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Dual string from lattice Yang-Mills theory
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Abstract. We review properties of lower-dimension vacuum defects observed in lattice simulations
of SU(2) Yang-Mills theories. One- and two-dimensional defects are associated with ultraviolet
divergent action. The action is the same divergent as in perturbation theory but the fluctuations
extend over submanifolds of the whole 4d space. The action isself tuned to a divergent entropy and
the 2d defects can be thought of as dual strings populated with particles. The newly emerging 3d
defects are closely related to the confinement mechanism. Namely, there is a kind of holography
so that information on the confinement is encoded in a 3d submanifold. We introduce an SU(2)
invariant classification scheme which allows for a unified description ofd = 1,2,3 defects. The
scheme fits known data and predicts that 3d defects are related to chiral symmetry breaking. Relation
to stochastic vacuum model is briefly discussed as well.

INTRODUCTION

Studies of the confinement mechanism have become since long aprerogative of the
lattice simulations, for a recent review see [1]. The continuum theory provided in fact
little guidance for search of the confinement mechanism. Equations which one borrows
from the continuum physics refer mostly to U(1) Higgs modelsor instantons, see, e.g.,
[2]. However, these hints from the continuum theory could beused at a qualitative level
at best.

Painstaking analysis of the lattice simulations did allow to extract vacuum fluctuations
which are actually responsible for the confinement. These are so called monopoles and
central vortices, for review see, e.g., [3] and [1, 4]. By construction, monopoles are
infinitely thin closed trajectories while the central vortices are infinitely thin closed 2d
surfaces1. Separation of the two types of the defects is actually superficial. Rather, one
observes vortices populated with monopoles. Monopoles live on 2d surfaces, not in the
whole 4d space and there can be no vortices without monopoles, [6, 7].

Infinitely thin (with size of the lattice spacinga), percolating trajectories and surfaces
look very different from, say, instantons which are bulky fields, with size of orderΛ−1

QCD.
Thus, one is tempted to say that lattice simulations uncovered existence of objects of
lower dimensions in the vacuum state of Yang-Mills theories. However, a prevailing
viewpoint, for a recent presentation see, e.g., [2], is thatapparent point-likeness of the
monopoles and vortices is an artifact of their definition andin fact they only mark some

1 both trajectories and surfaces are defined actually on the dual lattice.
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bulky field fluctuations.
It is only rather recently that it was understood that the monopoles and vortices

might still be physical lower-dimensional defects. The basic observation which brings
about such a conclusion is the ultraviolet divergence in thecorrespondingnon-Abelian
action2 associated with the monopoles [8] and vortices [6]. The power of the ultraviolet
divergence in the action is the same as for pointlike particles and infinitely thin strings,
respectively. To explain the survival of the monopoles and vortices on theΛQCD scale –
despite of their ultraviolet divergent action– one is forced to postulate [9] self-tuning of
the ultraviolet divergent action and of ultraviolet divergent entropy3. Moreover, the d=2
defects appear to be nothing else but dual strings with excitations of scalar field living
on them.

The ultraviolet divergences in the action are the earliest evidence in favor of relevance
of singular fields to confinement. There exist further observations [11, 12, 13] indicating
that lower dimensional defects are of physical significance4.

When the lattice studies were undertaken first, there was no theory of extended objects
at all. However, more recently the idea that strings are relevant to QCD has become quite
common. More specifically, one expects that if a dual formulation of YM theories exists,
it would be a string theory [14]5.

Thus, there appears a possibility that the languages of lattice and continuum theories
would get unified again, this time in terms of theory of extended objects. A possible
feedback from lattice studies to the continuum theory is that topological excitations
observed within a ‘direct’ formulation might become fundamental variables of the dual
formulation of the same theory, see, e.g., [15]. Thus, if thestrings are indeed observed
as excitations in lattice simulations of YM theories, this is an indication that there exists
a dual formulation in terms of fundamental strings [16].

Here we address a problem of reformulating some of the lattice results in terms of the
continuum theory. The point is that many results, especially on the lattice strings, are
obtained originally in terms of so called projected fields, see, e.g., [1]. We will discuss
a classification scheme of the defects in explicitly SU(2) invariant terms. Also we will
comment on possible relation to the stochastic picture of the vacuum [17, 18].

LATTICE STRINGS

We have reviewed recently the properties of the two-dimensional defects, or lattice
strings [19] and will be brief here.

2 It is worth emphasizing that the non-perturbative ultraviolet divergent fields are no more divergent than
perturbation theory, for details see [10].
3 Visible entropy of the 2d and 1d defects explodes exponentially with the lattice spacinga→ 0 [7].
4 Note that for lower-dimension defects to be relevant the corresponding fields are to be singular.
5 Usually one believes that it is only in the limit of infinite number of colors,Nc → ∞, that one might find
a dual formulation.



Magnetic monopoles

Theoretically, the most difficult point about the monopolesis their definition on the
lattice. Monopoles are topological excitations of the compactU(1) [20]. To define them
in non-Abelian case one uses projection of the original YM fields onto the ‘closest’
Abelian configuration. The physical idea behind considering the monopoles is that
confinement is mostly due to Abelian degree of freedom [21].

While the definition of the monopoles is not so transparent, many observed properties
are beautiful and formulated in perfectly SU(2) invariant way. Monopoles are observed
as clusters of trajectories. Infinite, or percolating cluster corresponds to the classical
expectation value,< φM > of a magnetically charged fieldφM. Short, or ultraviolet
clusters correspond to quantum fluctuations of the fieldφM. The total length of the
clusters is trivially proportional to the total volume of the lattice,V4:

Ltot = 4ρtot ·V4 = 4(ρperc + ρ f inite) ·V4 . (1)

According to the data [5]:

ρtot ≈ 1.6( f m)−3 + 1.5( f m)−2 ·a−1 , (2)

wherea is the lattice spacing. Thea−1 term is entirely due to the finite clusters. For the
percolating cluster the density is a constant in the physical units.

One can translate (2) into the standard filed theoretic language by observing that [9]:

〈 |φM|2 〉 = (const)a ·ρtot . (3)

Thus, we have
〈 |φM|2 〉 ∼ Λ2

QCD . (4)

Theoretically, the estimate (4) can be derived as a constraint implied by the asymptotic
freedom of YM theories [10].

Point-like facet of the monopoles

The monopoles action diverges witha → 0 and the power of the divergence is the
same as for point-like particles [8]:

Smon ≡ M ·Lmon , M(a) ≈ ln7 ·a−1 , (5)

whereM(a) corresponds to the radiative mass and is found by measuring extra non-
Abelianaction associated with the monopoles. We quote the data in a way which allows
for a straightforward theoretical interpretation. Namely, in field theory (see, e.g., [22]) if
one starts with the classical action of a particle,S= M ·L the propagating mass is notM
but:

m2
prop =

(const)
a

(

M(a) −
ln7
a

)

, (6)



where the constantsconst, ln7 are of pure geometrical origin and depend on the lattice
used. In particular, ln7 corresponds to the hypercubic lattice. Note that in Euclidean
space a physical mass of a point-like particle can appear only as a result of tuning
between divergent action and entropy.

Thus, the data (5) correspond to a small monopole mass. Moreover, data (2) imply that
globally monopoles live on a 2d surface. For ordinary point-like particlesρtot ∼ a−3.

Closed strings

Closed surfaces are topological defects of theZ2 gauge theory. In simulations of SU(2)
theory these surfaces are defined in terms of the closestZ2 projection which replaces the
original YM fields withZµ(x) =±1. The central vortices are defined as unification of all
the plaquettes on the dual lattice which pierce negative plaquettes in theZ2 projection,
for review see [1, 4].

Two most striking properties of the central vortices is thattheir total area scales in
physical units, for review see [1, 4] while non-Abelian action is ultraviolet divergent [6]:

Atot ≈ 4 ( f m)−2V4 , Stot ≈ 0.54
Atot

a2 . (7)

Moreover, the excess of the action disappears on the plaquettes next to those belonging
to the vortex. In other words, the vortices are infinitely thin, at least on the presently
available lattices.

It is worth emphasizing that the properties (7) amount to observing an elementary
string. Indeed, the data on the total area imply that the tension is of orderΛ2

QCD while
the ultraviolet divergence in the action assumes vanishingthickness. The suppression
due to the action is to be compensated by enhancement due to the entropy. Fine tuning
of the entropy and action is a generic feature of any consistent theory of an elementary
string in Euclidean space.

Another striking feature of the lattice strings is that the monopole trajectories, dis-
cussed in the preceding subsection, lie in fact on the central vortices [6, 7, 23]. Thus, the
two types of defects merge with each other.

THREE DIMENSIONAL DOMAINS

The 3d defects are more recent than the strings and have been studied in less detail.
Moreover, there are a few independent pieces of evidence in favor of existence of 3d
defects which are, in fact, not necessarily related to each other.

‘Strong’ potentials

The central vortices are defined in terms of negative plaquettes inZ2 projection. InZ2
projection links take on values±1. Generically, the values(+1) and(−1) are the same



frequent. One can, however, minimize the number of negativelinks. using remainingZ2
invariance. Physicswise, one fixes the gauge by localizing large potentials on as a small
number of links as possible. Since link values correspond topotentials and are gauge
dependent, one can wonder what is the objective meaning of such minimization. The
point is that minimizing, say, potential squared one arrives at a gauge invariant quantity
[24]. Minimizing number of negative links is a variation of such a procedure.

And, indeed, one finds [12] that volume of negative links scales as a physical 3d
defect:

V3 = c3ΛQCD · V4 . (8)

Note that by construction the volume is bound by the central vortices. This volume can
be called Dirac volume [1]. Eq (8) then states that the minimal Dirac volume scales in
physical units or, alternatively, has a zero fractal dimension.

Holography and confinement

Relation of the volume discussed above to the confinement is revealed through a re-
markable observation of the authors of Ref [25]. One replaces the original link matrices
Uµ(x) by Ũµ(x) where

Ũµ(x) ≡ Uµ(x) ·Zµ(x) , (9)

whereZµ(x) is the projected value of the same link. Next, one evaluates the Wilson loop
and quark condensate〈q̄q〉 in terms of the modified links̃U . The result [25] is that both
the confining potential and spontaneous breaking of the chiral symmetry disappear.

Originally [25] the change (9) affected approximately halfof the total number of
links. Now, we see that it is enough to perform the change (9) on a 3d submanifold
to kill the confinement and chiral symmetry breaking. In other words, substitution (9)
is an ad hoc modification in the ultraviolet of the fields on a 3dvolume plus pure
gauge transformations. Thus, we observe a kind of holography, with information on
the confinement being encoded on a submanifold of the whole space.

In more detail, consider a plane on which we will draw a Wilsonline. Consider,
furthermore, a particular configuration of the gauge fields generated with the standard
SU(2) action. Determine then the 3d volume described in the preceding section. Inter-
sections of this volume with the plane considered are segments of 1d lines. Now, we can
draw any Wilson line on the plane. The statement is that the sign of the Wilson line can
be determined by counting the number of intersections with segments of 1d defects. It
is a highly non-trivial observation, challenge to interpret. Note that there is no logical
contradiction, though. Indeed, there are gauges where the confining fields are soft, of
orderAµ ∼ ΛQCD. Apparently, one can use gauge invariance to choose a gauge where
the confining fields are of orderAµ ∼ 1/a but occupy a 3d volume6.

6 Some considerations on possible relation between gauge invariance and holography in the gravitational
case can be found in [26]



Chiral symmetry breaking

There is a series of observations, not directly related to each other that indicate
relevance of some 3d defects to the spontaneous breaking of the chiral symmetry7:

(a) procedure of Ref [13] described above makes also the quark condensate vanish:

〈q̄q〉Ũ ≈ 0 (10)

Now, we know [12] that the change (9) affects not a finite part of the 4d space but only
a 3d submanifold.

(b) there is evidence in favor of long range topological structure in QCD vacuum
which is related to chiral symmetry breaking [11]. The search process for the topological
structure is formulated in terms of eigenfunctions of the Dirac operator and explicitly
gauge invariant8.

(c) One introduces the so called inverse participation ratio, see in particular [27],
defined in terms of eigenfunctions of the Dirac operator:

I = NΣxρ2
i (x) , (11)

whereN is the number of lattice sitesx,ρi(x) = ψ†
i ψi(x), andψi(x) is thei-th normal-

ized
(

Σxρi(x) = 1
)

lowest eigenvector of the Dirac operator.
Dependence of the inverse participation ratio on the lattice spacinga was studied in

Ref [13]. The result is:
〈 I 〉 = c1 + c2 ·a

−γ , (12)

with a non-vanishing exponentγ:

1 ≤ γ ≤ 2 .

Note that the valueγ = 1 would correspond, in the limita → 0 to localization of the
eigenfunctions on a 3d volume. It is worth emphasizing that thea dependence observed
refers to an explicitly gauge invariant quantity.

To summarize, there are indications that the chiral symmetry breaking is determined
by gauge fields living on a subspace. Since the confinement itself also seems to be related
to a 3d volume (see above), it is not clear whether we deal witha phenomenon specific
for chiral symmetry breaking or with an effect common to confinement.

CLASSIFICATION SCHEME

Invariants

There is no theory of the defects in the non-Abelian case. However, even in the
absence of such a theory one can try to find a SU(2) invariant classification scheme.

7 We are considering the quenched approximation.
8 Moreover, measurements [11] refer toSU(3) color group.



Generically, the first example of such a scheme for monopoleswas proposed long
time ago [28]. In pure YM theory, there are no classical monopole solutions. However,
imagine that there exists a scalar field, vector in the color spaceHa, a = 1,2,3. Then
one could fix the gauge by rotating vectorHa to the third direction at each point. This
fixation of the gauge would fail however at the points where

Ha = 0 . (13)

Condition (13) can be viewed as three equations defining 1d defects in the 4d space
which can be identified with monopole trajectories [28]. It is crucial that (13) is SU(2)
invariant.

For various reasons, this idea does not seem to work in the realistic case, for review
and references see [29]. Rather, monopoles are associated with singular non-Abelian
fields (see above). Let us try to adjust the classification scheme to this set up [19, 29, 30].

Begin with YM theory in three dimensions and assume that monopoles violate the
Bianchi identities. If the Bianchi identities

DG̃ = 0 , (14)

hold, the potentialA can be expressed in terms of the field strength tensor, see, e.g., [31]:

A =
1
g
(∂ G̃)G̃−1 . (15)

The inverse matrix exists unless the determinant constructed on the components of̃G
vanishes. Denoting̃Ga

ik ≡ εikl Ba
l we have, therefore, the following condition for the

Bianchi identities to be violated:

det(Ba
i ) ≡ εiklεabcB

a
i Bb

kBc
l = 0 . (16)

Note that the condition (16) is perfectly gauge and rotationinvariant. Moreover, it singles
out a surface (or a line on the dual lattice) while monopoles are usually 0d defects in the
3d case.

Let us now consider the 4d Euclidean case. The rotational group in 4d splits into a
product of twoO(3) groups,O(4) = O(3)×O(3). The corresponding representations of
theO(3) groups are chiral gluon fields(Ha

i ±Ea
i ). Looking for a generalization of (16)

we notice that there are now two possibilities:

det(Ea
i + Ha

i ) = 0 , or det(Ea
i − Ha

i ) = 0 . (17)

Imposing either of them we specify a 3d defect. On this 3d submanifold one can use
as independent three fields of a certain chirality but not of the opposite one. Thus,
association of 3d defects with chiral symmetry breaking arises as a consequence of the
symmetry of the problem.

The boundary of these 3d defects is determined by conditions;

det(Ea
i + Ha

i ) = 0 , and det(Ea
i − Ha

i ) = 0 . (18)



which determine 2d defects. Moreover, if both conditions (18) are satisfied, there is no
inversion of the Bianchi identities similar to (15).

Finally, zeros of a second order of the determinant would define 1d defects. They
automatically fall onto the 2d defects as well.

Classification scheme vs data

The classification scheme proposed above is based on symmetry alone and is not
unique. But, nevertheless, let us try to identify the 2d and 1d defects arising within
this scheme with the central vortices and monopoles. There are a few quite remarkable
confirmations of such an identification:

(a) the 2d defects are associated, according to the scheme, with singular fields and,
possibly, violations of the Bianchi identities And, indeed, the central vortices carry a
singular action [6]. Moreover, monopoles live on the vortices, on one hand, and may
well signify violation of the Bianchi identities, on the other;

(b) non-Abelian fields associated with the 2d defects are aligned with the surface. This
is confirmed by the measurements, according to which the excess of the action vanishes
already on the plaquettes next to the central vortices [6];

(c) the monopole trajectories are predicted to lie on the central vortices, in agreement
with the data [23, 6];

(d) ‘monopoles’ appear to be Abelian fields since zero of second order of the deter-
minant constructed on three independent (within a 3d defect) fields implies that there is
only a single independent color vector. Thus, monopoles canwell be detected through
the U(1) projection.

(e) on the other hand, the non-Abelian field of the monopoles is not spherically sym-
metrical but rather aligned with the surface. This collimation of the field was observed
in measurements, [23].

It is worth emphasizing that all the properties (a) - (e) are gauge invariant. Thus, the
data so far do confirm that through projections one detects gauge invariant objects.

Finally, the scheme predicts that breaking of the chiral symmetry is associated with
3d defects. The corresponding lattice data were summarizedin the preceding section.

STOCHASTICITY

In the continuum limit, association of the confining fields with lower-dimension defects
implies stochastic-type of correlators9. Indeed, the 3d volumes, e.g., are ‘not visible’ in
the continuum limit.a→ 0. Denote byĀ the confining potential obtained in the gauge
minimizing the number of negative links (see above). Then

〈 Ā(x), Ā(y) 〉 = ΛQCD ·ΛUV fsing(x−y) +(regular terms) , (19)

9 The material of this section is based on discussions with M.I. Polikarpov.



where
fsing(0) = 1, fsing(x 6= 0) = 0 .

The singular nature of the confining potential could explainobserved dependence of the
localization of zero modes on the lattice spacing, see above.

It is worth emphasizing, however, that reduction of the confining potential to the
‘white noise’ would be a great oversimplification10. Indeed, the 3d nature of the do-
mains assumes also non-trivial correlators for the derivatives of the potential. The issue
deserves further consideration.

Consider now contribution of strings into an explicitly gauge invariant correlator:

〈G2(x), G2(y)〉strings = (const)Λ4
QCDΛ4

UV fsing(x−y) + (const)Λ8
QCD fphys(x−y) ,

(20)
where fphysdepends on the physical mass scale. Note that appearance of the extra factor
Λ4

QCD in front of fphys is of pure geometrical origin and reflects relative suppression
of the 2d volumes compared to a 4d volume. On the other hand, appearance of the
ultraviolet cut off in a non-local term would contradict theasymptotic freedom. It is one
more example of consistency of the lattice strings with the asymptotic freedom, see also
[10].

Finally, for a stochastic model of the confinement (see, e.g., [17, 18]) it is the correla-
tor of two non-Abelian fields connected by a ‘Dirac-string’ operator,

〈Ga
µν(x)Φab(x−y)Gb

µν〉 = D(x−y) ,

which is crucial. The contribution of the string, discussedabove, to this correlator is of
the form:

Dstring(x−y) = (const) · fsing(x−y)ΛQCD ·Λ2
UV . (21)

Moreover, using standard approximations of the stochasticmodel11 one obtains for the
string tensionσ determining the heavy quark potential at large distances:

σ ≈ θstring∆Sstring ≈
1
2

σexp , (22)

whereθstring is the probability of a given plaquette to belong to the lattice string,∆Sstring
is the extra action associated with a plaquette belonging tothe string,σexp is the value
obtained in simulations.

It is interesting that the correlatorD(x−y) is singular in any case,

lim|x−y|≫aD(x−y) ∼ exp(−c|x−y|/a)

10 Actually, the ‘white noise’ would not confine.
11 Using the minimal area spanned on the Wilson line is the most sensitive point, difficult to justify
theoretically [17].



because the Dirac string,Φ(x−y) is a color object and has infinite self energy12. Thus,
the singular nature of the confining fields, see (7) is the onlymechanism which can make
the stochastic model relevant.

CONCLUSIONS

Physics of confinement might undergo quite a dramatic changesoon. There have been
emerging data indicating relevance to confinement of lower-dimension defects, or singu-
lar fields. Two-dimensional defects with divergent action and entropy, which selftuned to
each other are naturally interpreted as the dual string, observed as a vacuum excitation.
The string possesses many SU(2) invariant properties but isdetected through projec-
tions. Other emerging phenomena, a kind of holography and localization of modes on
a submanifold shrinking to zero witha→ 0, are observed in explicitly SU(2) invariant
terms. The price is that the structure of the fields responsible for these observational
phenomena is less transparent.
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