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Abstract

The Λ baryons with a single heavy flavor which transfer the quark po-
larization, have been studied both theoretically and experimentally. The

Ξ’s with two heavy constituents are well treated in quark-diquark model.
In this work we study the production of triply heavy baryons in the per-

turbative QCD regime and calculate the fragmentation functions for Ωccc

and Ωbbb in the c and b quark fragmentation, respectively. We then ob-

tain the total fragmentation probability and the average fragmentation
parameter for each case.
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1 Introduction

The quark model of hadrons has proved to be successful in describ-

ing hadrons and their properties. In the heavy quark sector it predicts
hadrons having c, b and t quarks as constituents. However, the discovery
of the top quark [1] and the determination of its lifetime [2] made it clear

that it cannot participate in strong interactions and therefore only the c
and b flavors are left to take part in the hadron production interplay.
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Recently meson states constituting heavy flavor have received consider-

able attention. Specially Bc and B∗
c states with bc quark content have

been in focus both theoretically [3] and experimentally [4] in the last few

years. It is established that the fragmentation functions describing their
production mechanism are calculable in perturbative QCD [3] and hence

the total fragmentation probabilities and production cross sections are
calculated in due course.

Baryon states with heavy flavor fall into three categories. States con-

taining one heavy flavor such as Λc and Λb are interesting states due to
the fact that they carry the original heavy flavor polarization. They are
presently being studied experimentally [5]. The second category involves

baryons with two heavy flavor like the states Ξcc, Ξbb and Ξbc [6]. They
are treated within the approximate quark-diquark model [7]. The model

treats the production of the so called diquark perturbatively similar to
the states such as Bc. Then, it can be proved that the formation of a

baryon out of the diquark is almost the same as the fragmentation of an
antiquark into a meson. In this way one obtains the fragmentation func-

tions, the total production probabilities and other relevant parameters
which specify their properties. In the third category, we have baryons
with three heavy constituents. If we follow the scheme used in the case of

heavy mesons and assume that their fragmentation functions are calcula-
ble in the perturbative regime, then we can calculate Feynman diagrams

like the one in figure 1 to obtain the fragmentation functions. There are
eight such diagrams in the lowest order contributing triply heavy baryons,

i.e. Ωccc, Ωccb, Ωcbb and Ωbbb production [8].

In this paper our aim is to calculate the fragmentation of the Ωccc and
Ωbbb baryons in the lowest order perturbative regime and obtain their

fragmentation functions in an exact analytical form.

2 Kinematics

We consider the fragmentation of a heavy quark Q into a QQQ system

with three identical flavor. This procedure is illustrated in Figure 1. We
have used an infinite momentum frame in which all of the particles are
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Fig. 1. Feynman diagram illustrating the lowest order fragmentation of a heavy quark, Q, into
a ΩQQQ baryon. The four momenta are labelled.

moved in the forward direction, i.e. the longitudinal direction along the
z axes, where the QQQ moves. We let the original quark keep its trans-

verse momentum. Furthermore, we assume that the two antiquark jets
move almost in the same direction. This assumption is justified due to

the fact that the very high momentum of the initial heavy quark will
predominantly be carried in the forward direction. Due to momentum

conservation, the total transverse momentum of the two jets will be iden-
tical to the transverse momentum of the initial quark. In this context the
four momenta of the particles will assume the following form

p′µ= [p′◦,p
′
T , p

′
L], qµ = [q◦, 0, qL], rµ =[r◦, 0, rL]

sµ= [s◦, 0, sL], kµ = [k◦,kT , kL], k
′
µ =[k′◦,k

′
T , k

′
L]. (1)

We have used the fragmentation parameter, z, as defined in the literature,

i.e.,

z =
(E + p‖)B
(E + p‖)Q

=
EB

EQ

. (2)

The last step follows form application of the infinite momentum frame.
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Therefore, the final state particle energies are parameterized as follows

p◦ = zp′◦, (3)

where p◦ = r◦ + q◦ + s◦ is the energy of the baryon. Therefore

r◦ = x1zp
′
◦, q◦ = x2zp

′
◦, s◦ = x3zp

′
◦. (4)

Here the x’s are the energy ratios carried by the constituents. Since the
constituents are identical and fly together, it is found that x1 = x2 =

x3 = 1/3. This is consistent with our argument about the wave function
for such states in the next section. We also have assumed that the two

anti-quarks which initiate the two jets have equal energies, i.e.

k◦ = k′◦ =
1

2
(1− z)p′◦. (5)

On the other hand due to our discussion about transverse momentum,
we have

kT = k′
T =

1

2
p′

T . (6)

We will discuss this later assumption in the final section.

3 Calculation of the Fragmentation Functions for ΩQQQ

We are now ready to calculate the diagram shown in figure 1. The frag-

mentation of a heavy quark Q into a heavy baryon ΩQQQ is obtained by
squaring the total amplitude and integrating over final state phase space,

DB
Q(z, µ◦) =

1

2

∑

s

∫

|TB|
2δ3(p+ k+ k′ − p′)d3pd3kd3k′, (7)
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where TB is the amplitude of the baryon production which involves the

hard scattering amplitude TH and the non-perturbative smearing of the
bound state. The average over initial spin states and the sum over final

spin states are performed. The heavy hadron production amplitude is
composed of a partonic part, which can be calculated using perturbative

QCD, and a non-perturbative part, which describes the transition of free
quarks into the final state hadron. In the framework of non-relativistic

quark model, this non-perturbative part could be accounted for through
the wave function which is calculable using potential models. Since at
present there is no known information concerning such wave functions,

we have assumed a delta function type wave function for them. This
assumption guarantees that the constituents will fly parallel and have

no transverse momentum with respect to their direction of motion. This
is also consistent with our assumptions in section 2. The hard scatter-

ing amplitude which is obtained by perturbative calculations of the tree
diagram in figure 1, may be put in the following form [9],

TH =
24π2α2

sm
4CF

√

2p′◦p◦k◦k
′
◦

Γ

g1(z)g2(z)g3(z)(p◦ + k◦ + k′◦ − p′◦)
. (8)

Here αs = g2/4π is the strong interaction coupling constant and Γ in-

dicates that part of the amplitude which embeds spinors and gamma
matrices. The 1/g’s are the propagators of the two gluons and the inter-
mediate fermion respectively.

To absorb the soft behavior of the bound state into hard scattering am-
plitude we have used the scheme introduced in [7]. The probability ampli-

tude at large momentum transfer factories into a convolution of the hard-
scattering amplitude TH , and baryon-distribution amplitude φM [10], i.e.,

TB(ki, pi) =
∫

[dx]TH(ki, pi, xi)φB(xi, q
′2), (9)

where TH is given by (8) and φB is the probability amplitude to find

quarks co-linear up to a scale q′2 in the baryonic bound state. In (9),
xi’s are the momentum fractions carried by the constituent quarks and
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[dx] = dx1dx2dx3δ(1 − x1 − x2 − x3). In view of our early discussion

in this section, we propose the following expression for the probability
amplitude

φB = fB δ
{

xi −
mi

mB

}

, (10)

where mB is the baryon mass and fB refers to the characteristics of the

baryon bound state and is similar to the meson bound state where the
decay constant fM is introduced. Putting this expression and (8) in (9)

and carrying out the necessary integrations, we find

TB =
24π2α2

sm
4fBCF

√

2p′◦p◦k
′
◦k◦

Γ

g1(z)g2(z)g3(z)(p◦ + k◦ + k′◦ − p′◦)
. (11)

Now we are able to obtain the fragmentation function in (7) as

D(z, µ)=
(48π2α2

sm
4fBCF )

2

8

×
∫

1
2

∑

s ΓΓδ
3(p+ k+ k′ − p′)d3pd3kd3k′

p◦p
′
◦k◦k

′
◦[g1(z)g2(z)g3(z)(p◦ + k◦ + k′◦ − p′◦)]

2 . (12)

Spin sum-average of ΓΓ for Figure 1 is easily calculated using the RE-
DUCE. To do the phase space integrations in (12), first we consider the
integral,

I=
∫ δ3(p+ k+ k′ − p′)d3p

p′◦(p◦ + k◦ + k′◦ − p′◦)
2

=
p′◦

f(z)2
, (13)

where

f(z) = −
p′T

2

3m2
+

3

z
+

4

3

(

1 +
p′T

2

4m2

) 1

1− z
. (14)
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Also we note that

∫

f(z,kT )d
3k=

∫

f(z,kT )dkLd
2kT

= m2k◦f(z, 〈kT
2〉) = m2k◦f(z,

1

2
〈p′T

2
〉), (15)

and

∫

f(z,k′
T )d

3k′=
∫

f(z,k′
T )dk

′
Ld

2k′T

= m2k′◦f(z, 〈k
′
T
2
〉) = m2k′◦f(z,

1

2
〈p′T

2
〉). (16)

Here, instead of performing transverse momentum integrations, for sim-
plicity we have replaced them by their average values. Putting all this

back in (12), we obtain the fragmentation function as,

DQ→QQQ(z, µ◦)=
π4α4

sf
2
BC

2
F

108m2z4(1− z)4f(z)2g(z)6

×
[

ξ8z8 + 4ξ6z6(83− 130z + 51z2)

+6ξ4z4(1413− 3084z + 3022z2 − 2156z3 + 821z4)

+4ξ2z2(18711− 51678z + 69417z2 − 70308z3

+53529z4 − 25950z5 + 6343z6) + 222345− 740664z

+1179036z2 − 1253448z3 + 90126z4 − 388872z5

+109916z6 − 49912z7 + 20649z8
]

. (17)

Here we have defined ξ = 〈p′2T 〉/m
2. g(z) comes from the propagators and

have the following form

g(z) = 1 +
3

z
+

4

3

(

1 +
p′2

T

4m2

) z

1− z
. (18)

and f(z) is due to the energy denominator given by (14). Replacement

of f(z) by g(z) which we have done in the original manuscript, changes
the fragmentation function only slightly.
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The fragmentation function Dc→Ωccc
(z, µ◦) and Db→Ωbbb

(z, µ◦) are easily

obtained from the above by letting m = mc, mb and using appropriate
fB, αs and µ◦ values.

4 Results and Discussion

We were able to calculate the process of direct c and b quark fragmen-
tation into Ωccc and Ωbbb baryons. In doing so we had to follow certain

assumptions. Firstly we have considered only the dominant contributing
Feynman diagram in leading order. This assumption reduced the com-

plexity and the length of the calculation and enabled us to obtain analytic
forms of the fragmentation functions. Our second assumption concerns

kinematics. We believe that the high momentum of the process has to be
taken away in the forward direction and let the two antiquarks carry the
transverse momentum of the initial heavy quark. Furthermore since they

are identical, we have considered equal contribution from them both in
magnitude an in direction. Therefore, we have established equations (5)

and (6) and used them in our calculation. To see how our later assump-
tion works, we have set the kinematics by allowing k and k′ to share the

jet energy-momentum.We have let k = x(1−z)p′ and k′ = (1−x)(1−z)p′

where x is a variable which is between zero and one. We have repeated

our calculations and studied the behaviour of Ωccc fragmentation function
with the same parameters as before. It is revealed that as x increases,
the function grows rapidly and gives the highest peak at x = 1/2. As x

increases further, the peak falls rapidly. Since there is not much informa-
tion about the wave functions of the triply heavy baryons at hand, we

have reduced the non-perturbative smearing of the bound state to a delta
function times a factor which is much like the meson decay constant. We

have denoted this constant by fB and assumed to take 0.25 GeV both
for Ωccc and Ωbbb baryons.

In obtaining (17) we have not performed the transverse momentum inte-
grations. Instead we have replaced the variables by their average values.

However the numerical integration converges well for sufficiently large
transverse momentum. Let us now sketch the behaviour of our frag-
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Fig. 2. The behavior of Ωccc (solid) and Ωbbb (dashed) fragmentation function at the respective
fragmentation scale.

mentation functions. Figure 2 shows the behaviour of Dc→Ωccc
(z, µ◦) and

Db→Ωbbb
(z, µ◦) in the fragmentation scale µ◦. In drawing them we have as-

sumed that mc = 1.25 GeV and mb = 4.25 GeV. The scales are µ◦=6.25
GeV and µ◦=21.25 GeV respectively. We have set 〈p′T

2〉= 1 GeV and

included the colour factor of CF=7/6 obtained using color line count-
ing rule. Consistent with the study of Bc and B∗

c states, we have taken
αs = 0.26 for Ωccc and αs = 0.18 for Ωbbb [3].

At leading order in αs one has
∫ 1
0 PQ→Q(z, µ)dz = 0 [12], and the evolu-

tion equation implies that the fragmentation probability
∫ 1
0 DQ→B(z, µ)dz

does not evolve with the scale µ. Therefore, the fragmentation probabil-
ity is a universal characteristic of the production rates. The evolution

only moves the z-distribution to small values of z. We have obtained this
quantity for Ωccc and Ωbbb using our fragmentation functions. The other
relevant kinematical parameter is the average fragmentation parameter.

Our results for the fragmentation probabilities and 〈z〉 appear in Ta-
ble 1. It is seen that our analysis give very close 〈z〉 values for Ωccc and

9



Table 1
Fragmentation probability and 〈z〉 for different states.

Ωccc Ωbbb

Frag. Prob. 2.789 × 105 6.459 × 107

〈z〉 0.522 0.535

Ωbbb. The fragmentation probabilities in Table 1 suggest that considerable
event rate is expected both at the Tevatron and the LHC .
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