for the radiative M1 transition D∗

s → Dsγ may be written in the
form [23]

Γ(D∗
s → Dsγ) =

16

3

MDs

MD∗

s

α q3γ |Mγ |2, (11)

where α is the fine structure constant. In analogy with eq. (10), Mγ is a radial matrix element for M1
decay, which includes the inverse quark mass factor (see below). By means of eqs. (10) and (11), the
ratio of the π0 and γ decay widths of the D∗

s meson is then obtained as

Γπ
Γγ

=
8

9π

f2
ηssθ

2
m

m2
ηα

(

qπ
qγ

)3( |Mπ|
|Mγ |

)2

. (12)
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Note that in the above equation, the dimension of |Mγ | is [MeV]−1. Through use of the empirical ratio
of pion and photon momenta [20] known to be approximately 139/48 and the η meson mass of 547 MeV
one may solve for the coupling constant fηss to get

f2
ηss = θ−2

m

Γπ
Γγ

( |Mγ |
|Mπ|

)2

· 4.814 fm−2. (13)

As the ratio of the π0 and γ decay rates is experimentally known, albeit with quite large errors, to be
0.062± 0.028 [20], it is, given the rather well known value of θm, possible to obtain an estimate for the
coupling constant fηss. This requires a model for the matrix elements in eq. (13), as discussed below.

Eq. (13) was obtained by assuming that the π0 decay takes place only at the strange quark. However,
the observed ψ′ → J/ψ η decay shows that the η meson also couples to charm quarks, which implies
that π0 emission by the charm quark may also take place in the D∗

s meson in addition to π0 emission by
the strange quark through π0−η mixing. If the pion emission at the charm quark is taken to proceed
through a coupling of the type (8), then the effect of π0 emission by the charm quark may be taken into
account by replacement of eq. (13) with the expression

R = θ−2
m

Γπ
Γγ

|Mγ |2 · 4.814 fm−2, (14)

where R is defined as
R = |fηssMs

π + fηccMc
π|2 . (15)

Here Mc
π denotes the radial matrix element for pion emission by the charm quark. Because of the small

momentum of the emitted π0 and the heaviness of the charm quark, this matrix element will be very
close to 1. The phenomenological implications of a nonzero contribution to π0 decay by the charm quark
will be explored in section 5.

The coupling constant fηcc can only be estimated from the empirically observed decay ψ′ → J/ψ η
which, although somewhat suppressed by the orthogonality of the ψ′ and J/ψ wavefunctions, is known [20]
to have a rather large width of ∼ 7.5 keV corresponding to a branching fraction of about 3%. However,
reliable estimation of the coupling constant fηcc from the decay ψ′ → J/ψ η is difficult for several reasons.
The first is that the matrix element for ψ′ → J/ψ η is very small in the nonrelativistic approximation
because of the orthogonality of the wavefunctions. In a relativistic calculation this matrix element is
typically increased by an order of magnitude. Furthermore, the axial charge component from a coupling
of the type (8), along with the associated two-quark effects, may also contribute significantly to such a
decay [16]. Thus if the axial current component of eq. (8) is used with the replacement fηssθm → fηcc,
then the value for fηcc obtained by fitting the empirical width for η decay of the ψ′ should be expected
to represent an upper bound only. The expression for the width so obtained is

Γ(ψ′ → J/ψ η) =
4

3π

MJ/ψ

Mψ′

f2
ηcc

m2
η

q3η |Mη|2. (16)

Here Mη is the matrix element for η decay, which is given in the next section together with the matrix
element Mπ. Note that in eq. (16), the difference of a factor 8 as compared with eq. (10) arises from
the product of a factor 2 from the spin sum for a triplet-triplet transition and a factor 4 from the sum
of the quark and antiquark contributions to η decay. In section 4 it is shown that evaluation of eq. (16)
leads to an upper bound for fηcc of about ∼ 0.8.
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2.2 Matrix elements for pseudoscalar emission

When the strange and charm constituent quarks are treated non-relativistically, the radial matrix element
for π0 decay, Mπ, is

MNR
π =

∫ ∞

0

dr u2(r) j0

(qπr

2

)

≃ 1−
〈

r2
〉

q2π
24

+O(q4π), (17)

where u(r) is the reduced radial wavefunction of cs̄ system. Because of the smallness of qπ (48 MeV)
and

〈

r2
〉

(≃ 0.2 fm2), the numerical value of the matrix element MNR
π is very close to unity. If the

constituent strange and charm quarks are treated as Dirac particles, then the matrix element (17) for
π0 emission by the strange constituent quark is modified to

MRel
π =

1

π

∫ ∞

0

dr′ r′u(r′)

∫ ∞

0

dr r u(r)

∫ ∞

0

dP P 2

∫ 1

−1

dz Fπs (P, qπ, z)

j0

(

r′
√

P 2 +
q2π
16

+
Pqπz

2

)

j0

(

r

√

P 2 +
q2π
16

− Pqπz

2

)

, (18)

where the function Fπs , which describes the strange quark contribution to pion emission by the D∗
s , which

is a 13S1 state, to the Ds ground state from the Lagrangian (8) may be expressed as [16]

Fπs (P, qπ , z) =

√

(E′ +ms)(E +ms)

4EE′

(

1− P 2 − q2π/4

3(E′ +ms)(E +ms)

)

. (19)

Here the energy factors of the strange quark are defined as E =
√

m2
s + P 2 + q2π/4− Pqπz and E′ =

√

m2
s + P 2 + q2π/4 + Pqπz respectively. In the above expressions, ~P is defined as ~P = (~p ′ + ~p )/2 in

terms of the relative momenta in the center-of-momentum system. In realistic models for the heavy-light
mesons [16, 23] and the baryons [24, 25] typical values of the constituent masses for the strange and
charm quarks fall in the range ms = 400 MeV - 600 MeV and mc = 1.3 - 1.6 GeV, respectively. Because
of the small constituent mass of the strange quark the value of the expression (19) is expected to deviate
significantly from the nonrelativistic limit (17).

Because of the small value of the momentum of the π0, one may to a very good approximation, as in
eq. (17), set qπ to zero in the expression (19), which then reduces to

Fπs (P ) = lim
q→0

Fπs (P, qπ , z) =
1

3
+

2

3

ms

E
. (20)

In this approximation the relativistic matrix element for π0 decay may then be expressed as

MRel
π =

2

π

∫ ∞

0

dr′ r′u(r′)

∫ ∞

0

dr r u(r)

∫ ∞

0

dP P 2 Fπs (P ) j0 (r
′P ) j0 (rP ) . (21)

Eq. (20) thus indicates that in the ultrarelativistic limit, the matrix element for π0 decay assumes the
value 1/3. Forms = 560 MeV, the value of the matrix element (21) is ∼ 0.8, which shows that the strange
constituent quark has to be treated relativistically. In addition, two-quark mechanisms associated with
intermediate negative energy quarks were shown in ref. [16] to give a small contribution to the matrix
element for pion decay. These effects will be discussed in more detail in section 3.
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In order to obtain the matrix element for pion emission by the charm quark in the D∗
s meson, it is

sufficient to make the substitution ms → mc in all equations of this subsection. On the other hand, the
matrix element for the decay ψ′ → J/ψ η takes the form

MRel
η =

1

π

∫ ∞

0

dr′ r′uJ/ψ(r
′)

∫ ∞

0

dr r uψ′(r)

∫ ∞

0

dP P 2

∫ 1

−1

dz F ηc (P, qη , z)

j0

(

r′

√

P 2 +
q2η
16

+
Pqηz

2

)

j0

(

r

√

P 2 +
q2η
16

− Pqηz

2

)

, (22)

where uJ/ψ and uψ′ denote the reduced radial wavefunctions for the J/ψ and ψ′ states, respectively. The
factor F ηc may be obtained by substitution of ms → mc and qπ → qη in eq. (19).

2.3 Matrix element for γ decay

In the nonrelativistic approximation the matrix element for radiative M1 decay of a cs̄ meson in eq. (13)
is [23]

MNR
γ =

1

12

[

2

mc
− 1

ms

]

. (23)

Although the photon momentum qγ is somewhat larger (139 MeV) than qπ, it is still small enough so
that the M1 approximation may be considered valid. If the strange and charm constituent quarks are
treated as Dirac particles, then the canonical boosts lead to relativistic modifications of the spin-flip
magnetic moment operators [23]. The relativistic matrix element for M1 decay may thus, in analogy
with eqs. (18) and (21), be written as

MRel
γ =

2

π

∫ ∞

0

dr′ r′u(r′)

∫ ∞

0

dr r u(r)

∫ ∞

0

dP P 2 F γs (P ) j0 (r
′P ) j0 (rP ) , (24)

where the factor F γs is defined as

F γs (P ) =
1

12

[

2

mc
fγc (P )−

1

ms
fγs (P )

]

. (25)

The functions fγi (P ) represent correction factors to the static spin-flip magnetic moment operators, and
may be expressed as

fγi (P ) =
mi

3Ei

[

2 +
mi

Ei

]

(26)

for the charm and strange constituent quarks. Here the energy factors are defined as Ei =
√

P 2 +m2
i .

From eq. (23) it is evident that there is destructive interference between the contributions from the heavy
and light quark currents to the M1 decay rate of a heavy-light meson. Insertion of standard values of
mc ∼ 1500 MeV and ms ∼ 500 MeV for the constituent quark masses reveals that the light constituent
quark contribution is somewhat larger than that of the heavy quark, which leads to an overall negative
value for the γ decay matrix element, cf. Table 4. However, if the relativistic form, eq. (24), is employed
then the charm and strange quark contributions very nearly cancel each other. This occurs because of the
larger relativistic suppression of the strange quark contribution. The end result is, that in the relativistic
impulse approximation the width for M1 decay of a charged heavy-light meson is very small [23].
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This result is, however, unrealistic, since two-quark mechanisms associated with intermediate negative
energy quarks will contribute significantly to the matrix elements for M1 decay. These mechanisms, which
are illustrated by the Feynman diagrams in Fig. 1 appear because of the explicit elimination of negative
energy components in the Blankenbecler-Sugar reduction of the Bethe-Salpeter equation. The resulting
two-quark magnetic moment operators have been calculated for equal constituent masses in ref. [27]. It
has been shown in ref. [29] that the two-quark contribution associated with the scalar confining interaction
is required for obtaining agreement with experiment for the M1 decays in the charmonium (cc̄) system.
Without that contribution, the width for ψ′ → J/ψ γ would be overpredicted by a factor ∼ 3.

However, the situation is much more complicated for the heavy-light mesons because of the uncertain
structure ofQq̄ interaction. Relativistic effects are also likely to be substantial for the two-quark operators
because of the low masses of the light constituent quarks. It will be shown in the next two sections
that once the two-quark effects associated with a Qq̄ interaction formed of scalar confining and OGE
components are taken into account, then the matrix elements for M1 decay of the D±∗ and D±∗

s may be
restored to the same order of magnitude as the non-relativistic estimate in eq. (23). The form of these
two-quark operators will be outlined in section 3, and the numerical results are given in section 4.

3 Two-quark contributions to D∗
s decay

3.1 Two-quark contributions to γ decay

In the reduction of the Bethe-Salpeter equation for the sc̄ system to a Blankenbecler-Sugar equation, the
negative energy components are eliminated in the impulse approximation. These do however contribute
to the current matrix elements of the sc̄ system as transition matrix elements, as illustrated in Fig. 1.
In the Blankenbecler-Sugar equation framework these transition matrix elements have to be included as
explicit two-quark current operators [30]. These two-quark matrix elements have been shown to give a
large correction to the spin-flip matrix element of the single quark current [29].

�

p1

p′2

pa

q

p′1

VQq̄(k2)

p2
�

p1

p′2

pb

VQq̄(k2)

p′1q

p2

Figure 1: Negative energy Born diagrams for photon emission by a cs̄ meson. The diagrams shown
correspond to both time orderings of the γ emission from the charm quark. Two similar diagrams
describe γ emission by the strange antiquark. The quark momenta are defined according to pa = p1 + q
and pb = p′1 − q, while k2 is the momentum transfered to the strange antiquark. Note that only the
negative energy component of the intermediate quark propagator is to be retained.
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The qualitative effect of this two-quark current may be understood in terms of a shift of the constituent
quark mass by the scalar confining interaction m → m + Vc(r). Since the constituent mass appears
in the denominator of the magnetic moment operator, this mass shift will lead to a reduction of the
corresponding single quark contribution to the M1 decay width. However, because of the cancellation
of the relativistic single quark current matrix element (24) for the cs̄ system outlined in section 2.3, the
two quark currents give the main contribution to the transition rate for D∗

s → Dsγ [23]. For the scalar
confining interaction, that current may be expressed in the form

~c(~q,~k1, ~k2) = −e
(

Q∗
1
~P1

m2
1

+
Q∗

2
~P2

m2
2

+
i

2
(~σ1 + ~σ2)× ~q

[

Q∗
1

2m2
1

+
Q∗

2

2m2
2

]

+
i

2
(~σ1 − ~σ2)× ~q

[

Q∗
1

2m2
1

− Q∗
2

2m2
2

])

, (27)

where ~q is the momentum of the emitted photon, which corresponds to ~p ′ − ~p in case of the single quark
amplitude. In eq. (27), the variables Q∗

1 and Q∗
2 are defined as Q∗

1 = Vc(~k2)Q1 and Q
∗
2 = Vc(~k1)Q2, where

Vc(~kn) is the (formal) Fourier transform of the scalar confining interaction. The momentum variables
~P1 and ~P2 correspond to the expressions (~p1 + ~p ′

1)/2 and (~p2 + ~p ′
2)/2 respectively, while ~kn denotes

the momentum transfered to quark n according to Fig. 1. The analogous expression for the two-quark
current induced by the vector coupled OGE interaction is of the form

~g(~q,~k1, ~k2) = −e
(

Q∗
1

[

i~σ1 × ~k2
2m2

1

+
2 ~P2 + i~σ2 × ~k2

2m1m2

]

+Q∗
2

[

i~σ2 × ~k1
2m2

2

+
2 ~P1 + i~σ1 × ~k1

2m1m2

])

, (28)

with Q∗
1 = Vg(~k2)Q1 and Q∗

2 = Vg(~k1)Q2. Here Vg(~k) denotes the momentum-space form of the OGE
interaction. The corresponding magnetic moment operators may then be computed from eqs. (27)
and (28) according to

~µ ≡ − i

2
lim
q→0

[

~∇q × ~ (~q,~k1, ~k2)
]

, (29)

where the momentum transfer variables are given by ~k1 = ~q/2 − ~k and ~k2 = ~q/2 + ~k. Upon Fourier
transformation, the resulting magnetic moment operators may, for transitions between S-wave states, be
written in the form

~µc = −eVc(r)
4

{[

Q1

m2
1

− Q2

m2
2

]

(~σ1 − ~σ2) +

[

Q1

m2
1

+
Q2

m2
2

]

(~σ1 + ~σ2)

}

(30)

for the scalar confining interaction, and

~µg = −eVg(r)
8

{[

Q1

m2
1

− Q2

m2
2

− Q1 −Q2

m1m2

]

(~σ1 − ~σ2) +

[

Q1

m2
1

+
Q2

m2
2

+
Q1 +Q2

m1m2

]

(~σ1 + ~σ2)

}

(31)

for the one-gluon exchange interaction. In the limit m1 = m2, the above magnetic moments reduce to
those given in ref. [27]. Note that for the case of equal constituent quark masses, the one-gluon exchange
magnetic moment operator has no spin-flip term and consequently does not contribute to M1 decay if
m1 = m2. The terms in eqs. (30) and (31) that are symmetric in the quark spins affect only the magnetic
moments of the heavy-light mesons and give no contribution to the M1 decay widths.
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The spin-flip matrix elements for radiative M1 decay of a cs̄ meson that should be added to the
relativistic single quark matrix element (24) are thus

MConf
γ = −

∫ ∞

0

dr u2(r)
Vc(r)

12

[

2

m2
c

− 1

m2
s

]

, (32)

in case of the scalar confining interaction, and

MOge
γ = −

∫ ∞

0

dr u2(r)
Vg(r)

24

[

2

m2
c

− 1

m2
s

− 1

mcms

]

(33)

for the one-gluon exchange interaction. In the above expressions, the appropriate values of the quark
charge operators have been entered. For the scalar confining interaction, the form Vc(r) = cr− b will be
used, where the parameters c and b are taken to be those obtained in the potential model of ref. [23].
The one-gluon exchange potential Vg(r) is taken to be of the form

Vg(r) = −4

3

2

π

∫ ∞

0

dk αs(~k
2) j0(kr), (34)

which is known as the Richardson potential [32] and features the running QCD coupling αs which is
parameterized in terms of the QCD scale ΛQCD and a dynamical gluon mass mg, which in ref. [23] were
obtained as 280 MeV and 240 MeV, respectively:

αs(k
2) =

12π

27

1

ln[(k2 + 4m2
g)/Λ

2
QCD]

. (35)

Note that if αs is taken to be constant, then the above form reduces to the standard Coulombic one-gluon
exchange potential of perturbative QCD.

3.2 Two-quark contributions to π0 decay

In ref. [16] it was shown that a two-quark mechanism analogous to that for M1 decay shown in Fig. 1,
which is due to coupling of the emitted pion to an intermediate negative energy quark, which interacts
with the heavy spectator quark by the Qq̄ interaction may contribute to the amplitude for pion decay.
If the decay amplitude for emitted pions is written in the form

Tπ = i~qπ · ~A, (36)

then the axial current ~A may be decomposed into single- and two-quark contributions according to
~A = ~As + ~Aex. The two-quark contributions, which have been calculated for equal constituent masses
in ref. [26], are in this case however proportional to m−3

q in the nonrelativistic limit, which means that
they are of much less importance than the two-quark contributions to the magnetic moment operator.
Furthermore, it has been shown in ref. [16] that the axial exchange current contribution associated with
the scalar confining interaction is much reduced if relativistic effects are considered, because of the low
mass of the strange constituent quark.

The end result is, that two-quark effects due to the scalar confining and one-gluon exchange interac-
tions will only modify the relativistic matrix element (21) at the ∼ 5 − 10% level. As the uncertainties
in the value of the mixing angle θm and the empirically determined ratio of γ and π0 decay are much
greater, there is no need to include the two-quark contributions to the amplitude for π0 decay at this
time.
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4 Numerical Results for D∗
s → Dsγ and D∗

s → Dsπ
0

In order to obtain a description of the decay D∗
s → Dsγ that is as realistic as possible, the model for M1

decay presented here should be checked against the empirical results on the corresponding decays of the
non-strange D mesons. As the decay width for D±∗ → D±γ is known directly and that for D0∗ → D0γ
can be estimated from the empirical branching ratios and model calculations of the pionic decays of
the D mesons, it is possible to calibrate the mass of the light constituent quark so that an optimal
description of the M1 decay of the D± is obtained. Together with the potential model calculation in
ref. [23], this information can then be used to obtain a realistic estimate of the strange quark constituent
mass. In order to calculate the M1 decay rate D±∗ → D±γ, it is sufficient to make the substitution
ms → mq in all matrix elements, but for D0∗ → D0γ, one should substitute m−1

s → −2m−1
q in eq. (25),

and m−2
s → −2m−2

q , 1/mcms → 4/mcmq in eqs. (32) and (33). The obtained results for the M1 widths
of the non-strange D mesons are given for different light constituent quark masses in Tables 1 and 2.

mq NRIA RIA RIA + Conf + Oge

450 MeV 0.58 keV 9.4 · 10−3 keV 1.09 keV

420 MeV 0.79 keV 1.5 · 10−2 keV 1.43 keV

390 MeV 1.07 keV 2.2 · 10−2 keV 1.90 keV

Table 1: Numerical results for the M1 transition D±∗ → D±γ, for a charm quark mass of 1580 MeV [23].
The column NRIA (non-relativistic impulse approximation) corresponds to eq. (23), and the relativistic
impulse approximation RIA to eq. (24). In the rightmost column, the two-quark contributions from
eqs. (32) and (33) have been added. In the contribution from the confining interaction, the parameters
c = 1120 MeV/fm and b = 320 MeV have been employed [23].

mq NRIA RIA RIA + Conf + Oge

450 MeV 21.1 keV 8.86 keV 8.95 keV

420 MeV 23.5 keV 9.18 keV 9.89 keV

390 MeV 26.4 keV 9.52 keV 11.1 keV

Table 2: Numerical results for the M1 transition D0∗ → D0γ, for a charm quark mass of 1580 MeV [23].
The columns NRIA (non-relativistic impulse approximation) and RIA are as for Table 1, although with
the appropriate modifications due to the different quark charge operators. The same modifications apply
to the rightmost column, where the two-quark contributions from eqs. (30) and (31) have been added.
In the contribution from the confining interaction, the parameters c = 1120 MeV/fm and b = 320 MeV
have been employed [23].
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It is instructive to compare the results presented in Table 1 with the current experimental data for
the D±∗. Until recently, only the relative branching ratios for π and γ decay were known [20]. However,
a first empirical measurement of the total width of the D±∗ has recently been published by the CLEO
collaboration [31]. The reported result is Γ(D±∗) = 96 ± 4 ± 22 keV, where the latter error represents
the systematic uncertainties. Taking into account the reported [20] branching ratio of 1.6 ± 0.4% for
radiative decay, one obtains 1.5± 0.6 keV for the transition D±∗ → D±γ. Here most of the uncertainty
stems from the systematic errors of the experimental result. However, it is evident that the results of
Table 1 reproduce this result well for a range of values of the light constituent quark mass mq. The value
mq = 450 MeV corresponds to the potential model of ref. [23], while the value mq = 420 MeV has been
suggested by refs. [33, 34]. From Table 1 it is thus seen that a light constituent quark mass of 420 MeV
produces a width for radiative decay which is close to 1.5 keV. That value of the width is also favored
by the analysis of ref. [35].

mq NRIA RIA RIA + Conf + Oge

560 MeV 0.18 keV 2.6 · 10−4 keV 0.38 keV

530 MeV 0.26 keV 3.9 · 10−5 keV 0.49 keV

500 MeV 0.36 keV 8.6 · 10−4 keV 0.64 keV

Table 3: Numerical results for the M1 transition D±∗
s → D±

s γ, for a charm quark mass of 1580 MeV [23].
The column NRIA (non-relativistic impulse approximation) corresponds to eq. (23), and the relativistic
impulse approximation RIA to eq. (24). In the rightmost column, the two-quark contributions from
eqs. (32) and (33) have been added. In the contribution from the confining interaction, the parameters
c = 1120 MeV/fm and b = 260 MeV have been employed [23]. Note that the RIA contribution becomes
exactly zero for a strange quark mass of ∼ 540 MeV.

Even though the total width of the neutral D0∗ meson has not yet been determined [20], considerable
information about the expected width for D0∗ → D0γ may be extracted from the reported branching
fraction of 38.1±2.9% [20], since the corresponding width for pion decay can be constrained by means of
the empirically determined width of the D±∗ and model calculations of the pionic decays of D mesons [16,
17, 36]. This is seen directly if one first notes that the branching fraction of D±∗ → D0π± is reported as
67.7±0.5% [20], which implies a width for this decay mode of ∼ 65±14 keV. From the model calculation
of ref. [16] one finds that this corresponds to a width of ∼ 40± 10 keV for D0∗ → D0π0. As the relative
branching fractions for π0 and γ decay of the D0∗ are well known [20], the best estimate for the width
of D0∗ → D0γ is ∼ 25 keV. There remains, however, still a considerable uncertainty of ∼ ±10 keV from
the systematic errors in the empirical measurement of Γ(D±∗).

A width for D0∗ → D0γ of around 20-30 keV is also preferred by ref. [35]. The result of the model
calculation in Table 2 is smaller by about a factor ∼ 2 as the OGE contribution is weaker in this case as
compared to the contribution from the scalar confining interaction. Moreover, as a relativistic treatment
of the two-quark currents will effectively lead to replacement of the quark masses by energy-dependent
factors, it may be argued that relativistic effects will generally lead to a weakening of the two-quark
contributions to the matrix element for M1 decay. It is thus entirely possible that a fully relativistic
treatment will render the two-quark contributions too weak to account for the experimental data on M1
decay of the D± meson as well.
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This conclusion is in line with that reached in ref. [35], where it was found that the introduction
of a large anomalous magnetic moment is required in order to fit the observed M1 decay widths of
the heavy-light mesons. Another interesting possibility is that the instanton induced interaction for Qq̄
systems given in refs. [33, 34] may also contribute a significant two-quark current. The interaction of
refs. [33, 34], which was found to be short-ranged, negative and attractive, has scalar coupling to the light
constituent quark. One may thus conclude that this interaction will add up constructively with the OGE
contribution from eq. (33). Thus the instanton induced interaction will have an overall favorable effect
on the widths for M1 decay, particularly for the D0∗, which may be inferred from the matrix elements
given in Table 4.

As it appears to be possible to obtain a realistic description of the radiative M1 decay of the D±

meson using the model presented in this paper, then a prediction based on the potential model [23] for
the M1 decay D±∗

s → D±
s γ and the associated matrix element Mγ can be made. That information is

needed as input for eq. (13) in order to obtain an estimate for fηss. These results are given in Tables 3
and 4.

D±∗ → D±γ D0∗ → D0γ D±∗
s → D±

s γ

MNR
γ −1.83 · 10−2 9.91 · 10−2 −8.55 · 10−3

MRel
γ −2.55 · 10−3 6.20 · 10−2 3.24 · 10−4

MConf
γ 1.23 · 10−2 −3.07 · 10−2 7.25 · 10−3

MOge
γ −3.45 · 10−2 3.31 · 10−2 −1.98 · 10−2

MTot
γ −2.48 · 10−2 6.44 · 10−2 −1.22 · 10−2

Table 4: Matrix elements for the M1 decays considered in Tables 1, 2 and 3, in units of [fm]. The matrix
elements correspond to a charm quark mass of 1580 MeV, a light constituent quark mass of 420 MeV
and a strange constituent quark mass of 560 MeV. The matrix element MTot

γ shows the sum of the ’Rel’
+ ’Conf’ + ’Oge’ contributions, which in case of the decay D±∗

s → D±
s γ is used for the determination of

the coupling constant fηss.

In order to estimate the coupling constant fηss, the matrix element (21) for π0 decay of the D∗
s meson

also needs to be evaluated. The value of that matrix element for a strange constituent quark mass of
560 MeV is 0.794, which together with the total matrix element for γ decay of the D∗

s may then be used
with eq. (13) to obtain a value for fηss. If the charm quark also couples significantly to the η meson,
then the matrix element for pion emission by the charm quark in eq. (15) needs to be evaluated as well.
This can be done by the substitution ms → mc in eq. (21). For a charm quark mass of 1580 MeV, the
result Mc

π = 0.949 is obtained. Thus, in the evaluation of eqs. (14) and (15), the following values for
the matrix elements for γ and π0 decay will be used:

Mγ = −1.22 · 10−2 fm

for the γ decay matrix element, and
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Ms
π = 0.794 Mc

π = 0.949

for the π0 decay matrix elements. Note that in all the calculations of this section, the masses of the
initial and final quarkonium states as well as the momenta of the emitted photons and π0 mesons have
been taken to equal those given in ref. [20].

4.1 Numerical Results for ψ′ → J/ψ η

The evaluation of eq. (16) involves the computation of the matrix element Mη given by eq. (22). The ψ′

and J/ψ wavefunctions are here taken to be those computed in the potential model of ref. [22]. Because
of the somewhat larger value of qη (200 MeV) [20], and the orthogonality of the ψ′ and J/ψ radial
wavefunctions, it is undesirable to make the approximation qη = 0 in this case. The resulting relativistic
matrix element for the decay ψ′ → J/ψ η is obtained as Mη = −3.53 · 10−2, and gives the desired
width of ∼ 7.5 keV if the coupling constant fηcc is taken to be ∼ 0.8. The sign of fηcc is of course not
determined by this computation.

As there exists both theoretical and phenomenological arguments [8] against a significant cc̄ admixture
in the η meson, then this value for fηcc may appear uncomfortably large. Indeed, it will be shown in
the next section that a value of fηcc around ∼ 0.8 is, in view of the D∗

s → Dsπ
0 decay, about one half

of the so obtained value for fηss. However, as neither the axial charge component nor the associated
two-quark contributions to the amplitude for η decay of the ψ′ have been considered, the value of 0.8
for fηcc should be considered as an upper limit only. Nevertheless, it will be shown in the next section
that the inclusion of a pion-charm quark coupling will serve to increase the obtained value for fηss, thus
bringing it closer to the phenomenologically preferred values [12, 13].

5 Discussion

Assuming that in the π0 decay of the D∗
s , the pion couples mostly to the strange constituent quark,

eq. (13) may be used directly together with the matrix elements for π0 and γ decay given in the previous
section to estimate the magnitude of fηss. Insertion of the matrix elements and taking θm = 0.012 yields
R = 0.3085, giving |fηss| = 0.70. Taking into account the uncertainties in the mixing angle and the
empirical decay widths for π0 and γ decay, the best estimate is

fηss = − 0.7 +0.5
−0.3

In the above result, the negative sign is suggested by the relations in eq. (6). The static quark model
then implies, through eq. (7), that the magnitude of the corresponding pseudovector η-nucleon coupling
constant fηNN should be one half of this value. Thus one obtains the following value for the η-nucleon
coupling:

fηNN = 0.35 +0.15
−0.25

This result should be compared with the value for fηNN (or the equivalent pseudoscalar coupling constant
gηNN = (2mN/mη)fηNN , which has been determined by phenomenological model fits to photoproduction
of η mesons on the nucleon [12]. The latter value for fηNN is 0.64. This value has also been found to
be realistic in calculations of the cross section for pp → ppη near threshold [13]. Although the result

14



obtained above for fηNN has quite large uncertainties which are mostly of empirical origin, it still appears
to be significantly smaller. A larger value for fηNN could of course be obtained by decreasing the mixing
angle θm.

Additional modifications to the current estimation of fηNN may of course also arise from SU(3)
breaking effects in eq. (6), which relates fηqq to fηss. Likewise, relativistic effects may also modify the
static quark model result (7) which relates fηqq to fηNN . However, in view of the large experimental
uncertainty in the determination of the branching fractions for γ and π0 decay of the D∗

s , there appears
to be little motivation to include such effects at this time. Another possibility is that the matrix element
for γ decay as given by Table 4 is too small. However, as the computed width for D∗

s → Dsγ is already
somewhat larger than that given in ref. [35], this possibility may be considered unlikely.

Another option worth considering, in view of the fact that the empirical detection of a considerable
branching fraction for ψ′ → J/ψ η indicates that the η meson also couples to the charm quark, is that
the coupling of the η meson to the charm quark would be strong enough to significantly influence the
D∗
s → Dsγ decay. For nonzero values of the coupling fηcc, the coupling constant fηss may thus be

determined from eq. (15) according to

fηss =

√
R− fηccMc

π

Ms
π

, (37)

where the different possibilities are
√
R = ±0.5554 and fηcc = ±0.8. The most realistic of these appears

to be
√
R = −0.5554, fηcc = +0.8, giving fηss = −1.66. In this case a nonzero and positive fηcc leads

to a larger and negative value for fηss, allowing for better agreement with the values of fηNN suggested
above. The value for fηNN that corresponds to fηcc = +0.8 turns out to be

fηNN = 0.83 +0.25
−0.35, (38)

which is closer to the phenomenological estimates given by refs. [12] and [13]. Although the value +0.8
for fηcc is, in view of the discussion in the previous section, probably much too large, there still remains
a distinct possibility that the charm quark contributes significantly to the width for D∗

s → Dsπ
0. In this

case it is found that values around fηss ≃ −1.7 are favored by an eta-charm coupling of ∼ +0.8.
It is useful to compare the results obtained from the present phenomenological analysis with the

predictions of eq. (6). With the value gqA = 0.87 for the axial coupling constant of the constituent
quarks, eq. (6) yields the value fπqq = 0.65 for the pion-quark coupling, which is close to the value
fπqq = 3/5fπNN ≃ 0.57 suggested by the static quark model (cf. (3)). The values for fηqq and fηss so
obtained are 1.25 and -2.5 respectively. The values for fηss obtained here from the ratio of the empirical
branching fractions for D∗

s → Dsπ
0 and D∗

s → Dsγ, are much smaller than this quark model value. In
the completely SU(3) flavor symmetric limit, in which the pion and η are degenerate in mass, the value
for fηss would however be equal to −2/

√
3fπqq, which is only -0.75. The results from various modern

phenomenological analyses are typically about twice this value.
Naive application of SU(3) flavor symmetry at the level of a chiral symmetry violating pseudoscalar

coupling model for pions and η mesons to baryons gives the result gηNN = 1/
√
3 gπNN . With the (now)

standard value of 12.8 for gπNN this relation would give the value 7.4 for gηNN . Such a large value would
correspond to fηNN = 2.2. While values of that magnitude are ruled out by η meson photoproduction,
as well as, as shown here, by the π0 decay of the D∗

s meson, they were employed in early realistic boson
exchange models for the nucleon-nucleon interaction.
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