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πη pair hard electroproduction and exotic hybrid mesons
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We show that hard electroproduction is a promising way to study exotic hybrid mesons,
in particular through the hybrid decay channel H → πη. We discuss the πη general-
ized distribution amplitude, calculate the production amplitude and propose a forward-
backward asymmetry as a signal for the hybrid meson production.

1. Introduction

Present candidates for exotic hybrid mesons with JPC = 1−+ include π1(1400) which is
mostly seen through its πη decay and π1(1600) which is seen through its πη′ and πρ decays
[ 1]. The first experimental investigation of the hybrid with JPC = 1−+ as the resonance
in π−η mode was implemented by the Brookhaven collaboration E852 [ 2]. Theoretically
these states are objects of intense studies [ 3], mostly through lattice simulations [ 4].
We recently studied exotic hybrid meson electroproduction [ 5] and showed that its cross
section is sizable in the kinematics of JLab or HERMES experiments. We emphasize here
that an angular asymmetry in the reaction

e(k1) +N(p1) → e(k2) + π0(pπ) + η(pη) +N(p2) (1)

will sign unambiguously the existence of the hybrid meson.
Exotic hybrid mesons are expected to be quite copiously electroproduced since the

normalization of its distribution amplitude has been shown to be quite similar to the
one for the ρ-meson. If an experiment is equipped with a recoil detector, the hybrid
production events may be identified through a missing mass reconstruction, and all the
decay channels may then be analyzed. If not, one will have to base an identification process
through the possible decay products of the hybrid meson H . Since the hybrid candidate
known as the π1(1400) has a dominant πη decay mode, we proceed to the description of
the electroproduction process (1) or γ∗(q) +N(p1) → π0(pπ) + η(pη) +N(p2).
To perform a leading order computation of such process we need to introduce the concept
of generalized distribution amplitude [ 6]. Note that a very similar analysis may be carried
for the πη′ decay mode of the candidate π1(1600).
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2. πη generalized distribution amplitude

Let us briefly introduce and discuss the generalized distribution amplitude related to
the πη–to–vacuum matrix element. On the basis of Lorentz invariance, the π0η GDA may
be defined as :

〈π0(pπ)η(pη)|ψ̄f2(−
z

2
)γµ[−

z

2
;
z

2
]τ 3f2f1ψf1(

z

2
)|0〉 = pµπη

1
∫

0

dyei(ȳ−y)pπη ·z/2Φ(πη)(y, ζ,m2
πη), (2)

where the total momentum of πη pair is pπη = pπ + pη and where τ 3 is the usual Pauli
matrix whilem2

πη = p2πη. We omit here theQ2 dependence of the π0η GDA’s. Note that the

πη distribution amplitude Φ(πη) describes non resonant as well as resonant contributions.
It does not possess any symmetry properties concerning the ζ-parameter.
In the case of two different particles it is more convenient to define the parameter ζ in

the following way:

ζ =
p+π

(pπ + pη)+
−
m2

π −m2
η

2m2
πη

, 1− ζ =
p+η

(pπ + pη)+
+
m2

π −m2
η

2m2
πη

. (3)

The relation between ζ and the angle θcm are 2ζ − 1 = β cos θcm , β = 2|p|/mπη, where
|p| denote the modulus of three-dimension momentum of π and η mesons in the center–
of–mass system.
In the reaction under study, the πη state may have total momentum, parity and charge-

conjugation in the following sequence JPC = 0++, 1−+, 2++, ..., that corresponds to the
following values of the πη orbital angular momentum L: L = 0, 1, 2, ..., respectively. We
can see that a resonance with a πη decay mode for odd orbital angular momentum L
should be considered as an exotic meson.
The mass region around 1400 MeV is dominated by the strong a2(1329) (2

++) resonance
[ 7]. It is therefore natural to look for the interference of the amplitudes of hybrid and
a2 production, which is linear, rather than quadratic in the hybrid electroproduction
amplitude. Such interference arises from the usual representation of the πη generalized
distribution amplitude in the form suggested by its asymptotic expression :

Φ(πη), a(y, ζ,m2
πη) = 10y(1− y)C

(3/2)
1 (2y − 1)

2
∑

l=0

B1l(m
2
πη)Pl(cos θ). (4)

Keeping only L = 1 and L = 2 terms, and using the description of tensor meson distri-
bution amplitudes suggested by Ref [ 8], we model the πη distribution amplitude in the
following form:

Φ(πη)(y, ζ,m2
πη) = 30y(1− y)(2y − 1)

[

B11(m
2
πη)P1(cos θ) +B12(m

2
πη)P2(cos θ)

]

, (5)

with the coefficient functions B11(m
2
πη) and B12(m

2
πη) related to corresponding Breit-

Wigner amplitudes when m2
πη is in the vicinity of M2

a2 , M
2
H . We have (see the technical

details in Ref [ 5]):

B11(m
2
πη) =

5

3

gHπηfHMHβ

M2
H −m2

πη − iΓHMH
, B12(m

2
πη) =

10

9

iga2πηfa2M
2
a2
β2

M2
a2
−m2

πη − iΓa2Ma2

, (6)

where fH , fa2 , gHπη and ga2πη are the corresponding coupling constants.
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Figure 1. The angular asymmetry as a function of mπη.

3. Differential cross section for πη electroproduction

The amplitude of reaction (1):

T π0η = ū(k2, s2)γ · εLu(k1, s1)
1

q2
Aπ0η

(q) , |T π0η|2 =
4e2(1− yl)

Q2y2l
|Aπ0η

(q) |
2 , (7)

where

Aπ0η
(q) =

eπαsCF

NcQ

[

euHuu − edHdd

][

B11(m
2
πη)P1(cos θcm) +B12(m

2
πη)P2(cos θcm)

]

. (8)

Finally, the differential cross section of process (1) takes the form

dσπ0η

dQ2 dyl dt̂ dmπη d(cos θcm)
=

1

4(4π)5
mπηβ

ylλ2(ŝ,−Q2, m2
N)

|T π0η|2. (9)

4. Angular asymmetry

Asymmetries are often a good way to get a measurable signal for a small amplitude, by
taking profit of its interference with a larger one. In our case, since the hybrid production
amplitude may be rather small with respect to a continuous background, we propose to use
the supposedly large amplitude for a2 electroproduction as a magnifying lens to unravel
the presence of the exotic hybrid meson. Since these two amplitudes describe different
orbital angular momentum of the π and η mesons, the asymmetry which is sensitive to
their interference is an angular asymmetry defined by

A(Q2, yl, t̂, mπη) =

∫

cos θcm dσ
π0η(Q2, yl, t̂, mπη, cos θcm)

∫

dσπ0η(Q2, yl, t̂, mπη, cos θcm)
(10)

as a weighted integral over polar angle θcm of the relative momentum of π and η mesons.
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Note that this angular asymmetry is completely similar to the charge asymmetry which
was studied in π+π− electroproduction at HERMES [ 9] and discussed in Ref [ 10].
Due to the fact that the cos θcm-independent factors in both the numerator and de-

nominator of (10) are completely factorized and, on the other hand, these factors are the
same, we are able to rewrite the asymmetry (10) as

A(mπη) =

∫

d(cos θcm) cos θcm

∣

∣

∣

∣

B11(m
2
πη)P1(cos θcm) +B12(m

2
πη)P2(cos θcm)

∣

∣

∣

∣

2

∫

d(cos θcm)
∣

∣

∣

∣

B11(m2
πη)P1(cos θcm) +B12(m2

πη)P2(cos θcm)
∣

∣

∣

∣

2 . (11)

Our estimation of the asymmetry (11) is shown on Fig.1. Since the numerator of (11), i.e.
the real part of the product of B11(m

2
πη) and B

∗

12(m
2
πη), is proportional to the cosine of the

phase difference ∆δ1,2 = δl=1 − δl=2, the zeroth value of (11) takes place at ∆δ1,2 = π/2.
This is achieved for mπη ≈ 1.3GeV. Besides, one can see from Fig. 1 that the first
positive extremum is located at mπη around the mass of a2 meson while the second
negative extremum corresponds to the hybrid meson mass.
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