
ar
X

iv
:h

ep
-p

h/
05

01
11

0v
2 

 3
0 

M
ay

 2
00

5

HD-THEP-04-49
IFUM-792-FT

hep-ph/0501192

The C-Odd Four-Gluon State in the
Color Glass Condensate

Stefan Braunewell a,b,1, Carlo Ewerz a,c,2

a Institut für Theoretische Physik, Universität Heidelberg

Philosophenweg 16, D-69120 Heidelberg, Germany

b Institut für Theoretische Physik, Universität Bremen

Otto-Hahn-Allee 1, D-28359 Bremen, Germany
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1 Introduction

In high energy collisions the partons inside hadrons form a very dense system which
is often called the color glass condensate. At sufficiently high density the partons
overlap such that recombination effects become important and tend to slow down the
growth of the density with increasing energy. It is expected that eventually a saturation
regime is reached. The theoretical challenge is to understand at which energies and
how this takes place in detail. In order to answer this question one formulates evolution
equations describing the behavior of the system with increasing energy. The color glass
condensate has been studied in a number of different perturbative approaches which
are applicable if the scattering process involves a hard scale. Prominent examples are
the approach initiated by McLerran and Venugopalan [1, 2] (for a review see [3]), the
operator expansion of Wilson lines due to Balitsky [4], or the color dipole picture of
high energy scattering developed by Mueller [5, 6]. Most of these approaches lead to
similar results in suitable approximations. They all reproduce for example the Balitsky-
Kovchegov (BK) evolution equation which resums certain classes of multi-Pomeron
exchanges [4, 7, 8, 9], and which has become a key tool in investigating the color glass
condensate and in particular potential saturation effects at high energies.

The approach which we will use in the present paper is the generalized leading
logarithmic approximation (GLLA) [10]-[13]. It is an extension of the classical approach
to high energy scattering in QCD based on the resummation of large logarithms that
in leading logarithmic order (LLA) gives rise to the BFKL Pomeron [14, 15]. The
BFKL Pomeron can be viewed as the exchange of two interacting reggeized gluons. In
the GLLA one goes beyond that approximation by taking into account also exchanges
of more than two gluons, and one collects all perturbative contributions that contain
the maximally possible number of logarithms for a given number of gluons. There are
two versions of the GLLA: in the first version the number of gluons exchanged in the
t-channel of the scattering process remains constant, whereas in the second version the
number of gluons is allowed to change during the t-channel evolution [12]. The latter is
often called extended GLLA, or EGLLA. It is the fluctuation of the number of gluons
in the t-channel which in the resummation approach reflects the parton recombination
effects characterizing the color glass condensate. Different aspects of the EGLLA have
been studied in [16]-[29]. There it has been found that in the Pomeron channel, i. e. for
the exchange of even C-parity, the EGLLA gives rise to a picture of an effective field
theory in which states consisting of even numbers of gluons are coupled to each other
via effective vertices. So far the vertices from two to four [18] and from two to six gluons
[24] have been calculated explicitly. From the two-to-four gluon vertex one obtains the
perturbative triple Pomeron vertex [21], and in a similar way the one-to-three Pomeron
vertex is obtained from the two-to-six gluon vertex [28]. Recently it has been shown
that the triple Pomeron vertex obtained in this way gives rise to the BK equation when
the so-called Möbius representation is used for the Pomerons [30]. As discussed in that
reference the EGLLA not only reproduces the BK equation but also makes it possible
to compute subleading corrections to the BK equation which appear difficult to access
in other approaches to the color glass condensate.

An advantage of the EGLLA is that the remarkable property of conformal invari-
ance in two-dimensional impact parameter space [31, 20, 27] and the phenomenon of
gluon reggeization [32] become particularly transparent in this approach. Especially the
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reggeization of the gluon will turn out to be crucial in our present investigation. The
gluons exchanged in high energy scattering are reggeized, that is they are composite
objects consisting themselves of reggeized gluons in a selfconsistent way. A manifesta-
tion of this phenomenon is that whenever two t-channel gluons are at the same point
in impact parameter space they behave like a single gluon. When this occurs explicitly
in a scattering amplitude we can hence see how the composite gluon is formed out of
the two gluons. The same picture can be extended to more than two gluons, and one
can systematically resolve higher Fock states of the reggeized gluon in the framework
of the EGLLA, see [26].

So far the color glass condensate has been studied almost exclusively in the Pomeron
channel, that is for the exchange of vacuum quantum numbers (in particular for positive
C-parity) which is relevant to total cross sections. In the present paper we make a first
step of a systematic study of the Odderon in the EGLLA, that is for the channel in
which negative charge parity quantum number is exchanged. In lowest order in the
GLLA the Odderon is an exchange of three interacting gluons in the t-channel in a
symmetric color state, and is described by the Bartels-Kwieciński-Prasza lowicz (BKP)
equation [11, 13]. Two types of explicit solutions to the BKP equation have been
found in [33] and [34], respectively. The latter solution has also been found in the
dipole picture of high energy scattering in [35] where also some potential effects of the
color glass condensate on the Odderon are discussed. For a review of the theory and
phenomenology of the Odderon see [36].

Our motivation for studying also the Odderon in the EGLLA is twofold. Firstly,
states with more than three gluons in the t-channel might be important phenomeno-
logically. One could for example expect that Pomeron loops can affect the Odderon
intercept. Recall that the intercept of the perturbative Odderon is close to one (and
exactly one for the solution of [34]). Hence potential corrections to the intercept due to
Pomerons would be particularly significant. Another interesting effect is the interplay
of Pomeron and Odderon exchanges in high energy scattering. Some possible effects of
that interplay have recently been discussed in [37]. A detailed study certainly requires
a concise knowledge of the splitting of an Odderon into an Odderon and a Pomeron, as
it can be obtained in the EGLLA. The calculation of that vertex is among the goals of
the investigation that we initiate in the present paper. We expect that this vertex will
also make it possible to obtain the large-Nc limit of the EGLLA and thus give rise to
an equation for the Odderon channel which is the analog of the BK equation for the
Pomeron channel. This equation should then be of a similar form as the one suggested
in the context of saturation in the dipole picture for the Odderon in [35].

An equally important motivation for studying the Odderon in the EGLLA is to
gain a better understanding of the effective theory of the color glass condensate and
of its properties. Important aspects in this respect would for instance be an investi-
gation of the crossing properties of the vertices in the effective field theory and their
interpretation in view of conformal field theories. In addition, studying Odderon states
will hopefully also make it possible to compute the gluon vertices of the effective field
theory – which so far are known only for color singlet channels – in arbitrary color
states.

In a first step we consider in the present paper the case of up to four gluons. We
give explicitly the coupled evolution equations for the three- and four-gluon states. As
an initial condition for the evolution we choose the coupling of the Odderon to the
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γ → ηc impact factor. This impact factor can be computed in perturbation theory due
to the large mass of the charm quark. It is also of phenomenological relevance, see for
example [38]-[42]. We will show that the impact factor exhibits reggeization. That fact
will make it possible to find an explicit solution of the evolution equation for the four-
gluon state when it is coupled to the γ → ηc impact factor. Due to that impact factor,
the Odderon solution found in [34] is projected out. We will show that an analogous
result can be obtained for the solution of [33] by considering the case of a baryonic
impact factor. As we will discuss in the conclusions, our result lays the foundations for
a future investigation of the five-gluon Odderon state in which we expect new elements
of the effective field theory to occur.

We should mention that Odderon states with more than three gluons have already
been discussed in the GLLA, but only with the number of gluons being kept fixed
during the evolution. There a remarkable simplification takes place in the large-Nc

limit in which these n-gluon states are equivalent to an integrable XXX Heisenberg
model [43]-[45]. It should be pointed out, however, that for n > 3 the n-gluon states
obtained in the large-Nc limit are not the leading ones at high energies. Moreover, they
cannot be coupled directly to the phenomenologically interesting impact factors, as will
become clear also in our discussion below. We emphasize that in the present paper we
do not fix the number of gluons in the t-channel evolution, and also do not take the
large-Nc limit.

The paper is organized as follows. In section 2 we formulate the evolution equations
for the n-gluon Odderon states in the EGLLA. We then compute the γηc-Odderon
impact factor with an arbitrary number n of gluons (n ≥ 3) and give the result explicitly
for the cases of four and five gluons. The result is expressed in terms of the impact factor
with only three gluons. Based on that observation we are then able to find an analytic
solution of the four-gluon Odderon state in the EGLLA and discuss its properties in
section 4. In section 5 we generalize our result to other impact factors and hence to
all known types of Odderon solutions. Our results are summarized in section 6. In the
course of our calculation we also find some useful results for the C-even channel which
we present in an appendix.

2 Coupled evolution equations for the Odderon in EGLLA

We start with the well-known BKP equation for a system of three interacting gluons
exchanged in the t-channel of a scattering process [11, 13]. In the case of the Odderon
the three gluons are in a state that is odd under C-parity. We consider the Odderon
amplitude coupled to the γ → ηc impact factor, which hence constitutes the initial
condition for the evolution of the Odderon state in rapidity. We define F3 as the
amputated three-gluon Odderon amplitude with discontinuities taken in the squared
energies obtained from the four-momenta of the photon and the first gluon, and of the
photon and the first and second gluon, respectively. At high energies, the dynamics
effectively reduces to the transverse plane of the reaction, see section 3.1 below. The
amplitude F3 accordingly depends on the transverse momenta of the three gluons, and
it obviously carries color labels for the gluons. In addition, F3 depends on the momenta
of the photon and the ηc-meson, but we will suppress this dependence in our notation.
It is convenient to change from the squared center-of-mass energy s to complex angular
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momentum ω via a Sommerfeld-Watson transformation.
The BKP equation in transverse momentum space then reads

(

ω −
3
∑

i=1

β(ki)

)

F a1a2a3
3 = F a1a2a3

(3;0) +
∑

K
{b}→{a}
2→2 ⊗ F b1b2b3

3 , (1)

with the gluon trajectory function β describing virtual corrections to the t-channel
gluons,

β(k2) = −Nc

2
g2
∫

d2l

(2π)3
k
2

l2(l− k)2
, (2)

where the bold-face characters denote two-dimensional transverse momenta. The BKP
equation can be viewed as a Schrödinger type equation with ω being the energy-like
variable. The conjugate time-like variable is rapidity Y = log(s/s0), where s0 is a fixed

hadronic energy scale. The kernel K
{b}→{a}
2→2 describes the pairwise interaction of the

gluons. It is up to a color factor identical to the part of the integral kernel of the BFKL
equation which describes real gluon production. We will give an explicit representation
of the kernel as well as an explanation of the convolution symbol further below. In the
case of three gluons one can separate the color and the momentum part,

F a1a2a3
3 (k1,k2,k3) = da1a2a3F3(k1,k2,k3) , (3)

with the symmetric structure constant da1a2a3 of the SU(3) color group. We will some-
times suppress the momentum arguments of the function F3.

The inhomogeneous term F(3;0) in the BKP equation (1) is given by the impact
factor of the transition γ → ηc. We refer the reader to [38] for the explicit formula
for the impact factor with three gluons. Its explicit form will not be needed for our
discussion. We only note here that the impact factor F(3;0) is symmetric in the three
gluon momenta and in their color labels, and that it vanishes due to gauge invariance
when one of the gluon momenta vanishes. It should be pointed out that our particular
choice of the γ → ηc impact factor singles out a particular solution to the BKP equation,
namely the Bartels-Lipatov-Vacca (BLV) solution [34]. That solution is a superposition
of states depending only on two transverse coordinates. In contrast to that situation,
the other known class of solutions of the BKP equation requires the three gluons to
be at different positions in transverse space and vanishes when two of the three gluon
positions coincide. (The Janik-Wosiek solution found in [33] belongs to this class.) In
the γ → ηc impact factor in leading order the photon splits into a quark-antiquark
pair to which the three gluons couple, and which then recombines into an ηc meson.
The intermediate state with only two quarks provides only two points in transverse
space to which the gluons couple and hence singles out the BLV solution. We will
first concentrate on that solution and will come back to the other class of solutions in
section 5.

The symmetry of the impact factor mentioned above immediately allows us to find a
crucial property of the full three-gluon amplitude without even using the particular form
of the BLV solution, namely the separate invariance of the amplitude under exchange
of the momenta and of the color indices. The latter observation is trivial because of the
color tensor da1a2a3 which the Odderon keeps throughout its evolution. The invariance
under momentum-exchange can be inferred from the BKP equation (1) as the quark
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loop has this property and the application of the integral kernel respects the symmetry
because the sum over all pairwise interactions is performed. Formally constructing
the solution by iterating the integral equation then leads to the conclusion that this
property transfers to the full three-gluon Odderon amplitude. Of course, this symmetry
property is also reflected in the explicit formula of the BLV solution, see [34]. Later
we will need only a slightly weaker property of the three-gluon Odderon state, namely
its symmetry under simultaneous exchange of momentum and color labels which is a
trivial consequence of the separate symmetries in color and momentum space. In a
similar way one can start from the fact that the impact factor vanishes for vanishing
gluon momenta and derive that also the full amplitude F3 vanishes if one of the three
gluon momenta vanishes.

We now want to write the BKP equation in a diagrammatic form in order to make
the generalization to higher gluon numbers more transparent,

(

ω −
3
∑

i=1

β(ki)

)

F3 = F(3;0) +
∑

F3 . (4)

In this notation, the diagrams representing the impact factor and the full Odderon
amplitude include the color tensors and the contributions from the external particles,
but are amputated, i.e. the ‘outgoing’ gluon propagators are cut off. The kernel that
acts on the amplitude also includes color tensors which we give explicitly below. The
sum in the last term extends over all pairwise interactions of the gluons.

It is now straightforward to apply the EGLLA to the C-odd channel following the
same procedure which has been developed in [11, 12] for the C-even (Pomeron) channel.
The lowest possible contribution in the C-odd channel is the Odderon with three gluons
satisfying the BKP equation, see above. In the EGLLA, we have to take into account
in addition all exchanges with more than three gluons, and have to allow for number-
changing transitions during the evolution. This is most conveniently implemented in the
form of integral equations that generalize the BKP equation. (For a detailed discussion
of the corresponding integral equations in the C-even channel see [24].) In these integral
equations the number-changing transitions are due to integral kernels K2→m which have
been derived in [12]. Note that as a result of the approximation scheme of the EGLLA
in these kernels only two gluons interact with each other to produce more t-channel
gluons. This is similar to the BKP equation (1), where in each contribution to the last
term only two gluons undergo an interaction via the BFKL kernel. In the amplitude for
an n-gluon state one then has to take into account all possible contributions in which
a state with l gluons (l < n) undergoes a transition to an n-gluon state via a kernel
K2→m with m = n− l+2, and we have to include all possible l starting from the lowest
possible amplitude that has l = 3. For us it is important that the derivation [12] of
the kernels K2→m for the interaction of two gluons does not require any assumptions
about the other gluons, in particular it does not require a specific C-parity of the whole
n-gluon state. We can therefore use exactly the same kernels to formulate the integral
equations for n-gluon amplitudes also in the C-odd channel.

In this way one obtains the following integral equation for the C-odd four-gluon
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amplitude F4 in the EGLLA,

(

ω −
4
∑

i=1

β(ki)

)

F a1a2a3a4
4 = F a1a2a3a4

(4;0) +
∑

K
{b}→{a}
2→3 ⊗ F b1b2b3

3

+
∑

K
{b}→{a}
2→2 ⊗ F b1b2b3b4

4 , (5)

which in diagrammatic notation reads:

(

ω −
4
∑

i=1

β(ki)

)

F4 =
F(4;0) +

∑

F3 +
∑

F4 . (6)

One can easily construct also the equations for the higher n-gluon amplitudes Fn, again
in complete analogy to the case of even C-parity. For n = 5, for example, the equation
reads

(

ω −
5
∑

i=1

β(ki)

)

F a1a2a3a4a5
5 = F a1a2a3a4a5

(5;0) +
∑

K
{b}→{a}
2→4 ⊗ F b1b2b3

3

+
∑

K
{b}→{a}
2→3 ⊗ F b1b2b3b4

4

+
∑

K
{b}→{a}
2→2 ⊗ F b1b2b3b4b5

5 . (7)

In this way one obtains the full (infinite) hierarchy of coupled integral equations of the
EGLLA for the C-odd channel.

To complete the account of the integral equations for the C-odd channel in EGLLA,
we have to give the exact expression for the interaction kernels. As the 2 → m kernels
can be written in a general form, we can do this in one step for both kernels that appear
up to the four-gluon equation. Let the two gluons that enter the kernel from above
carry the transverse momenta l1 and l2 and the color labels b1 and b2, and let the m
outgoing gluons carry the momenta k1, . . . ,km and the color labels a1, . . . , am. The
integral kernels for the transition of two to m gluons then read [12] (the generalization
to arbitrary indices being trivial)

K
{b}→{a}
2→m (l1, l2;k1, . . . ,km) = gm fb1a1k1fk1a2k2 . . . fkm−1amb2

[

(k1 + · · · + km)2 − l
2
2(k1 + · · · + km−1)2

(km − l2)2

− l
2
1(k2 + · · · + km)2

(k1 − l1)2
+

l
2
1l

2
2(k2 + · · · + km−1)2

(k1 − l1)2(km − l2)2

]

.

(8)

For the 2 → 2 kernel (m = 2) the last term in the brackets is defined to be zero so
that one gets the BFKL kernel without the virtual corrections. Finally, the convolution
symbol ⊗ implies a factor [(2π)3l21l

2
2]−1 followed by an integration

∫

d2l1 over the loop
momentum. Clearly, there is a color factor δaibj for every gluon that does not participate
in the kernel interaction.

As in the case of C-even exchanges, the integral equations of the EGLLA as de-
scribed above apply to cut amplitudes. The four-gluon amplitude F4, for example, is
a result of taking three discontinuities with respect to the energy variables obtained
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from the photon and the first r gluons, r = 1, 2, 3. It should be noted that, as a result
of these discontinuities, the amplitude F4 is not fully symmetric under the exchange
of two gluons. The full Bose symmetry of the n-gluon states is only restored in the
full amplitude reconstructed via dispersion relations. Instead, the cut amplitudes for
which the integral equations are formulated obey a particular set of Ward-type identi-
ties found in [26] for the C-even channel. As we will discuss below, our result for F4

satisfies these identities.
Finally, a remark is in order concerning the calculation of scattering amplitudes

from the amplitudes Fn of our integral equations. In order to calculate the amplitude
for the quasidiffractive process γγ → ηcηc for three t-channel gluons, one would have
to fold the solution of the BKP equation (1) simply with the lower impact factor after
attaching simple gluon propagators (without interaction) to it as is illustrated in figure
2 below (see also [42]). However, for the higher gluon number Odderon equations such
a simple reconstruction of the full scattering amplitude must fail, because the integral
equation also includes the transition from three to four t-channel gluons but not the
other way around, which would lead to an asymmetric treatment of the upper and
lower impact factor. Simply taking the square of the result is also not possible because
it would double count some of the contributions. In fact, the reconstruction of the
physical amplitude for the process γγ → ηcηc from the solution Fn of the integral
equations for general n is a nontrivial task and requires a very careful use of dispersion
relations in order to undo the cuts applied to the amplitude. A detailed discussion
of this problem is beyond the scope of the present paper. When considering other
scattering processes like for example photon-proton scattering, however, the coupling
of the four-gluon system directly to the scattering partner is easier and does not lead
to the problems mentioned above.

3 The γηc-Odderon impact factor

We now turn to the calculation of the γ → ηc impact factor with an arbitrary number
n > 3 of gluons coupled to it in GLLA. Due to the quantum numbers of the photon
and of the ηc meson the n gluons are always in a C-odd state.

It will be useful to recall first in a more general setting the factorization of scattering
processes at high energies which gives rise to impact factors. After discussing the γ → ηc
impact factor with three gluons we will then consider more gluons. For that the crucial
point is to study the step from n to n + 1 gluons, that is the effect of attaching one
additional gluon to the impact factor. We show that the corresponding diagrams with
n + 1 gluons can be expressed in terms of diagrams with n gluons in a particular way.
That step has been considered more or less explicitly in many studies before (see for
example [19, 24]), but we find it useful to discuss it here in more detail in a notation
suitable for our purposes. Using that result and taking into account the color algebra
we are then able to find a general formula for our impact factor with n gluons in terms
of the three-gluon impact factor.

3.1 High energy factorization and impact factors

Let us consider the scattering amplitude for a perturbatively calculable process at high
energies in the GLLA. To be specific, we choose the quasidiffractive process γγ → ηcηc,

7



but the discussion also holds for other processes. In the following derivation of the
impact factor representation for the scattering amplitude we follow [46] (where the
analysis was conducted for the QED case, i.e. photon exchange) and [47] (where the
two-gluon QCD case is treated).

At high energies the scattering process is dominated by gluon exchange, the lowest
order contribution being three-gluon exchange for the process under consideration. Let

Mu

Ml

k1 k2 k3

p

p′

Figure 1: Diagrammatic representation of the scattering amplitude for a simple three-
gluon exchange process.

us first concentrate on the simple case in which the three gluons do not interact with
each other, as illustrated in figure 1. We can write the corresponding amplitude as

M =
i

3!

∫

d4k1
(2π)4

d4k2
(2π)4

Mµνρ
u

(−igµα)

k21

(−igνβ)

k22

(−igργ)

k23
Mαβγ

l , (9)

where 3! is a combinatorial factor and Mµνρ
u and Mµνρ

u stand for the upper and lower
shaded parts of the figure, respectively. These vertex functions also include the color
factors and the contribution of the external particles.

Explicitly writing out the arguments of these functions for the case of incident
photons, we have

Mµνρ
u ≡ Mµνρ

u (p, ǫ, k1, k2, k3) (10)

Mαβγ
l ≡ Mαβγ

l (p′, ǫ′,−k1,−k2,−k3) . (11)

The minus signs in front of the gluon momenta in the term Mαβγ
l arise because an

incoming momentum in the upper vertex is treated as outgoing in the lower vertex and
vice versa. The polarization vectors ǫ and ǫ′ of the incident photons will not be relevant
in our discussion and will therefore not be written explicitly below. The three gluon
momenta are related to the momentum transfer via q = k1 + k2 + k3, and q2 = t.

Now we perform a Sudakov decomposition of the momenta by splitting each four-
momentum into its components parallel to the two light-like four-vectors p and p′ that
have antiparallel three-momentum directions, and the remaining transverse part. For
example, the vector k1 is decomposed into

k1 = α1p + β1p
′ + k1T . (12)
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In high-energy collisions we can assume that the invariant masses are negligible com-
pared to s. Hence s = (p + p′)2 ≈ 2p · p′ and we can use the incident photon momenta
for the decomposition also in the case of virtual photons. We will always denote by α
the Sudakov component belonging to the upper incident momentum p, and by β the
one belonging to p′. The integration measure can then be rewritten as

d4ki = p · p′ dαi dβi d
2
ki =

1

2
s dαi dβi d

2
ki, i = 1, 2 . (13)

Furthermore, the transferred momenta are predominantly transverse (as was shown for
the QED case in [46]), hence the denominator of a gluon propagator can be simplified
to

k2i = sαiβi + k2iT ≈ −k
2
i . (14)

Also the metric tensor gµα can be divided into longitudinal and transverse parts,

gµα =
2

s
(pµp

′
α + pαp

′
µ) + gTµα . (15)

After the convolution with the vertex functions Mµνρ
u and Mαβγ

l , the large contri-
butions arise from the terms in which the momentum of the lower incident particle is
contracted with the upper vertex, and vice versa. Phrased differently, one finds that the
longitudinal gluon polarizations dominate in the high energy limit. We can therefore
substitute

gµαgνβgργ → 8

s3
p′µp

′
νp

′
ρpαpβpγ , (16)

and obtain the amplitude in impact factor representation,

M =
s

3

∫

d2k1

(2π)2
d2k2

(2π)2
Φu

1

k2
1

1

k2
2

1

k2
3

Φl , (17)

with the impact factors being

Φu =

∫

dβ1
2π

dβ2
2π

Mµνρ
u

p′µp
′
νp

′
ρ

s
, (18)

Φl =

∫

dα1

2π

dα2

2π
Mαβγ

l

pαpβpγ
s

. (19)

The integrals can be disentangled here because the α-parameters of the gluons can be
neglected in Mµνρ

u (they are small compared to the α-parameters of the quark lines),
and likewise for the β-parameters in the lower vertex.

The above considerations are easily generalized to more sophisticated exchanges
in which the t-channel gluons interact with each other as is shown in figure 2. Also
here the dominant contributions come from the longitudinally polarized gluons and the
resulting impact factors are exactly the same as above. The resulting amplitude can
be written symbolically as

M =
s

3
〈Φu|G|Φl〉. (20)

In that general case the matrix element symbol stands for the integration over all
undetermined momenta of the scattering amplitude – that is, k1, k2, k′

1 and k
′
2 (the

third gluon’s momentum is fixed by the total momentum transfer). It also includes a
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Φu

G

Φl

k1

k′

1

k2 k3

k′

2
k′

3

p

p′

Figure 2: Impact factor representation of a scattering process with t-channel gluon
interaction.

factor (2π)−4 as in the simple case discussed above. G denotes the Green function of
the three-gluon exchange in transverse space. In this picture the simple three-gluon
exchange process (fig. 1) is reproduced by setting

G =
δ2(k′

1 − k1)δ2(k′
2 − k2)

k2
1k

2
2k

2
3

. (21)

It is also straightforward to generalize the derivation of the impact factors to ex-
changes with an arbitrary number of gluons in the t-channel. From the formulae above
one can easily read off the factors and integrations which have to be associated with
each additional gluon.

3.2 Color algebra

Let us now collect some basics of color algebra for the gauge group SU(Nc). Its Lie
algebra has N2

c − 1 generators ta that satisfy the algebra
[

ta, tb
]

= ifabct
c (22)

with the antisymmetric structure constants fabc. The anti-commutator of two genera-
tors defines the symmetric structure constants dabc,

{

ta, tb
}

=
1

Nc

δab + dabct
c . (23)

Note that we write the structure constants with lower indices.
Sometimes we will use the so-called ‘bird track’ notation to illustrate color tensor

contractions diagrammatically. The antisymmetric structure constants are drawn as a
solid black circles and the color indices are written counterclockwise:

fabc =
c

a

b

. (24)

Then for example the nontrivial part of the color tensor of the 2 → 3 kernel in (8) is
given by

fb1a1k1fk1a2k2fk2a3b2 = . (25)

10



The color tensors for the integral kernels are drawn in such a way that the color indices
bi, which are to be contracted with the color labels of the amplitudes in the integral
equations, are at the top of the diagram.

It is convenient to define the tensors

da1a2...an = Tr(ta1ta2 . . . tan) + Tr(tantan−1 . . . ta1), (26)

fa1a2...an =
1

i
[Tr(ta1ta2 . . . tan) − Tr(tantan−1 . . . ta1)]. (27)

Note that these definitions do not coincide with the structure constants for n = 3. In
fact, the structure constants are given in terms of these tensors by

da1a2a3 =
1

2
da1a2a3 , (28)

fa1a2a3 =
1

2
fa1a2a3 . (29)

3.3 The Odderon quark loop with three gluons

Next we want to review some important properties of the γ → ηc impact factor with
three gluons attached to it which was first calculated in [38]. Three is the lowest possible
number of gluons in the t-channel for which that impact factor exists.

The γ → ηc impact factor for three gluons consists of eight diagrams corresponding
to the 23 choices for the way in which the gluons couple to the the quark or antiquark.
(Recall that due to the cuts applied to the amplitude the gluons do not cross each
other.) One of these diagrams is shown in figure 3. Most of the details of the analytic

γ
(∗)

η
c

Figure 3: One of the diagrams contributing to the γ → ηc impact factor with three
gluons.

expression for the impact factor will not be relevant for our considerations. A key
property is that the Dirac structure of the coupling of the quark-antiquark pair to the
ηc meson is simply γ5. The coefficient of the γ5 factor can be related to the radiative
two-photon width of the ηc, see [38]. Further, it turns out that only transverse photon
polarizations give a nonvanishing contribution to the impact factor. In the following we
will often speak of the quark loop to which the Odderon is coupled. Unless otherwise
stated this will always assume that there is a γµ matrix at the photon vertex and a γ5

matrix at the meson vertex.
When calculating one particular diagram (out of the eight possible diagrams) one

encounters five quark propagators of the form

i(6k + m)

k2 −m2
, (30)

11



four additional γ matrices (three gluon vertices and the photon vertex) and a γ5 coming
from the ηc vertex. The gluon vertex γ matrices get contracted with the light-like vector
p′ from the lower impact factor (see section 3.1). Using the fact that for light-like vectors
p the equation 6p 6p = 0 holds, one easily reduces the expression in the γ trace to a sum
of terms that consist of maximally five γ’s by permuting the gluon vertex γ matrices
next to each other.

When performing the trace for the case of massless quarks, one clearly gets zero
because of the odd number of γ matrices, and hence we need to take into account mass
effects. That allows us to choose a mass term instead of a momentum term with a γ
matrix (in the numerator of the quark propagator 6k+m). In fact, only the case in which
of the five propagator terms one mass and four momenta are combined gives a non-
vanishing contribution. Let us stress this point: when calculating the impact factor,
exactly one propagator term must lend its mass, the others their momenta with γ
matrices. Clearly, we will get a sum over the different possibilities of which propagator
lends its mass, but for our purposes it will suffice to keep these considerations on a
qualitative level.

Another important property is the behavior of an impact factor diagram under the
exchange of its quark and antiquark lines. We can reassign the quark loop momenta
in such a way that we get almost the same expression as before, apart from a minus
sign for all propagator momenta in the γ trace. For three gluons this means an overall
relative plus sign because one propagator must give a mass instead of a momentum (as
we have explained above) and the sign of the mass is not affected by the exchange.
The set of all possible impact factor diagrams can be grouped into pairs in which
the two diagrams are just related to each other by such an interchange of the quark
and antiquark lines. Doing so, one reduces the number of diagrams that have to be
calculated by two. This holds for the momentum and γ part only, but the interchange
of the quark lines naturally also reverses the order of the SU(Nc) generators.

For three gluons we finally get four diagrams in this way, each coming together with
two different traces of color matrices. Adding these two contributions one gets

Tr(ta3ta2ta1) + Tr(ta1ta2ta3) = da1a2a3 . (31)

The full impact factor is then just the sum over the four different momentum diagrams
together with the color tensor da1a2a3 :

F(3;0) = da1a2a3
(

+ + +

)

≡ da1a2a3F(3;0) . (32)

The schematic notation introduced here stands symbolically for the impact factor
without color factors. The diagrams only show which gluons couple to the quark
(upper line) and which to the antiquark (lower line) – the overall color tensor da1a2a3

is extracted but the photon and ηc vertices are implied. To obtain the final result, one
needs to calculate these different diagrams.

As already said, we will not need the explicit form of the three-gluon impact factor.
But there is one property that will be very important for our considerations, namely
the symmetry under exchange of its momentum arguments. It does not hold for every
contributing momentum diagram separately, but can only be seen after performing the
sum over the different diagrams.

12



3.4 Mechanism of gluon number reduction

Now we want to explain how an n + 1 gluon diagram can be reduced to an n gluon
diagram. Clearly we can always find at least two gluons that are attached to the
same quark line. Hence we can choose two which are separated only by one quark
propagator. The additional factors that enter – compared to the n-gluon diagram – are
a gluon vertex contracted with the incident momentum of the lower impact factor p′

and the additional quark propagator between the two neighboring gluon vertices. The
propagator again has a sum 6k+m in its numerator but as the mass term is sandwiched
between two factors of 6p′ its contribution vanishes. Therefore, the addition of another
gluon increases the number of γ matrices by two. To reduce the number of γ matrices in
the trace, we use the same mechanism that we have already explained in the beginning
of the previous section. Thereby we can always reduce the trace to one involving four γ
matrices, the γ5 from the meson vertex, and one quark mass. In the following we want
to have a closer look at this reduction mechanism and at the factors which occur. For
that it will be important that we work with cut amplitudes, which amounts to putting
the cut quark lines on-shell.

First we choose two gluons that are attached to the same quark line at neighboring
vertices. Writing it in Feynman diagram notation, this part of the quark loop can be
represented as

kj

k

ki

. (33)

Let k be the momentum of the quark line that lies between these two vertices. We will
call the gluon further down along the line ‘new’ gluon, because we understand it as an
additional gluon as compared to the n-gluon amplitude. According to the Cutkosky
rules for calculating the discontinuity of the diagram, the ‘new’ quark propagator term
is replaced according to

i(6k + m)

k2 −m2
→ i(6k + m)[−2πiδ(k2 −m2)] , (34)

because a quark line between two neighboring gluons is always put on shell due to the
cuts.

Let j be the index of the new gluon. The new vertex gets contracted with the
momentum of the lower incident particle p′ to give igtaj 6p′. As was explained in section
3.1, for every gluon one also gets an integration over its Sudakov component parallel
to p′, i.e. over βj . Putting it all together, one finds as additional factors apart from the
new color trace:

. . .

∫

dβj
2π

ig Tr(. . . i(6k + m) 6p′ . . . )[−2πiδ(k2 −m2)]

= . . . ig

∫

dβj Tr(. . . (6k + m) 6p′ . . . ) δ(k2 −m2) .

(35)

The neighboring gluon with momentum ki in (33) also gives a 6p′ in the γ-trace, and
we can permute it with the quark line numerator and get a factor 2 p′ · k. By using the
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Sudakov decomposition for the quark line, k = αp + βp′ + kT , this can be absorbed by
the δ-function, and so we get

ig

∫

dβj Tr(. . . 6p′ . . . ) δ
(

β − k
2 + m2

αs

)

. (36)

We now shift the integration variables

βi → β′
i = βi + βj , (37)

βj → βj . (38)

It is clear that all the β parameters in the quark loop apart from the ones coming
from the new quark propagator can be expressed in terms of β′

i and the β parameters
of the other gluons and of the quark loop momentum only, which means that the
only occurrence of βj is in the new propagator.1 Now the integration over βj can be
performed to cancel the δ-function. In pictorial notation, we are left with the following
identity:

kj

k

ki

= ig

ki + kj

. (39)

So far we have discussed only the momentum part of one particular diagram that
contributes to the Odderon impact factor with n + 1 gluons. We also have to consider
the relative sign between two diagrams that are linked by interchange of the quark
and antiquark lines. Compared to the n-gluon case we have included another quark
propagator and a γ matrix coming from the new gluon vertex. Independently of the
number of attached gluons, always one mass term in the γ trace has to be chosen, so
every new propagator gives a new relative minus sign since the momentum term changes
sign under the interchange of the fermion lines. (Note that this is due to the fact that
we are calculating a closed fermion loop in which the direction of the momentum flow
is reversed due to the interchange of the fermion lines.) Remembering that for 3 gluons
we found a relative plus sign, we easily see that the relative sign between diagrams with
interchanged quark and antiquark lines is (−1)n+1. In other words, the momentum
part of a diagram with an odd number of gluons is symmetric under the interchange
of quark and antiquark, whereas an even number of gluons leads to an antisymmetric
momentum part. Thus, we get d-type color tensors for odd numbers of attached gluons,
f -type tensors for even numbers (with a factor of i to cancel the 1/i in the definition
(27) of the f tensors).

3.5 The Odderon quark loop with four gluons

We are now ready to express the n + 1 gluon quark loop for the Odderon in terms of
the one with n gluons. The main calculation becomes clear in the step from three to
four gluons. It is then easy to proceed to higher gluon numbers. The four-gluon impact
factor consists of two color structures, each with four pairs of momentum diagrams.
The terms in which all four gluons are attached to the same fermion line, for example,

1If one denotes the β parameter of the incoming quark momentum at the left of (33) by β̃, one
easily finds β = β̃ + β′

i − βj , so one can see that βj in fact enters in the argument of the δ-function.
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give the following structure (all traces are performed in the direction opposite to the
quark lines):

Tr(ta4ta3ta2ta1 − ta1ta2ta3ta4) = −ifa1a2a3a4 , (40)

where we have reversed the order of the color indices of the f tensor, which gives an
additional minus sign. For the complete four-gluon quark loop one finds the following
diagrammatic representation:

F(4;0) = −ifa1a2a3a4

(

+ + +

)

−ifa3a1a2a4

(

+ + +

)

≡ −ifa1a2a3a4F
(1)
(4;0) − ifa3a1a2a4F

(2)
(4;0) .

(41)

Clearly, there are many possible ways of reducing the single momentum diagrams
to three-gluon diagrams along the lines of the previous section. But it is our aim
to express it in terms of the full three-gluon impact factor F(3;0). Motivated by the
structure of the three-gluon γ → γ impact factor in the C-even channel [16] and by the
general property of reggeization in the n-gluon amplitudes in that channel [24, 26] we
now make an ansatz and show that it in fact gives the full impact factor. The following
construction leads to the correct result for the four-gluon Odderon impact factor:

F(4;0) =
g

2

[

F(3;0) + F(3;0) + F(3;0) + F(3;0) + F(3;0) + F(3;0)

]

.

(42)
This diagrammatic notation symbolizes the contraction of the color tensor of the impact
factor F(3;0) with an fabc tensor. In addition, one of the arguments of the amplitude
F(3;0) is actually the sum of two gluons’ momenta. We will further abbreviate this
expression containing sums of two arguments and contractions with a color tensor f in
the following way:

F(4;0) =
g

2

∑

i,j∈{1,...,4}
i<j





i j



 ⋆ F b1b2b3
(3;0) (ij) , (43)

where i and j denote the position of the two ‘merging’ gluons in the four-gluon system
and the same indices appear in the color tensor and in the sum of the momenta. The
star symbolizes the contraction of the color tensor (drawn in bird track notation) with
the tensor of the amplitude F b1b2b3

(3;0) . The arguments of the function F(3;0) are very much
simplified here. Clearly, the momenta of all gluons enter as arguments of the function,
but the main point on which we focus in this notation is that the momenta of the two
merged gluons enter only with their sum. To shorten the notation, we simply write
down the indices that correspond to the merged gluons. That notation means that, for
example,

F b1b2b3
(3;0) (12) = F b1b2b3

(3;0) (12, 3, 4) = F b1b2b3
(3;0) (k1 + k2,k3,k4) . (44)
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A string of indices stands for the sum of the corresponding momenta. As we have
mentioned before, the three-gluon impact factor is symmetric under the exchange of
its momentum arguments, so we do not need to worry about the position at which the
merged gluons’ sum enters as long as we choose it consistently in all the specific dia-
grams shown in (32). With this abbreviation of the momentum arguments, expression
(42) has the following explicit form,

F a1a2a3a4
(4;0) =

g

2

[

fa1a2kF
ka3a4
(3;0) (12) + fa1a3kF

ka2a4
(3;0) (13) + fa1a4kF

ka2a3
(3;0) (14)

+fa2a3kF
a1ka4
(3;0) (23) + fa2a4kF

a1ka3
(3;0) (24) + fa3a4kF

a1a2k
(3;0) (34)

]

.
(45)

To prove (42) one writes out all 24 diagrams of three-gluon quark loops according
to (32). The momentum part of these diagrams is easy to handle. A pair of gluons
that couple to a quark line together is just expanded to their respective positions in
the four-gluon amplitude as shown in (39), corresponding to a factor −i

g
. Two gluons

that enter the antiquark line give an additional minus sign when expanded.
One might think that a problem arises when a gluon is sandwiched by two merged

gluons as is the case for example in the second diagram on the right hand side of (42),
because we have discussed only the case when two neighboring gluons at the same quark
line reduce to one. Recall, however, that we can reduce all gluons that are attached to
the same quark line to one. Only the sum of the momenta of the gluons then enters the
amplitude. Therefore, we can use the mechanism described above also for the general
case of any two gluons attached to the same quark line.

The color part is slightly more involved, because the db1b2b3 tensor of the three-gluon
quark loop gets contracted with the color tensor which is given in (43) in bird track
notation. For example, if the first two gluons are merged, this tensor is fb1a1a2δ

b2a3δb3a4 .
In order to treat the tensors of this type we use the identity

fabkd
kcd = fabcd − f bacd . (46)

Applying it to all the color contractions and using the cyclic invariance of the f tensors
and the antisymmetry under reversal of all color indices, one ends up with three different
tensors: fa1a2a3a4 , fa3a1a2a4 , and fa1a3a2a4 . If one now collects all diagrams that come
with these respective color tensors, some contributions cancel (because the interchange
of quark and antiquark line induces a sign change), others get a factor of 2. The
diagrams coming with the color tensor fa1a3a2a4 cancel completely. We are then exactly
left with the expression in (41), which confirms that our ansatz (42) was indeed correct.

In section 4 we will promote the ansatz of (42) to an ansatz for the full four-gluon
amplitude F4. However, for the future project of solving the integral equations in the
C-odd channel with more than four gluons a different representation for the impact
factor might also be useful. We therefore also want to give that form which does not
make use of the explicit color tensor db1b2b3 of the three-gluon impact factor. This is
helpful because the quark loops for higher gluon numbers can be easily written in terms
of the momentum part of the three gluon expression.

In order to obtain that representation we go back one step and write down the
expression for the four-gluon quark loop in terms of only the momentum part F(3;0) of
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the three-gluon amplitudes:

F a1a2a3a4
(4;0) =

g

2
{fa1a2a3a4 [F(3;0)(12) − F(3;0)(14) + F(3;0)(23) + F(3;0)(34)]

+fa3a1a2a4 [F(3;0)(12) − F(3;0)(13) + F(3;0)(24) − F(3;0)(34)]} .
(47)

Here we can identify the momentum parts corresponding to the two color tensors:

F
(1)
(4;0) =

ig

2
[F(3;0)(12) − F(3;0)(14) + F(3;0)(23) + F(3;0)(34)] , (48)

F
(2)
(4;0) =

ig

2
[F(3;0)(12) − F(3;0)(13) + F(3;0)(24) − F(3;0)(34)] . (49)

By directly looking at (41) an even simpler representation of F
(1)
(4;0) can be found:

F
(1)
(4;0) = igF(3;0)(23) . (50)

and the four-gluon quark loop is expressed as

F a1a2a3a4
(4;0) = gfa1a2a3a4F(3;0)(23)

+
g

2
fa3a1a2a4 [F(3;0)(12) − F(3;0)(13) + F(3;0)(24) − F(3;0)(34)]} .

(51)

In summary, we have derived two different (but equivalent) representations of the
four-gluon quark loop in terms of the three-gluon quark loop: in the first representation
(45) the three-gluon quark loop with its color structure is used, and that will be very
convenient for the construction of the four-gluon Odderon amplitude in section 4. The
second representation (51) uses only the momentum part of the three-gluon expression
and is useful for the investigation of the Odderon integral equations for more than four
gluons.

3.6 Generalization to an arbitrary number of gluons

We now consider the general case of a quark loop with n attached gluons, n > 3. It
consists of 2n different diagrams. As could already be seen in the examples of three
and four gluons in equations (32) and (41), four diagrams always lead to the same color
structure, because switching the first or last gluon from the quark to the antiquark
or vice versa clearly does not affect the color trace. We then get 2n−2 different color
traces for the n-gluon quark loop. These diagrams differ in the relative attachment (to
the quark or the antiquark) of the ‘inner’ n − 2 gluons. In the previous sections we
also grouped these 2n−2 different diagrams in pairs because the contributions of two
diagrams in which quark and antiquark are interchanged differ only by a relative sign.
For the purpose of the present section it will be more convenient to collect these pairs
at the end.

In detail the combinatorics of the inner gluons is as follows. If all inner gluons
couple to the quark line, one has the color trace Tr(tantan−1 . . . ta1). Then there are
n− 2 different diagrams in which one inner gluon couples to the antiquark, whereas all
others couple to the quark, and so on. For k inner gluons attached to the antiquark and
n− 2− k attached to the quark line, we get

(

n−2
k

)

different color traces. To obtain the
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correct color trace one simply has to write (in descending order of the gluon indices)
the color matrices that correspond to the ‘quark’ gluons in front of the matrices of the
‘antiquark’ gluons (in ascending order). Summing all these contributions we get the
complete set of contributions.

Now we have to take into account the pairing of diagrams with interchanged quark
and antiquark lines. For example, the diagram in which only the first of the inner
gluons couples to the antiquark line gives (apart from the relative sign and the reversed
order of the color generators) the same result as the diagram in which all but the first
inner gluon couple to the antiquark. We thus get 2n−3 color tensors of the type d or f
together with four momentum diagrams each. We choose the convention to write down
those diagrams of each pair where the first inner gluon is attached to the quark line,

as we did also in the case of the diagrams of F
(2)
(4;0), see (41).

These momentum diagrams can now easily be expressed in terms of the two parts

F
(1)
(4;0) and F

(2)
(4;0) of the four-gluon amplitude, see (48) and (49). If all inner gluons are

attached to the same line, the resulting expression reads

−ifa1...an(ig)n−3F(3;0)(2 . . . n− 1) for even n , (52)

da1...an(ig)n−3F(3;0)(2 . . . n− 1) for odd n , (53)

where we have used (50) to express it in terms of F(3;0). We have also reversed the
order of the color indices so that the gluons that are attached to the quark line are
written in ascending order. This introduces a minus sign for all f tensors.

If at least one of the inner gluons couples to the antiquark, the structure naturally
is more complicated. We will explain the construction of the general form, but also
give the example of five gluons along the way.

First one has to identify all 2n−3−1 additional combinations of how the inner gluons
can couple to the quark or antiquark lines. For five gluons these are

da4a3a1a2a5 , da3a1a2a4a5 , da4a1a2a3a5 . (54)

We only show the coupling of the inner gluons here, because the first and the last gluon
do not affect the color structure as was explained above. Symbolically, we therefore
draw the outer gluons as dashed lines and do not specify to which line they couple.

Let i1, . . . , ik now be the indices of the inner gluons that are attached to the an-
tiquark line and j1, . . . , jn−2−k the indices of the inner gluons attached to the quark
line. As explained before, the merging of two gluons at the antiquark line introduces
an additional minus sign. Now we can write down the complete expression for one
particular color structure,

−i(−1)k−1faik ...ai1a1aj1 ...ajn−2−k
an(ig)n−4F

(2)
(4;0)(1, j1 . . . jn−2−k, i1 . . . ik, n) for even n ,

(−1)k−1daik ...ai1a1aj1 ...ajn−2−k
an(ig)n−4F

(2)
(4;0)(1, j1 . . . jn−2−k, i1 . . . ik, n) for odd n .

(55)

In order to avoid confusion here we have reinstated all four arguments of the amplitude

F
(2)
(4;0), and again the collection of indices in one argument stands for the sum of the

respective gluons’ momenta. Adding all contributions, one arrives at the expression for
the general n-gluon quark loop in terms of three- and four-gluon quark loop amplitudes.
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As an example of this construction, the explicit form for the full impact factor for
five gluons is

F(5;0) = (ig)2da1a2a3a4a5F(3;0)(1, 234, 5) − igda4a3a1a2a5F
(2)
(4;0)(1, 2, 34, 5)

+igda3a1a2a4a5F
(2)
(4;0)(1, 24, 3, 5) + igda4a1a2a3a5F

(2)
(4;0)(1, 23, 4, 5) .

(56)

Finally, one can use (49) to express all the parts in terms of the three-gluon am-
plitude F(3;0) only. As we have chosen the diagrams in such a way that the second
gluon is attached to the quark line, the sum of quark line gluons enters the amplitude
F(4;0) as the second argument and the sum of antiquark line gluons enters as the third
argument. We thus arrive at the expression for the different color parts of the n-gluon
quark loop in terms of the three-gluon quark loop F(3;0). For even n it reads:

−i
(−1)k−1

2
(ig)n−3faik ...ai1a1aj1 ...ajn−2−k

an

[F(3;0)(1j1 . . . jn−2−k, i1 . . . ik, n) − F(3;0)(1i1 . . . ik, j1 . . . jn−2−k, n)

+F(3;0)(1, j1 . . . jn−2−kn, i1 . . . ik) − F(3;0)(1, j1 . . . jn−2−k, i1 . . . ikn)] .

(57)

For odd n, once again the f color tensor has to be replaced by a d tensor and the factor
−i has to be dropped. To get the full impact factor, all 2n−3 contributions have to be
added.

Again, we want to give the final expression for the five-gluon case to illustrate our
results:

F(5;0) = −g2da1a2a3a4a5F(3;0)(1, 234, 5)

+
g2

2
da4a3a1a2a5 [F(3;0)(12, 34, 5) − F(3;0)(134, 2, 5) + F(3;0)(1, 25, 34)

− F(3;0)(1, 2, 345)]

−g2

2
da3a1a2a4a5 [F(3;0)(124, 3, 5) − F(3;0)(13, 24, 5) + F(3;0)(1, 245, 3)

− F(3;0)(1, 24, 35)]

−g2

2
da4a1a2a3a5 [F(3;0)(123, 4, 5) − F(3;0)(14, 23, 5) + F(3;0)(1, 235, 4)

− F(3;0)(1, 23, 45)] .

(58)

In summary, we have computed the γ → ηc impact factor for an arbitrary number
of gluons. We have shown how it can be expressed in terms of the three-gluon impact
factor. For each n the impact factor is a superposition of terms in which in the momen-
tum part a subset of the gluons behaves like a single gluon in the three-gluon impact
factor, that is only the sum of their momenta enters.

In appendix A we discuss how the construction of the n-gluon quark loop can be
performed for the γ → γ impact factor, that is in the C-even sector, in a completely
analogous way.
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4 Solution for the four-gluon Odderon amplitude

In [17, 18] it was observed that the three-gluon amplitude D3 in the EGLLA is a
superposition of two gluon amplitudes D2,

Da1a2a3
3 (k1,k2,k3) =

g

2
fa1a2a3 [D2(12, 3) −D2(13, 2) + D2(1, 23)] . (59)

This result required that the impact factor D(3;0) describing the γ∗ → γ∗ transition
with three t-channel gluons could be expressed in terms of the two-gluon impact factor
D(2;0), see (79). A similar observation was made in a part of the five-gluon state in the
C-even sector, namely in the part containing the two-to-four gluon transition vertex,
see [24]. In both cases the solution is given as a superposition of lower amplitudes in
each of which a pair of gluons combines into a single gluon. In [26] this reggeization
of the gluon was discussed also for more than two gluons which combine into one. A
remarkable property of of the EGLLA in the C-even sector is that reggeization leads to
exact solutions of the integral equations for all odd numbers of gluons. That means that
the amplitudes D2l+1 can then be expressed in terms of the amplitudes D2,D4, . . . ,D2l.
This was found explicitly for up to six gluons and argued to hold also for general l in
[24].

Motivated by these observations in the C-even channel we now construct a four-
gluon amplitude for the C-odd channel in the same spirit. More precisely, we will show
that the following ansatz solves the integral equation (5) for the full four-gluon state
F4:

F4 =
g

2





F3 + F3 + F3 + F3 + F3 + F3



 .

(60)
These F3-diagrams will be called ‘splitting pairs’ from now on. The amplitudes F3

again have three arguments, one of which is the sum of the two merged gluons. Again,
a contraction of the color tensor of the amplitude F b1b2b3

3 with the structure constant
f is implied. Writing out the ansatz explicitly, we have

F a1a2a3a4
4 =

g

2

[

fa1a2kF
ka3a4
3 (12, 3, 4) + fa1a3kF

ka2a4
3 (13, 2, 4) + fa1a4kF

ka2a3
3 (14, 2, 3)

+ fa2a3kF
a1ka4
3 (1, 23, 4) + fa2a4kF

a1ka3
3 (1, 24, 3) + fa3a4kF

a1a2k
3 (1, 2, 34)

]

.

(61)

Note that in this ansatz the full amplitude F4 is expressed in terms of F3 in exactly the
same way as in our result (42) the four-gluon impact factor F(4;0) was given in terms
of the three-gluon impact factor F(3;0).

The above ansatz already leads to a very simple cancellation in the four-gluon
Odderon equation (6). One expresses all amplitudes F4 and the quark loop F(4;0) in
terms of three-gluon diagrams. Then one can use the BKP equation (1) to evaluate the
term ωF a1a2a3a4

4 and obtains exactly the same expression for the quark loop as on the
right hand side of the equation. Thus, one is left with an equation in which only the
full three-gluon amplitude F3 appears.

We now consider one particular splitting pair of gluons. When using the BKP equa-
tion to cancel the ω-term and the quark loop, one gets additional terms involving the
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three-gluon amplitude F3 in which the corrections due to the kernel or the β function
occur before the splitting of one gluon into two. There are three virtual (β) correc-
tions of this kind: two where the β-term acts on a gluon that does not split and one
where it acts on the gluon that further down splits into two gluons. In the four-gluon
equation there are four virtual corrections. Two of these act on gluons coming directly
from the amplitude F4, i. e. that have not emerged from a splitting. These cancel the
corresponding two terms coming from the three-gluon equation. The other two virtual
corrections involve the two gluons that have emerged from the gluon splitting. One
then easily finds that these terms together with the upper correction of the splitting
gluon exactly cancel the contribution of the 2 → 2 kernel acting on the two gluons that
have emerged from the splitting.

This means that all the virtual corrections and the term in which the splitting and
the kernel take place in the same two gluons have canceled. We have considered only
one particular pair of splitting gluons but the cancellation immediately extends to the
sum of all splittings. Now one is left exactly with all the terms involving the 2 → 3
kernel and the remaining 2 → 2 terms.

At this stage one can collect all the diagrams in which one particular gluon, say the
ith outgoing gluon, passes the kernel and the splitting without being affected. Then
one is left with four groups of identical expressions that cancel separately due to an
identity that was already discussed in the context of reggeization in the Pomeron in
[24], and in a somewhat different exposition also in [19]. We show this identity in
pictorial language and omit the unaffected gluon:

+ + =
2

g
+ +

+ + + + . (62)

The arrows on top of the diagrams symbolize the symmetry of the amplitude under
simultaneous exchange of momentum and color labels. In our case the interactions
mediated by the integral kernel get contracted with the three gluon Odderon amplitude
which also exhibits this symmetry as we have explained earlier. That symmetry is the
only property of the amplitude that is needed for the proof of this identity. That
completes our proof that the ansatz (60) for F4 in fact solves the full integral equation
(5) for the four-gluon Odderon state in the EGLLA.

Our result establishes that gluon reggeization takes place in the C-odd channel in
the same way as in the C-even channel. At the same time, it shows that one cannot
couple an actual four-gluon state to the γ → ηc impact factor in EGLLA. Instead, the
impact factor couples only to a superposition of three-gluon Odderon states.

An important property of our solution for F4 is that it satisfies the same Ward-type
identities which were found for the n-gluon amplitudes in the C-even sector in [26].
These identities follow directly from (60) and from the fact that F3 vanishes if one of
the three gluons carries zero transverse momentum. More precisely, we find that F4

vanishes if the first or last gluon momentum is zero,

F4(k1,k2,k3,k4)|
k1=0 = F4(k1,k2,k3,k4)|

k4=0 = 0 , (63)
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whereas for the case that the inner gluon’s momenta vanish the amplitude reduces to
the lower amplitude F3. The crucial point here is the specific behavior of the color
tensors in this reduction. For the case k2 = 0 we find

F a1a2a3a4
4 (k1,k2,k3,k4)|

k2=0 = gfa1a2kF
ka3a4
3 (k1,k3,k4) , (64)

or alternatively

F a1a2a3a4
4 (k1,k2,k3,k4)|

k2=0 = gfa2a3kF
a1ka4
3 (k1,k3,k4) + gfa2a4kF

a1a3k
3 (k1,k3,k4) .

(65)
To obtain the last two identities we have made use of the overall color neutrality of the
four gluons. Similarly, we find for the case k3 = 0

F a1a2a3a4
4 (k1,k2,k3,k4)|

k3=0 = gfka3a4F
a1a2k
3 (k1,k2,k4) , (66)

which also equals

F a1a2a3a4
4 (k1,k2,k3,k4)|

k3=0 = gfa2a3kF
a1ka4
3 (k1,k2,k4) + gfa1a3kF

ka2a4
3 (k1,k2,k4) .

(67)
These are exactly the same identities that also hold for the reggeizing part of the four-
gluon amplitude D4 in the C-even channel, that is for the part which does not contain
the two-to-four gluon vertex. For a detailed discussion of the Ward-type identities and
of their significance for finding an effective field theory of interacting reggeized gluons
we refer the reader to [26].

Note that up to now we have obtained our results only for the BLV Odderon solution
[34]. This is because we have considered the integral equations of the EGLLA for the
case of the γ → ηc impact factor, and the BLV solution is the only known Odderon
solution which couples to that impact factor in leading order. In the next section we
will show that an analogous solution for the four-gluon amplitude exists also for the
Janik-Wosiek (JW) Odderon solution [33].

5 Generalization to other Odderon solutions

The BLV solution that we have discussed so far is not the only possible solution of
the BKP equation for the C-odd three-gluon state. The other class of solutions has
the characteristic property that it vanishes if two of the transverse gluon coordinates
coincide. That class comprises the Janik-Wosiek Odderon solution [33], and we will
refer to that class generically as the JW Odderon. In order to study that class of
solutions in the EGLLA we have to make a different choice for the inhomogeneous
term of the integral equations that we have discussed in section 2. In order to couple
the JW Odderon to an impact factor in leading order we should consider an impact
factor in which the three gluons are coupled to three different partons, i. e. we need
three different points in transverse space to couple the gluons to. A suitable choice is
a baryonic impact factor. The use of perturbation theory is in general questionable for
light baryons. For the purpose of the present paper, however, we can think of a heavy
baryon or of a large momentum transfer

√
t in the case of a light baryon. Note that

the integral equations of section 2 remain fully valid after replacing the γ → ηc impact
factors F(n;0) by suitable baryonic impact factors.
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In contrast to the photon and the ηc meson baryons are not eigenstates of C-parity.
Baryonic impact factors therefore contain both C-even and C-odd contributions. A full
discussion of the baryonic impact factor with arbitrary numbers of gluons is beyond
the scope of the present paper. Instead, we will restrict ourselves to the impact factor
relevant for the JW solution and for up to four gluons. We hence consider only diagrams
in which at least one gluon is attached to each of the three quarks in the baryon, since
all other diagrams would vanish when folded with the JW solution. The diagrams we
have to consider for three gluons are hence of the type (to be specific here we choose a
p → p impact factor)

Eabc(ka,kb,kc) =

α

β

γ

p

α′

β′

γ′

cba

p

. (68)

Incidentally, this diagram contributes only to the C-odd channel. This is most easily
seen from its color factor,

εαβγ t
a
α′αt

b
β′βt

c
γ′γ εα′β′γ′ =

1

2
dabc , (69)

which contains only the symmetric color configuration of the three gluons. The full
relevant impact factor Bp→pJW

(3;0) is obtained by adding all diagrams of this type. (For a
baryon with three different constituent quark flavors we have six diagrams, otherwise
it can be less with suitable symmetry factors for equal quark flavors.) After this sum-
mation the impact factor is symmetric in the color labels and in the momenta of the
three gluons separately. Since our diagrams contribute only to the C-odd channel it is
clear that the corresponding diagrams for the p̄ → p̄ impact factor have the opposite
sign, but are otherwise identical. This is again due to the sign change of the vertices
when replacing all quarks by antiquarks. Therefore the C-odd impact factor for the
JW Odderon solution is identical to the p → p impact factor in this case,

BO JW
(3;0) =

1

2

[

Bp→pJW

(3;0) −Bp̄→p̄ JW

(3;0)

]

= Bp→pJW

(3;0) . (70)

As in the case of the γ → ηc impact factor, we will not need the specific dependence
of the diagram E in (68) on the gluon momenta, for phenomenological models we refer
the reader to [48] and [49] (see also [50]). Instead, we will again make use of the
reduction mechanism explained in section 3.4 and express the relevant diagrams with
four gluons in terms of three-gluon diagrams of the type (68). Note that the same cuts
are applied to the amplitudes as before such that the quarks between the gluons are
set on-shell. Therefore all conditions for the reduction mechanism are fulfilled and we
can apply it to each pair of gluons coupled to the same quark line.

Let us now consider the baryonic impact factor with four gluons. Given the two
classes of Odderon solutions with three gluons it is natural to expect that there will
also be two distinct classes of solutions in the case of four gluons. Here we concentrate
only on the JW type solution, and in analogy to the three-gluon case we consider only
diagrams contributing to the impact factor in which each quark has at least one gluon
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coupled to it. In the case of four gluons the resulting diagrams still contain both C-
even and C-odd contributions. We therefore need to make a projection onto the C-odd
amplitude by taking one half of the difference between the baryonic impact factor and
its anti-baryonic analog.

Obviously, in all possible diagrams there is exactly one quark to which two gluons
are attached. We hence have a sum over all six possible pairs of gluons. As an example
we consider the first two gluons being coupled to the same quark. A typical diagram
is

Ep→p
4 =

α

β

α′

β′

γ′γ

a4a3a2a1

p p

, (71)

and we have to sum over all possible permutations of the quark lines exactly as in the
three-gluon impact factor. The color part of that diagram is

εαβγ (ta2ta1)α′αt
a3
β′βt

a4
γ′γ εα′β′γ′ , (72)

since the three quarks are in an antisymmetric color state in the baryon.
In the case of the impact factor with an anti-baryon, the possible diagrams are

obtained in the same way. The diagram corresponding to the one above is

Ep̄→p̄
4 =

α′

β′

α

β

γγ′

a4a3a2a1

p̄ p̄

. (73)

For later convenience we have already relabeled the summation indices for the colors
in the incoming and outgoing baryon. The color factor for this diagram is

εα′β′γ′ (ta1ta2)α′αt
a3
β′βt

a4
γ′γ εαβγ . (74)

The momentum parts of both diagrams are identical, in particular there is no sign
change (in contrast to the three-gluon diagram, see above) because we have an even
number of gluons here. We can now apply the reduction formula (39) and find that the
momentum part of both diagrams is ig times the momentum part of the three-gluon
diagram E of (68) with the three momentum arguments (k1 + k2), k3, and k4. The
difference of the color factors of the two diagrams, on the other hand, is

1

2
εαβγ (ta2ta1 − ta1ta2)α′α t

a3
β′βt

a4
γ′γ εα′β′γ′ = −1

2
ifa1a2k εαβγ t

k
α′αt

a3
β′βt

a4
γ′γ εα′β′γ′ , (75)

where we have expressed that difference in terms of the color factor (69) of the three-
gluon diagram E.

Hence the total contribution of our two diagrams to the C-odd channel is

1

2

[

(Ep→p
4 )

a1a2a3a4 (k1,k2,k3,k4) −
(

Ep̄→p̄
4

)a1a2a3a4
(k1,k2,k3,k4)

]

=

=
1

2
gfa1a2kE

ka3a4(k1 + k2,k3,k4) . (76)
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The same mechanism obviously holds for the other permutations of the quark (respec-
tively antiquark) lines, and the last formula then naturally extends to the sum of those
diagrams. It remains to sum over all pairs of gluons, and for each pair of gluons we
obtain an analogous expression. Denoting the full impact factor obtained in this way by
BO JW

(4;0) we can write it in terms of the corresponding three-gluon impact factor BO JW
(3;0)

as

BO JW
(4;0) =

g

2

∑

i,j∈{1,...,4}
i<j





i j



 ⋆
(

BO JW
(3;0)

)b1b2b3
(ij) , (77)

where we have again used the notation introduced in section 3.5. We recall that the
superscript JW refers to the fact that we have restricted our analysis to diagrams in
which the gluons are coupled to all three quarks, that is to three distinct points in
transverse space, hence giving rise to the JW Odderon solution. Note that this formula
is identical to the way (43) in which the γ → ηc impact factor with four gluons was
expressed in terms of the one with three gluons. Clearly, reggeization takes place in
the same way in both impact factors.

Let us now proceed to the full three- and four-gluon amplitudes arising from the
part of the baryonic impact factor relevant to the JW Odderon. The coupled integral
equations for these amplitudes BO JW

3 and BO JW
4 are completely analogous to those

for F3 and F4, see (1) and (5), with the γ → ηc impact factors replaced by the impact
factors BO JW

(3;0) and BO JW
(4;0) discussed above. Since the latter two impact factors are

related to each other in exactly the same way as the three- and four-gluon γ → ηc
impact factors we can immediately apply the result of section 4. Hence we find a
solution for the full four-gluon amplitude BO JW

4 as a superposition of three-gluon
amplitudes BO JW

3 in exactly the way given in (60) or in (61). We conclude that also
in the JW class of Odderon solutions an actual four-gluon state does not contribute to
the amplitude. Instead, due to reggeization the four-gluon amplitude has the analytic
properties induced by the corresponding three-gluon amplitude. Again, reggeization
takes place in the same way as in the C-even sector. Also here the Ward-type identities
of [26] are fulfilled.

Two more remarks are in order concerning the baryonic impact factor and the way
in which we have computed it. In the present section we have obtained the C-odd
contribution to the impact factors as the difference of the baryonic impact factor and
its C-conjugate, that is by explicitly projecting onto the C-odd channel. That method
was also used (in position space) in [35] where the BLV Odderon solution was found in
the dipole picture. Implicitly, we have done something similar in the calculation of the
quark loop in the γ → ηc impact factor in section 3 above. There it was the γ5 matrix in
the loop which caused the relative signs between two diagrams related to each other by
the exchange of quark and antiquark line (corresponding to a C-parity transformation
of the quark-antiquark intermediate states). We found it more convenient to stay
as close as possible to previous calculations of the γ → ηc impact factor with three
gluons. Baryonic impact factors always contain both C-even and C-odd contributions
and therefore in this case the explicit projection is needed, in contrast to the γ → ηc
impact factor which couples only to C-odd states of gluons.

The calculation of the full baryonic impact factors for arbitrary numbers of gluons
is clearly feasible with the methods presented here, both for C-even and for C-odd
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states of gluons. The calculation of those impact factors would be important for a
better understanding of reggeization of the gluon in the high energy limit. We expect
that taking into account also contributions in which not all quark lines have gluons
attached one would obtain couplings to both classes of Odderon solution, that is JW
and BLV solutions. It should then be possible to obtain full solutions of the integral
equations for four gluons as superpositions of full JW and BLV solutions in analogy to
the solutions found here. That would provide further evidence for the universality of
gluon reggeization at high energies.

6 Summary and outlook

In this paper we have made the first step in a systematic investigation of C-odd ex-
changes in the color glass condensate. We have used the EGLLA, that is the pertur-
bative approach based on the resummation of logarithms of the energy where we allow
the number of gluons to fluctuate during the t-channel evolution. The lowest ampli-
tude is the well-known Odderon consisting of three reggeized gluons. In the present
paper we have discussed the four-gluon amplitude. We have computed the coupling of
four gluons to the γ → ηc impact factor and to a baryonic impact factor. Using these
results we have found exact solutions for the corresponding four-gluon amplitudes as
superpositions of three-gluon amplitudes. In each term of that superposition a pair
of gluons merges and behaves like a single gluon in the three-gluon amplitude. This
reggeization happens in exactly the same way as in the amplitudes in the C-even sector,
strengthening the evidence for the universality of this mechanism. Our result implies
that there is no direct coupling of an actual four-gluon state to the relevant impact
factors at the leading logarithmic level. Instead, the analytic properties of the C-odd
four-gluon amplitude in the EGLLA are fully determined by those of the three-gluon
amplitude.

It has been found that in the C-even channel the EGLLA is dominated by exchanges
with even numbers of gluons. More precisely, all amplitudes with odd numbers of gluons
in the t-channel reggeize and become superpositions of amplitudes with even numbers
of gluons. Hence the energy dependence is fully given by the spectrum of the n-gluon
states with even n. Correspondingly, the C-even amplitudes can be cast into the form
of an effective field theory in which only even n-gluon states occur which couple to each
other via effective transition vertices V2→2l [24]. Moreover, it has been observed that
the n-gluon states as well as the effective transition vertices are conformally invariant in
two-dimensional impact parameter space. The obvious goal is to identify that effective
conformal field theory of reggeized gluons. Note that this structure of an effective field
theory emerges only if one takes into account subleading terms in Nc in the n-gluon
amplitudes. The leading contributions in the expansion in 1/Nc reggeize completely
when coupled to a photon-impact factor, see for example [23] and [24]. In order to
study the interesting possibility of an effective conformal field theory of high energy
QCD it is therefore crucial to go beyond the large-Nc approximation.

The picture of an effective field theory of reggeized gluons in the C-even channel
suggests that a similar structure should also emerge in the C-odd channel. Our results
indicate that in the C-odd channel only states with odd numbers of gluons occur,
and that here the amplitudes with even number of gluons like F4 are superpositions
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of amplitudes with odd numbers of gluons. In that sense the study of the C-odd
amplitudes is complementary to the investigation of the C-even channel. We expect
that in the C-odd five-gluon amplitude a new effective three-to-five gluon vertex should
appear. In the present paper we have shown the main condition for this to be fulfilled,
namely the reggeization of the gluon in the C-odd amplitudes. Recall that the transition
kernels K2→m in the integral equations of the EGLLA always start from two gluons. We
therefore expect that the three-to-five transition proceeds via independent two-to-four
gluon transitions in each gluon pair. Since in the three-gluon amplitude each pair of
gluons is in a symmetric color octet state that would give us something like an effective
two-to-four gluon vertex in the symmetric octet. This in turn would be an element of
the effective theory which should play an important role also in the C-even channel,
for example in the transition from the four- to the six-gluon state. The study of the
C-odd five-gluon amplitude would therefore contribute to a better understanding of
the general picture of the effective field theory of the color glass condensate.

The analysis of the integral equation for the five-gluon amplitude will clearly require
the knowledge of the corresponding impact factor. In the present paper we have given
an explicit formula for it in the case of the γ → ηc impact factor. In that calculation
we have found different representations which are equivalent. In the approach to the
integral equations developed in [24], however, the impact factor is promoted to an ansatz
for the reggeizing part of the full amplitude. In that step, the different representations
for the impact factor will in general yield different results, posing a potential problem for
the further analysis of the integral equations. The origin of the different representations
was the fact that in the γ → ηc impact factor the gluons come naturally in two groups
according to whether they are coupled to the quark or the antiquark, but on the other
hand we need to split them into three groups for having three momentum arguments
of the Odderon amplitude. This problem can be avoided by using baryonic impact
factors instead. Therefore we consider it an important future project to generalize our
analysis of the baryonic impact factor to arbitrary numbers of gluons. This would give
us more information on the reggeization of the gluon and might be interesting also in
the C-even channel.

The knowledge of the three-to-five gluon transition in the effective field theory for
the color glass condensate would be very interesting from several points of view. It
would for example allow one to compute the splitting of an Odderon into an Odderon
plus a Pomeron. From the theoretical perspective, one could compare it with the known
splitting vertex of the Pomeron into two Odderons and hence study the properties of the
effective vertices under crossing. Also from a phenomenological perspective it would be
useful to compute that vertex. Clearly, it would help us in understanding the interplay
of Pomeron and Odderon exchanges in high energy reactions. Further, it would also
make it possible to compute the effect of Pomeron loops on the Odderon intercept, and
to study saturation effects for the Odderon in the large-Nc limit.
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A The Pomeron quark loop with n gluons

In this appendix we want to consider the γ∗ → γ∗ impact factor with n gluons attached.
Due to the quantum numbers of the photon the n-gluon system is in a C-even state and
hence contributes to the Pomeron channel. This particular impact factor was already
considered in [24] for up to six gluons in the context of the EGLLA. In [19] the same
impact factor was studied in the simpler case of the large-Nc limit. The considerations
in the present paper make it now straightforward to obtain the general form of that
impact factor for arbitrary gluon numbers.

There are some differences to the γ → ηc impact factor. Firstly, the lowest Pomeron
state is built of only two gluons and the color tensor is δa1a2 for this state. The
corresponding two-gluon Pomeron quark loop is called Da1a2

(2;0) and the momentum part

D(2;0) consists of only two diagrams. (Similar to the Odderon case described above,
there are originally four diagrams that can be reduced to two when taking into account
the symmetry under quark-antiquark exchange.) Another difference concerns the color
tensors. Our analysis of the γ → ηc impact factor made use of the fact that there
is a γ5 matrix at the meson vertex and therefore a mass term must be chosen in one
quark propagator to give a non-vanishing γ-trace. In the Pomeron case this is no longer
true, as there is a γµ instead of the γ5 matrix and all propagators therefore lend their
momentum parts in order to give a non-vanishing trace (in the limit that the quark
mass is negligible compared to the typical longitudinal quark momenta). This implies
that now states with an odd number of attached gluons come with f type tensors,
whereas states with an even number of gluons come with d type tensors.

The main difference becomes clear when considering the state with three t-channel
gluons. For the Odderon we already found two different color tensors when we added
one gluon to the minimal number of gluons, that is in the four-gluon quark loop. In
Pomeron case, on the contrary, the three-gluon Pomeron quark loop has only one color
tensor fa1a2a3 . In complete analogy to (42) the three-gluon Pomeron quark loop can
be constructed by considering the three possible combinations of splitting gluons. An
f tensor is again contracted with the color tensor of the amplitude:

Da1a2a3
(3;0) (k1,k2,k3) =

g

2

[

fa1a2b1δ
a3b2Db1b2

(2;0)(12, 3)

+ fa1a3b1δ
a2b2Db1b2

(2;0)(13, 2) + fa2a3b2δ
a1b1Db1b2

(2;0)(1, 23)
]

. (78)

Again, the arguments denote the indices of the momenta that enter as a sum in the two
gluon amplitude. As D(2;0) is symmetric under exchange of its momentum arguments,
we do not need to care about the order of its arguments. Similarly to the Odderon
case, the above expression can be written in terms of the momentum part of the lowest
impact factor only:

Da1a2a3
(3;0) (k1,k2,k3) =

g

2
fa1a2a3 [D(2;0)(12, 3) −D(2;0)(13, 2) + D(2;0)(1, 23)] . (79)

In the case of four gluons the amplitude contains two different color structures. The
corresponding momentum structures are again abbreviated as in the Odderon case in
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(41),

Da1a2a3a4
(4;0)

(k1,k2,k3,k4) = −g2da1a2a3a4 [D(2;0)(123, 4) + D(2;0)(1, 234) −D(2;0)(14, 23)]

−g2da2a1a3a4 [D(2;0)(134, 2) + D(2;0)(124, 3) −D(2;0)(12, 34)

−D(2;0)(13, 24)]

≡ da1a2a3a4D
(1)
(4;0) + da2a1a3a4D

(2)
(4;0) . (80)

The n-gluon quark loop for the Pomeron (n ≥ 4) is then constructed in complete

analogy to the Odderon quark loop in (55) as a superposition of these terms D
(1)
(4;0)

and D
(2)
(4;0). Clearly, the tensor −if now appears in the odd and the d tensors in the

even gluon-number amplitudes. These results are in complete agreement with the ones
found in [24] for up to n = 6.
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[arXiv:hep-ph/9509303].

[21] H. Lotter, Ph. D. Thesis, Hamburg University 1996, DESY 96-262,
arXiv:hep-ph/9705288.

[22] M. A. Braun and G. P. Vacca, Eur. Phys. J. C 6 (1999) 147
[arXiv:hep-ph/9711486].

[23] M. Braun, Eur. Phys. J. C 6 (1999) 321 [arXiv:hep-ph/9706373].

[24] J. Bartels and C. Ewerz, JHEP 9909 (1999) 026 [arXiv:hep-ph/9908454].

[25] C. Ewerz, Phys. Lett. B 472 (2000) 135 [arXiv:hep-ph/9911225].

[26] C. Ewerz, JHEP 0104 (2001) 031 [arXiv:hep-ph/0103260].

[27] C. Ewerz, Phys. Lett. B 512 (2001) 239 [arXiv:hep-ph/0105181].

[28] C. Ewerz and V. Schatz, Nucl. Phys. A 736 (2004) 371 [arXiv:hep-ph/0308056].

[29] J. Bartels, M. Braun and G. P. Vacca, arXiv:hep-ph/0412218.

[30] J. Bartels, L. N. Lipatov and G. P. Vacca, Nucl. Phys. B 706 (2005) 391
[arXiv:hep-ph/0404110].

[31] L. N. Lipatov, Sov. Phys. JETP 63 (1986) 904 [Zh. Eksp. Teor. Fiz. 90 (1986)
1536].

[32] L. N. Lipatov, Sov. J. Nucl. Phys. 23 (1976) 338 [Yad. Fiz. 23 (1976) 642].

[33] R. A. Janik and J. Wosiek, Phys. Rev. Lett. 82 (1999) 1092
[arXiv:hep-th/9802100].

[34] J. Bartels, L. N. Lipatov and G. P. Vacca, Phys. Lett. B 477 (2000) 178
[arXiv:hep-ph/9912423].

[35] Y. V. Kovchegov, L. Szymanowski and S. Wallon, Phys. Lett. B 586 (2004) 267
[arXiv:hep-ph/0309281].

[36] C. Ewerz, arXiv:hep-ph/0306137.

[37] S. J. Brodsky, I. Schmidt and J. J. Yang, Phys. Rev. D 70 (2004) 116003
[arXiv:hep-ph/0409279].
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