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Abstract. We review properties of lower-dimension vacuum defecteole in lattice simulations
of SU(2) Yang-Mills theories. One- and two-dimensionalet#$ are associated with ultraviolet
divergent action. The action is the same divergent as irugsation theory but the fluctuations
extend over submanifolds of the whole 4d space. The actiselfisuned to a divergent entropy and
the 2d defects can be thought of as dual strings populatédpaitticles. The newly emerging 3d
defects are closely related to the confinement mechanismelathere is a kind of holography
so that information on the confinement is encoded in a 3d solfodd. We introduce an SU(2)
invariant classification scheme which allows for a unifiedatgtion ofd = 1,2, 3 defects. The
scheme fits known data and predicts that 3d defects aredétathiral symmetry breaking. Relation
to stochastic vacuum model is briefly discussed as well.

INTRODUCTION

Studies of the confinement mechanism have become since |gngragative of the
lattice simulations, for a recent review sekz [1]. The caniim theory provided in fact
little guidance for search of the confinement mechanismakous which one borrows
from the continuum physics refer mostly to U(1) Higgs modglsstantons, see, e.g.,
[2]. However, these hints from the continuum theory couldibed at a qualitative level
at best.

Painstaking analysis of the lattice simulations did allowxtract vacuum fluctuations
which are actually responsible for the confinement. Thesearcalled monopoles and
central vortices, for review see, e.d., [3] and [1, 4]. By stoaction, monopoles are
infinitely thin closed trajectories while the central vods are infinitely thin closed 2d
surfaces. Separation of the two types of the defects is actually Sigir Rather, one
observes vortices populated with monopoles. Monopolesdiv2d surfaces, not in the
whole 4d space and there can be no vortices without monggé|é&s.

Infinitely thin (with size of the lattice spacira), percolating trajectories and surfaces
look very different from, say, instantons which are bulkydge with size of ordef\aéD.
Thus, one is tempted to say that lattice simulations un@alvexistence of objects of
lower dimensions in the vacuum state of Yang-Mills thearidewever, a prevailing
viewpoint, for a recent presentation see, elg., [2], is #mgarent point-likeness of the
monopoles and vortices is an artifact of their definition anfact they only mark some

1 both trajectories and surfaces are defined actually on thEaltice.
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bulky field fluctuations.

It is only rather recently that it was understood that the apmtes and vortices
might still be physical lower-dimensional defects. Theibadbservation which brings
about such a conclusion is the ultraviolet divergence inctireespondingnon-Abelian
action? associated with the monopoles [8] and vorti¢ces [6]. The pafthe ultraviolet
divergence in the action is the same as for pointlike pagielnd infinitely thin strings,
respectively. To explain the survival of the monopoles amdiees on the\qcp scale —
despite of their ultraviolet divergent action— one is falte postulatel [9] self-tuning of
the ultraviolet divergent action and of ultraviolet diverg entropy?. Moreover, the d=2
defects appear to be nothing else but dual strings with a&xaits of scalar field living
on them.

The ultraviolet divergences in the action are the earligstemce in favor of relevance
of singular fields to confinement. There exist further obaeowns [11| 12, 13] indicating
that lower dimensional defects are of physical significahce

When the lattice studies were undertaken first, there walsaury of extended objects
at all. However, more recently the idea that strings arevagieto QCD has become quite
common. More specifically, one expects that if a dual formaiteof YM theories exists,
it would be a string theory [14].

Thus, there appears a possibility that the languages afdahd continuum theories
would get unified again, this time in terms of theory of extethabjects. A possible
feedback from lattice studies to the continuum theory ig tbpological excitations
observed within a ‘direct’ formulation might become fundamtal variables of the dual
formulation of the same theory, see, e.g.) [15]. Thus, ifstiegs are indeed observed
as excitations in lattice simulations of YM theories, tlasn indication that there exists
a dual formulation in terms of fundamental strings [16].

Here we address a problem of reformulating some of the éatéisults in terms of the
continuum theory. The point is that many results, espgca@il the lattice strings, are
obtained originally in terms of so called projected field=,se.g.,.[1]. We will discuss
a classification scheme of the defects in explicitly SU(Zamant terms. Also we will
comment on possible relation to the stochastic picture®ftcuumi[17, 18].

LATTICE STRINGS

We have reviewed recently the properties of the two-dineradi defects, or lattice
strings [19] and will be brief here.

2 It is worth emphasizing that the non-perturbative ultréeticivergent fields are no more divergent than
perturbation theory, for details see|[10].

3 Visible entropy of the 2d and 1d defects explodes exponigntiéth the lattice spacing — 0 [7].
4 Note that for lower-dimension defects to be relevant theasponding fields are to be singular.

5 Usually one believes that it is only in the limit of infinite miber of colorsNe — o, that one might find
a dual formulation.



Magnetic monopoles

Theoretically, the most difficult point about the monopdkesheir definition on the
lattice. Monopoles are topological excitations of the cantp) (1) [20]. To define them
in non-Abelian case one uses projection of the original YNdfieonto the ‘closest’
Abelian configuration. The physical idea behind considgrine monopoles is that
confinement is mostly due to Abelian degree of freedorn [21].

While the definition of the monopoles is not so transpareafhyrobserved properties
are beautiful and formulated in perfectly SU(2) invariartywMonopoles are observed
as clusters of trajectories. Infinite, or percolating ctustorresponds to the classical
expectation valueg @y > of a magnetically charged fielghs. Short, or ultraviolet
clusters correspond to quantum fluctuations of the figjd The total length of the
clusters is trivially proportional to the total volume ofkthattice V,:

Ltot = 4Ptot-Va = 4(Pperc + Pfinite)‘V4 . (1)
According to the date [5]:
Prot ~ 1.6(fm)~3 + 1.5(fm)~2.a 1 | 2)

wherea is the lattice spacing. The ! term is entirely due to the finite clusters. For the
percolating cluster the density is a constant in the physitiss.
One can translat&l(2) into the standard filed theoretic laggiby observing that![9]:

(lom|*) = (consba-pro - (3)

Thus, we have
(laml*) ~ Nacop - (4)

Theoretically, the estimat€l(4) can be derived as a consiraplied by the asymptotic
freedom of YM theories [10].

Point-like facet of the monopoles

The monopoles action diverges wigh— 0 and the power of the divergence is the
same as for point-like particled [8]:

Snon = M Lmon, M(a) = In7-at, ()

whereM(a) corresponds to the radiative mass and is found by measuxing reon-
Abelianaction associated with the monopoles. We quote the data ayawhich allows
for a straightforward theoretical interpretation. Nametyfield theory (see, e.g!l, [22]) if
one starts with the classical action of a parti@e; M - L the propagating mass is nigt
but:

m%)rop = @(M@Q - In??) ) (6)



where the constantoonstIn7 are of pure geometrical origin and depend on the lattice
used. In particular, In7 corresponds to the hypercubiiciatiNote that in Euclidean
space a physical mass of a point-like particle can appear asla result of tuning
between divergent action and entropy.

Thus, the datd{5) correspond to a small monopole mass. Meratatal(R) imply that
globally monopoles live on a 2d surface. For ordinary pdike-particlespgt ~ a°.

Closed strings

Closed surfaces are topological defects ofahgauge theory. In simulations of SU(2)
theory these surfaces are defined in terms of the cl@sgsbjection which replaces the
original YM fields withZ, (x) = +1. The central vortices are defined as unification of all
the plaguettes on the dual lattice which pierce negativeygtes in theZ, projection,
for review seel[1,14].

Two most striking properties of the central vortices is ttir total area scales in
physical units, for review seg [, 4] while non-Abelian aatis ultraviolet divergent |6]:

Ao~ (1), o~ 0542 (7)

Moreover, the excess of the action disappears on the plagustxt to those belonging
to the vortex. In other words, the vortices are infinitelynthat least on the presently
available lattices.

It is worth emphasizing that the properti€$ (7) amount toeolleg an elementary
string. Indeed, the data on the total area imply that theidaris of order/\éCD while
the ultraviolet divergence in the action assumes vanisthigkness. The suppression
due to the action is to be compensated by enhancement due éntifopy. Fine tuning
of the entropy and action is a generic feature of any condisieory of an elementary
string in Euclidean space.

Another striking feature of the lattice strings is that thenopole trajectories, dis-
cussed in the preceding subsection, lie in fact on the derdraces [6, 7| 23]. Thus, the
two types of defects merge with each other.

THREE DIMENSIONAL DOMAINS
The 3d defects are more recent than the strings and have hedadsin less detail.

Moreover, there are a few independent pieces of evidencavor fof existence of 3d
defects which are, in fact, not necessarily related to edoéro

‘Strong’ potentials

The central vortices are defined in terms of negative plagsi@iZ, projection. InZ;
projection links take on valuesl1. Generically, the valugst-1) and(—1) are the same



frequent. One can, however, minimize the number of negétiis. using remaining,
invariance. Physicswise, one fixes the gauge by localiarggl potentials on as a small
number of links as possible. Since link values corresponabtentials and are gauge
dependent, one can wonder what is the objective meaningabf sunimization. The
point is that minimizing, say, potential squared one agi@ea gauge invariant quantity
[24]. Minimizing number of negative links is a variation afch a procedure.

And, indeed, one finds [12] that volume of negative links ssas a physical 3d
defect:

V3 = c3\qcp: Vs - (8)

Note that by construction the volume is bound by the cenwdiaces. This volume can
be called Dirac volume [1]. EG18) then states that the mihibieac volume scales in
physical units or, alternatively, has a zero fractal dini@ms

Holography and confinement

Relation of the volume discussed above to the confinemeevesated through a re-
markable observation of the authors of Ref [25]. One reléiee original link matrices
Uu(x) by Uy (x) where )

Up(X) = Upu(X)-Zu(X) , (9)

whereZ,(X) is the projected value of the same link. Next, one evaluai$\tilson loop
and quark condensatgg) in terms of the modified linksl. The resultl[25] is that both
the confining potential and spontaneous breaking of thalksymmetry disappear.

Originally [25] the change[{9) affected approximately haifthe total number of
links. Now, we see that it is enough to perform the chamge (@a 3d submanifold
to kill the confinement and chiral symmetry breaking. In otiverds, substitution{9)
is an ad hoc maodification in the ultraviolet of the fields on av&iume plus pure
gauge transformations. Thus, we observe a kind of holograpith information on
the confinement being encoded on a submanifold of the whaleesp

In more detail, consider a plane on which we will draw a Wildime. Consider,
furthermore, a particular configuration of the gauge fieldsegated with the standard
SU(2) action. Determine then the 3d volume described in teeqaling section. Inter-
sections of this volume with the plane considered are setmoéid lines. Now, we can
draw any Wilson line on the plane. The statement is that tye ai the Wilson line can
be determined by counting the number of intersections vatmeents of 1d defects. It
is a highly non-trivial observation, challenge to intetpidote that there is no logical
contradiction, though. Indeed, there are gauges whereah#énmng fields are soft, of
orderA,; ~ Aqcp. Apparently, one can use gauge invariance to choose a gauge w
the confining fields are of ordey, ~ 1/abut occupy a 3d volume

6 Some considerations on possible relation between gauggamee and holography in the gravitational
case can be found in_[26]



Chiral symmetry breaking

There is a series of observations, not directly related th egther that indicate
relevance of some 3d defects to the spontaneous breakihg ohiral symmetry:
(a) procedure of Ref [13] described above makes also thé& qoaidensate vanish:

(Qo)g ~ 0 (10)

Now, we know [12] that the changgl (9) affects not a finite pathe 4d space but only
a 3d submanifold.

(b) there is evidence in favor of long range topological gte in QCD vacuum
which is related to chiral symmetry breakingl[11]. The shgn®ocess for the topological
structure is formulated in terms of eigenfunctions of theaDioperator and explicitly
gauge invariant.

(c) One introduces the so called inverse participatiororagee in particulan [27],
defined in terms of eigenfunctions of the Dirac operator:

| = NZp2(X) | (11)

whereN is the number of lattice sitesp;(X) = L[.liTL[Ji(X), andy; (X) is thei-th normal-
ized (pri (X) = 1) lowest eigenvector of the Dirac operator.
Dependence of the inverse participation ratio on the katjgacinga was studied in
Ref [13]. The result is:
(1) =cp +ca?’, (12)

with a non-vanishing exponept
1<y<2.

Note that the valugZz = 1 would correspond, in the lima — O to localization of the
eigenfunctions on a 3d volume. It is worth emphasizing thaatdependence observed
refers to an explicitly gauge invariant quantity.

To summarize, there are indications that the chiral symne®aking is determined
by gauge fields living on a subspace. Since the confinemetiftaltso seems to be related
to a 3d volume (see above), it is not clear whether we deal avghenomenon specific
for chiral symmetry breaking or with an effect common to coefnent.

CLASSIFICATION SCHEME

Invariants

There is no theory of the defects in the non-Abelian case. é¥ew even in the
absence of such a theory one can try to find a SU(2) invariasisification scheme.

7 We are considering the quenched approximation.
8 Moreover, measuremen(s[11] refer3t)(3) color group.



Generically, the first example of such a scheme for monopwkes proposed long
time ago [28]. In pure YM theory, there are no classical mabe@pgolutions. However,
imagine that there exists a scalar field, vector in the cgbaceH?, a=1,2,3. Then
one could fix the gauge by rotating vectd? to the third direction at each point. This
fixation of the gauge would fail however at the points where

Ha = 0 . (13)

Condition [IB) can be viewed as three equations defining fectiein the 4d space
which can be identified with monopole trajectories [28]sltrucial that[(I3) is SU(2)
invariant.

For various reasons, this idea does not seem to work in thistre@ase, for review
and references see [29]. Rather, monopoles are associgtedimgular non-Abelian
fields (see above). Let us try to adjust the classificatiorsahto this set up [19, 29,130].

Begin with YM theory in three dimensions and assume that moles violate the
Bianchi identities. If the Bianchi identities

DG = 0, (14)
hold, the potential can be expressed in terms of the field strength tensor, seg.3.]:

A = é(aé)él : (15)

The inverse matrix exists unless the determinant congiiugh the components &
vanishes. Denoting. = &y B we have, therefore, the following condition for the
Bianchi identities to be violated:

det(Bia) = &y EabCBiaBEB|C =0. (16)

Note that the conditiori.(16) is perfectly gauge and rotaitiwariant. Moreover, it singles
out a surface (or a line on the dual lattice) while monopotesugually Od defects in the
3d case.

Let us now consider the 4d Euclidean case. The rotationalpgio 4d splits into a
product of twoO(3) groups0(4) = O(3) x O(3). The corresponding representations of
the O(3) groups are chiral gluon field$1? £ E?). Looking for a generalization oE{16)
we notice that there are now two possibilities:

det(E* + H?) = 0, or det(E? — H?) =0. (17)

Imposing either of them we specify a 3d defect. On this 3d subfold one can use
as independent three fields of a certain chirality but nothef épposite one. Thus,
association of 3d defects with chiral symmetry breakingesias a consequence of the
symmetry of the problem.

The boundary of these 3d defects is determined by condjtions

det(Eia + Hia> =0, and de(Eia - Hia) =0. (18)



which determine 2d defects. Moreover, if both conditidif) @re satisfied, there is no
inversion of the Bianchi identities similar to{15).

Finally, zeros of a second order of the determinant wouldndefid defects. They
automatically fall onto the 2d defects as well.

Classification scheme vs data

The classification scheme proposed above is based on syynaietre and is not
unique. But, nevertheless, let us try to identify the 2d adddéfects arising within
this scheme with the central vortices and monopoles. Thera &w quite remarkable
confirmations of such an identification:

(a) the 2d defects are associated, according to the schethesimgular fields and,
possibly, violations of the Bianchi identities And, indedle central vortices carry a
singular action![6]. Moreover, monopoles live on the vaticon one hand, and may
well signify violation of the Bianchi identities, on the @ih

(b) non-Abelian fields associated with the 2d defects agmatl with the surface. This
is confirmed by the measurements, according to which thesexafethe action vanishes
already on the plaquettes next to the central vortices [6];

(c) the monopole trajectories are predicted to lie on théraewortices, in agreement
with the datal[23,16];

(d) ‘monopoles’ appear to be Abelian fields since zero of sdawrder of the deter-
minant constructed on three independent (within a 3d defietds implies that there is
only a single independent color vector. Thus, monopolesasahbe detected through
the U(1) projection.

(e) on the other hand, the non-Abelian field of the monopde®t spherically sym-
metrical but rather aligned with the surface. This collimatof the field was observed
in measurements, [23].

It is worth emphasizing that all the properties (a) - (e) aaagg invariant. Thus, the
data so far do confirm that through projections one deteatgeanvariant objects.

Finally, the scheme predicts that breaking of the chiral eyatny is associated with
3d defects. The corresponding lattice data were summainzibeé preceding section.

STOCHASTICITY

In the continuum limit, association of the confining fieldswiower-dimension defects
implies stochastic-type of correlatotsindeed, the 3d volumes, e.g., are ‘not visible’ in
the continuum limita — 0. Denote byA the confining potential obtained in the gauge
minimizing the number of negative links (see above). Then

(A(X), Aly) ) = Nacp-Auv fsing(Xx—Yy) + (regular termg , (19)

9 The material of this section is based on discussions with Rblikarpov.



where
fsing(0) = 1, fsing(Xx#0) =0 .

The singular nature of the confining potential could exptdiserved dependence of the
localization of zero modes on the lattice spacing, see above

It is worth emphasizing, however, that reduction of the aun{ potential to the
‘white noise’ would be a great oversimplificatioh Indeed, the 3d nature of the do-
mains assumes also non-trivial correlators for the devieaif the potential. The issue
deserves further consideration.

Consider now contribution of strings into an explicitly ggunvariant correlator:

(G*(x), GA(Y))strings = (COHS')/\‘éCD/\E‘Jv fsing(X—y) + (COHSDA%CD fphys(X—yz ; )
20

wheref,nysdepends on the physical mass scale. Note that appearameeesitta factor
/\4CD in front of fyysis of pure geometrical origin and reflects relative suppogss
of the 2d volumes compared to a 4d volume. On the other hamkaagnce of the
ultraviolet cut off in a non-local term would contradict tagymptotic freedom. It is one
more example of consistency of the lattice strings with shamptotic freedom, see also
[0].

Finally, for a stochastic model of the confinement (see, f1@,/18]) it is the correla-
tor of two non-Abelian fields connected by a ‘Dirac-stringevator,

<G?1v<x)q)ab(x_y)62v> = D(X_y) )

which is crucial. The contribution of the string, discussddve, to this correlator is of
the form:

Detring(X—Y) = (consb - fsing(X—Y)Aacp- Ady - (21)

Moreover, using standard approximations of the stochastidel*! one obtains for the
string tensioro determining the heavy quark potential at large distances:

1
0 = BstringASstring ~ éaexp ) (22)
where0string is the probability of a given plaquette to belong to the t&tstring ASstring
is the extra action associated with a plaquette belonginigestring,gexp is the value
obtained in simulations.
It is interesting that the correlat@r(x —y) is singular in any case,

limpy_yj5aD(X—y) ~exp(—c[x—yl|/a)

10 Actually, the ‘white noise’ would not confine.

11 Using the minimal area spanned on the Wilson line is the messisve point, difficult to justify
theoretically{[17].



because the Dirac strin@)(x—y) is a color object and has infinite self enefgyThus,
the singular nature of the confining fields, dée (7) is the ordghanism which can make
the stochastic model relevant.

CONCLUSIONS

Physics of confinement might undergo quite a dramatic changa. There have been
emerging data indicating relevance to confinement of ladverension defects, or singu-
lar fields. Two-dimensional defects with divergent actiod antropy, which selftuned to
each other are naturally interpreted as the dual stringgrgbd as a vacuum excitation.
The string possesses many SU(2) invariant properties kdetiescted through projec-
tions. Other emerging phenomena, a kind of holography acalilation of modes on

a submanifold shrinking to zero withh— 0, are observed in explicitly SU(2) invariant
terms. The price is that the structure of the fields respdm$dr these observational
phenomena is less transparent.
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