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If an exact µ ↔ τ symmetry is the explanation of the maximal atmospheric neutrino mixing
angle, it has interesting implications for the origin of matter via leptogenesis in models where
small neutrino masses arise via the seesaw mechanism. For seesaw models with two right handed
neutrinos (Nµ, Nτ ), lepton asymmetry vanishes in the exact µ ↔ τ symmetric limit, even though
there are nonvanishing Majorana phases in the neutrino mixing matrix. On the other hand, for
three right handed neutrino models, lepton asymmetry is nonzero and is given directly by the solar
mass difference square. We also find an upper bound on the lightest neutrino mass.

PACS numbers: 14.60.Pq, 98.80.Cq

INTRODUCTION

One of the most puzzling aspects of neutrino mix-
ings observed in various oscillation experiments is the
near maximal value of the νµ − ντ mixing angle (i.e.
θ23 ≃ π/4). This was needed to explain the original
atmospheric neutrino data and is now supported by data
from the K2K experiment that uses accelerator neutri-
nos. The corresponding parameter in the quark sector is
very small (about 4%) and is believed to be connected
to the mass hierarchy among quarks. The large value of
θ23 may therefore be telling us about some new symme-
tries of leptons that are not present in the quark sector
and may provide a clue to understanding the nature of
quark-lepton physics beyond the standard model.
To explore this further, the first step is to write down

the neutrino mass matrix that leads to a near maximal
θ23 and then try to see what physics leads to it. It is well
known that the neutrino mixings are a combined effect of
the structure of both the charged lepton and the neutrino
mass matrices. If we write

Lm = νTαC
−1Mν,αβν + ēα,LM

e
αβeR + h.c., (1)

diagonalizing the mass matrices by the transformations
UT
ν MνUν = Mν

diag and U †
ℓM

eV = M e
diag, gives the

lepton mixing matrix UPMNS = U †
ℓUν . It is conven-

tional to parameterize UPMNS in terms of three angles
θ12 (the solar angle), θ23 (the atmospheric angle) and
θ13 the reactor angle as well as three phases. Our goal
is to understand the near maximal value of θ23 using a
leptonic symmetry and study its implications.
A fundamental theory can of course determine the

structure of both the charged lepton and the neutrino
mass matrices and therefore will lead to predictions about
lepton mixings. However, in the absence of such a the-
ory, if one wants to adopt a model independent approach
and look for symmetries that may explain the value of
θ23, it is useful to work in a basis where charged lep-
tons are mass eigenstates and hope that any symmetries

for leptons revealed in this basis are true or approximate
symmetries of Nature.
In the basis where charged leptons are mass eigen-

states, a symmetry that has proved useful in understand-
ing maximal atmospheric neutrino mixing is µ ↔ τ in-
terchange symmetry[1]. The mass difference between the
muon and the tau lepton of course breaks this symmetry.
So we expect this symmetry to be an approximate one.
It may however happen that the symmetry is truly exact
at a very high scale; but at low mass scales, the effec-
tive theory only has the µ− τ symmetry in the neutrino
couplings but not in the charged lepton sector so that we
have mτ ≫ mµ[2]. We will consider this class of theories
in this note. For this case, a convenient parameterization
of the neutrino mass matrix is (assuming the neutrinos
to be Majorana fermions):

Mν =

√

∆m2
A

2





cǫn dǫ dǫ
dǫ 1 + ǫ −1
dǫ −1 1 + ǫ



 (2)

where n ≥ 1. An immediate prediction of this mass
matrix is that θ23 = π/4 and θ13 = 0; we also get

ǫ ∼
√

∆m2
⊙/∆m2

A.

We can now use θ13 as a probe of how leptonic µ ↔
τ symmetry is broken in Nature and through that one
may hope for an understanding of the origin of the near
maximal (maximal ?) θ23, as has been emphasized in
ref.[3] (and also perhaps the µ − τ mass difference). In
particular, different ways of breaking µ ↔ τ symmetry

will lead to θ13 ∼
√

∆m2
⊙/∆m2

A or θ13 ∼ ∆m2
⊙/∆m2

A.

These predictions are clearly timely and interesting in
view of many proposals to measure the parameter θ13[4,
5]1.

1 The µ−τ symmetry in supersymmetric seesaw models also leads
to other phenomenological predictions such as the B(µ → e +
γ)/B(µ → eνν̄) = B(τ → e+ γ)/B(τ → eνν̄) .
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In this paper, we discuss implications of exact µ → τ
symmetry for the origin of matter via leptogenesis[6] and
find several new results: (i) we find that if there are
only two right handed neutrinos (Nµ, Nτ ) that via see-
saw mechanism lead to neutrino masses, then primordial
lepton asymmetry arising from right handed neutrino de-
cay vanishes in the µ− τ symmetric limit even though in
the low energy neutrino mass matrix may have Majorana
phases; (ii) secondly, for the case of three right handed
neutrinos, the primordial lepton asymmetry is directly
proportional to the solar mass difference square. These
predictions are very different from the generic three neu-
trino case[7]. In both these case we assume that neutrino
masses arise via the type I seesaw formula. These results
are independent of any detailed model.

PRIMORDIAL LEPTON ASYMMETRY WITH

TWO RIGHTHANDED NEUTRINOS

We start with the neutrino part of the superpotential:

W = ecTYℓLHd +N cTYνLHu +
1

2
MRN cTN c (3)

where we assume that N c ≡ (N c
µ, N

c
τ ). As noted earlier,

we work in a basis where Yℓ is diagonal. While naively,
one may think that in such models mµ = mτ , there are
models where one can split the muon and tau masses
consistent with this symmetry in the neutrino sector[2].
The basic assumption of this work is that we have mod-

els where Yν and MR obey µ ↔ τ symmetry under
which (Nµ ↔ Nτ ) and Lµ ↔ Lτ whereas the mµ 6= mτ .
The general structure of Yν and MR are then given by:

MR =

(

M22 M23

M23 M22

)

(4)

Yν =

(

h11 h22 h23

h11 h23 h22

)

The seesaw formula in our notation is

Mν = −YT

ν M
−1

R
Yνv

2
wk (5)

and the formula for primordial lepton asymmetry in this
case, caused by right handed neutrino decay is[10]

ǫ1 =
1

4π

∑

j

Im[Ỹν Ỹ
†
ν ]

2
12

(Ỹν Ỹ
†
ν )11

F (
M1

M2

) (6)

where Ỹν is defined in a basis where righthanded neutri-
nos are mass eigenstates and F (x) ≃ − 3

2
x for small

x which follows from our assumption that the right
handed neutrino masses are hierarchical. In order to
use this formula, we must diagonalize the righthanded
neutrino mass matrix and change the Yν to Ỹν . Since
MR is a symmetric complex 2 × 2 matrix, it can

be diagonalized by a transformation matrix U(π/4) ≡
1√
2

(

1 1
−1 1

)

i.e. U(π/4)MRU
T (π/4) = diag(M1,M2)

where M1,2 are complex numbers. In this basis we have

Ỹν = U(π/4)Yν . We can therefore rewrite the formula
for nℓ as

ǫ1 ∝
∑

j

Im[U(π/4)YνY
†
νU

T (π/4)]212F (
M1

M2

) (7)

Now note that YνY
†
ν has the form

(

A B
B A

)

which can

be diagonalized by the matrix U(π/4). Therefore it fol-
lows that nℓ = 0.

An interesting feature of this model is that one can
determine the neutrino masses and mixings explicitly in
terms of the parameters of the model. We find a hierar-
chical mass pattern i.e. m1 ≪ m2 ≪ m3 with the lightest
neutrino being massless i.e.

m1 = 0;m2 =
2

M+

(h2
+ + 2h2

11);m3 =
2

M−
(h2

−) (8)

where M± are the masses of the two right handed neu-
trinos with M− ≪ M+ and h± = (h22 + h23).

Even though there is no lepton asymmetry in the
model, there are Majorana CP phases in the light neu-
trino mixing which we denote by K = (eiα, e−iα, 1). It
is easy to see the origin of the phases: by appropriate
choice of the phases of the fields one can show that MR

has only one phase and Yν also has only one phase. Af-
ter using the seesaw formula, one gets the light neutrino
mass matrix which therefore has only one phase after
redefinition of the light neutrino fields.

µ− τ SYMMETRY BREAKING WITH TWO

RIGHT HANDED NEUTRINOS

From the above discussion, it is natural to expect the
model to have nonzero lepton asymmetry once µ−τ sym-
metry is broken, as well as also a nonvanishing θ13. One
may then expect that ǫ1 ∝ θ13. The details however de-
pend on how the symmetry is broken. As an example
we note that when the symmetry is broken only by the
masses of the RH neutrinos i.e. a RH neutrino mass ma-
trix of the formMR = diag(M1,M2) and no off diagonal
terms, since YνY

†
ν is a real matrix, ǫ1 ∝ Im[YνY

†
ν ]12 = 0

despite the µ− τ symmetry breaking. It is easy to check
that θ13 ≃ c(θA − π

4
) ∝ (M1 −M2) 6= 0.

One may however break µ ↔ τ symmetry in the Dirac
mass terms for the neutrinos i.e. in Yν . This can be done

in many ways e.g. by choosing Yν =

(

h11 h22 h23

h12 h23 h22

)

or Yν =

(

h11 h22 h23

h11 h23 h33

)

etc. In all these cases, one
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gets ǫ1 6= 0 and also θ13 6= 0 and θA 6= π/4. One les-
son one can draw from this observation is that, if lepto-
genesis is the true mechanism for the origin of matter,
then the limit on θ13 going down by an order of mag-
nitude could teach us about the nature of right handed
neutrino spectrum. For instance, a very small θ13 (i.e.

θ13 ≤ ∆m2

⊙

∆m2

A

) would indicate a nearly exact µ − τ sym-

metry and therefore sufficient leptogenesis would then
require the existence of three right handed neutrinos or
some complicated way of breaking µ− τ symmetry.

THE CASE OF THREE RIGHT HANDED

NEUTRINOS

In this case, the right handed neutrino mass matrix
MR and the Dirac Yukawa coupling Yν can be written
respectively as:

MR =





M11 M12 M12

M12 M22 M23

M12 M23 M22



 (9)

Yν =





h11 h12 h12

h21 h22 h23

h21 h23 h22





where Mij and hij are all complex2. An important
property of these two matrices is that they can be cast
into a block diagonal form by the transformation matrix

U23(π/4) ≡
(

1 0
0 U(π/4)

)

and then be subsequently di-

agonalized by the most general 2 × 2 unitary matrix as
follows:

V T (2 × 2)UT
23(π/4)MRU23(π/4)V (2 × 2) = Md

R (10)

where V (2×2) =

(

V 0
0 1

)

where V is the most general

2 × 2 unitary matrix given by V = eiαP (β)R(θ)P (γ)

with P (β) = diag(eiβ , e−iβ); R(θ) =

(

c s
−s c

)

; (c, s

being cosine and sine of θ respectively). We will denote
V (2×2) simply by VL,R depending on whether it acts on
left handed or the RH neutrinos.
We now change to the basis where the right handed

neutrino mass matrix is diagonal (Eq.(10)). The Dirac
Yukawa coupling in this basis has the form

Ỹν = V T (2× 2)UT
23(π/4)Yν (11)

2 After this paper was posted, it was brought to our attention
that leptogenesis for a µ − τ symmetric model with the specific
restriction that Yν = diag(a, b, b) was considered in Ref.[11].
Our consideration is more general.

Due to the special form of Yν dictated by µ ↔ τ symme-
try, it is easy to see that

Ỹν = V T (2× 2)Y ′
νU

T
23(π/4) (12)

where Y ′
ν is in block diagonal form. An important point

to realize at this stage is that the the 3×3 matrix problem
has reduced to a 2×2 problem. So all the matrices from
now on will be 2×2 and the third neutrino (the heaviest of
the light neutrinos) has completely “decoupled” from the
considerations below of both seesaw formula for neutrino
masses as well as lepton asymmetry. This is a direct
consequence of µ−τ symmetry and of course considerably
simplifies the discussions.
Restricting to the 2×2 case, we can use the seesaw for-

mula to write down the left handed neutrino mass matrix
as follows in units of −v2wk:

Mν = − Ỹ T
ν Md,−1

R Ỹν (13)

Next, we go to a basis where Mν (the upper 2×2 block of
it) is diagonalized by a matrix VL i.e. V T

L MνVL = Md
ν .

In this basis, the Dirac Yukawa coupling Ỹν becomes
V T
L Ỹ T

ν ≡ Y ′
ν
T . Let us write Y ′

ν
T , which is a 2× 2 matrix

as

Y ′
ν
T =

(

Z11 Z12

Z21 Z22

)

(14)

The Zij obey the constraints: Z12 = −Z21
Z22M1

Z11M2

and the
neutrino masses are given by

m1 =
Z2
11

M1

ρeiη (15)

m2 =
Z2
22

M2

ρeiη

where ρeiη =
(

1 +
M1Z

2

21

M2Z
2

11

)

.

Let us now calculate the out of equilibrium for the
decay of the lightest right handed neutrino, which we
assume to be the lighter of the two mass eigenstates of
the 2 × 2 right handed neutrino mass matrix considered
above. It is given by:

Γ1 =
1

8π
(Y ′

νY
′†
ν )11M1

=
M1(|Z11|2 + |Z12|2)

8π
≤ 14

M2
1

MPℓ

(16)

where MPℓ appears in the right hand side from the Hub-
ble expansion formula H2 ≃ √

g∗T
2/MPℓ in a radia-

tion dominated Universe. Using Eq.(15), which gives
(|Z11|2 + |Z12|2) ≃ M1

v2

wk
ρ

[

|m1|+ |ρeiη − 1||m2|
]

, we can

rewrite this inequality as a constraint on the following
combination of the masses of the two lightest neutrino
eigenstates:

[

|m1|+ |ρeiη − 1||m2|
]

ρ
≤ 10−3 eV (17)
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For hierarchical right handed neutrino mass spectrum
(i.e. M2 ≫ M1), ρ ∼ 1 and we get

|m1|+ 2|m2|| sin η/2| ≤ 10−3 eV (18)

This puts a limit on the two lightest neutrino masses.
For instance, it implies that the lightest neutrino mass
m1 ≤ 10−3 eV. The solar neutrino oscillation would re-
quire sinη/2 ∼ 0.07 so that m2 will match the central
value required by data.
We now proceed to calculate the primordial lepton

asymmetry ǫ1 in this model. It turns out that ǫ1 is di-
rectly proportional to the solar mass difference square as
we show below. We start with the expression for ǫ1,

ǫ1 ≃ 3

8π

Im(Y ′
νY

′†
ν )212

(Y ′
νY

′†
ν )11

M1

M2

≡ 3

8π

M1

M2

Im (Z11Z
∗
12 + Z21Z

∗
22)

2

|Z11|2 + |Z12|2
. (19)

Using the constraints on Zij discussed in Eq. (15) and the

relation just prior to it, we get, Im (Z11Z
∗
12 + Z21Z

∗
22)

2
=

|Z11|4Im
(

Z2

12

Z2

11

)

+ |Z22|4M2

1

M2

2

Im
(

Z2∗

12

Z2∗
11

)

. Plugging this ex-

pression into Eq. (19), we can express the primordial
lepton asymmetry ǫ1 in terms of neutrino masses m1,2

and the parameters ρ and η as follows:

ǫ1 =
3

8π

M1

v2wk

∆m2
⊙sinη

|m1|+ |(ρeiη − 1)m2|
(20)

≃ 10−7

(

M1

1010 GeV

)(

∆m2
⊙

8× 10−5 eV 2

)

×

10−3 eV

[|m1|+ |ρeiη − 1||m2|]
(sin η/0.14)

We see that the origin of matter in this model is predicted
primarily in terms of the solar mass difference square and
the unknown phase η whose value is already determined
by Eq. (18). Thus given a value for the lightest right
handed neutrino mass, the model predicts the value of
primordial lepton asymmetry ǫ1. In Eq. (20), we have
assumed M1 ≃ 1010 GeV. Note that our result is based
on only three assumptions: (i) type I seesaw formula for
neutrino masses and (ii) the existence of µ ↔ τ sym-
metry and (iii) hierarchy among right handed neutrinos.
This is very different from generic seesaw models without
µ ↔ τ where the dominant contribution to ǫ1 comes from
the atmospheric neutrino mass difference square and de-
pends on unknown parameters related to the Dirac neu-
trino Yukawa coupling[7]. It is also interesting that ori-
gin of matter is tied to the existence of solar neutrino
oscillation and it is the LMA solution to the solar neu-
trino problem that reproduces the correct order of mag-
nitude for the lepton asymmetry which after taking into
the dilution factor[8] and sphaleron effects, can give rise
to the magnitude for the observed baryon to photon ra-
tio. The value of 1010 GeV for the mass of the lightest

right handed neutrino is chosen to show that the model
when embedded into an extension of MSSM can avoid
the reheat temperature constraint coming from gravitino
production. Finally it is important to stress that this re-
sult is valid for both normal and inverted mass hierarchy
among light neutrinos.

In conclusion, we have discussed the consequences of
the hypothesis that the large atmospheric neutrino mix-
ing angle arises from an intrinsic µ − τ symmetry for
leptons for origin of matter via leptogenesis. We point
out that if there are two right handed neutrinos obey-
ing µ− τ interchange symmetry, then lepton asymmetry
vanishes whereas for three right handed neutrinos, it is
given directly the solar mass difference square provided
one assumes type I seesaw formula for neutrino masses.
We also obtain an upper limit on the lightest neutrino
mass of a milli-eV under these assumptions.

This work is supported by the National Science Foun-
dation grant no. Phy-0354401.
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