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Two-Loop Corrections to Bhabha Scattering

Alexander A. Penin1, 2

1Institut für Theoretische Teilchenphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
2Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia

The two-loop radiative photonic corrections to Bhabha scattering are computed in the leading
order of the small electron mass expansion up to the nonlogarithmic term. After including the
soft photon bremsstrahlung we obtain the infrared-finite result for the differential cross section,
which can directly be applied to a precise luminosity determination of the present and future e+e−

colliders.

PACS numbers: 11.15.Bt, 12.20.Ds

Electron-positron Bhabha scattering plays a special
role in particle phenomenology. It is crucial for extract-
ing physics from experiments at electron-positron collid-
ers since it provides a very efficient tool for luminosity
determination. The small angle Bhabha scattering has
been particularly effective as a luminosity monitor in the
LEP and SLC energy range because its cross section is
large and QED dominated [1]. At a future International
Linear Collider the luminosity spectrum is not monochro-
matic due to beam-beam effects. Therefore measuring
the cross section of the small angle Bhabha scattering
alone is not sufficient, and the angular distribution of
the large angle Bhabha scattering has been suggested
for disentangling the luminosity spectrum [2]. The large
angle Bhabha scattering is important also at colliders
operating at a center of mass energy

√
s of a few GeV,

such as BABAR, BELLE, BEPC/BES, DAΦNE, KEKB,
PEP-II, and VEPP-2M, where it is used to measure the
integrated luminosity [3]. Since the accuracy of the the-
oretical evaluation of the Bhabha cross section directly
affects the luminosity determination, remarkable efforts
have been devoted to the study of the radiative correc-
tions to this process (see [1] for an extensive list of ref-
erences). Pure QED contributions are particularly im-
portant because they dominate the radiative corrections
to the large angle scattering at intermediate energies 1-
10 GeV and to the small angle scattering also at higher
energies. The calculation of the QED radiative correc-
tions to the Bhabha cross section is among the classical
problems of perturbative quantum field theory with a
long history. The first order corrections are well known
(see [4] and references therein). To match the impressive
experimental accuracy the complete second order QED
effects have to be included on the theoretical side. The
evaluation of the two-loop virtual corrections constitutes
the main problem of the second order analysis. The com-
plete two-loop virtual corrections to the scattering ampli-
tudes in the massless electron approximation have been
computed in Ref. [5], where dimensional regularization
has been used for infrared divergences. However, this
approximation is not sufficient since one has to keep a
nonvanishing electron mass to make the result compatible
with available Monte Carlo event generators [1]. Recently

an important class of the two-loop corrections, which in-
clude at least one closed fermion loop, has been obtained
for a finite electron mass [6] including the soft photon
bremsstrahlung [7]. A similar evaluation of the purely
photonic two-loop corrections is a challenging problem
at the limit of present computational techniques [8]. On
the other hand in the energy range under consideration
only the leading contribution in the small ratio m2

e/s is
of phenomenological relevance and should be retained in
the theoretical estimates. In this approximation all the
two-loop corrections enhanced by a power of the large
logarithm ln(m2

e/s) are known so far for the small angle
[9] and large angle [10, 11] Bhabha scattering while the
nonlogarithmic contribution is still missing.

In this Letter we complete the calculation of the two-
loop radiative corrections in the leading order of the small
electron mass expansion. For this purpose we develop the
method of infrared subtractions, which simplifies the cal-
culation by fully exploiting the information on the gen-
eral structure of infrared singularities in QED.

The leading asymptotics of the virtual corrections can-
not be obtained simply by putting me = 0 because the
electron mass regulates the collinear divergences. In ad-
dition the virtual corrections are a subject of soft diver-
gences, which can be regulated by giving the photon a
small auxiliary mass λ. The soft divergences are canceled
out in the inclusive cross section when one adds the con-
tribution of the soft photon bremsstrahlung [12]. Here we
should note that the collinear divergences in the mass-
less approximation are also canceled in a cross section
which is inclusive with respect to real photons collinear
to the initial or final state fermions [13]. This means
that if an angular cut on the collinear emission is suffi-
ciently large, θcut ≫

√

m2
e/s, the inclusive cross section

is insensitive to the electron mass and can in principle
be computed with me = 0 by using dimensional reg-
ularization of the infrared divergences for both virtual
and real radiative corrections like it is done in the the-
ory of QCD jets. However, as it has been mentioned
above, all the available Monte Carlo event generators
for Bhabha scattering with specific cuts on the photon
bremsstrahlung dictated by the experimental setup em-
ploy a nonzero electron mass as an infrared regulator,
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which therefore has to be used also in the calculation of
the virtual corrections. Thus we have to compute the
two-loop virtual corrections to the four-fermion ampli-
tude A(2)(me, λ). The general problem of the calculation
of the small mass asymptotics of the corrections including
the power-suppressed terms can systematically be solved
within the expansion by regions approach [14]. To get the
leading term in m2

e/s we develop the method applied first
in Ref. [15] to the analysis of the two-loop corrections to
the fermion form factor in an Abelian gauge model with
mass gap, which is briefly outlined below. The main idea
is to construct an auxiliary amplitude Ã(2)(me, λ), which
has the same structure of the infrared singularities but is
simpler to evaluate. Then the difference A(2) − Ã(2) has
a finite limit δA(2) as me, λ → 0. This quantity does
not depend on the regularization scheme for A(2) and
Ã(2) and can be evaluated in dimensional regularization
in the limit of four space-time dimensions. In this way
we obtain A(2)(me, λ) = Ã(2)(me, λ)+ δA(2) +O(me, λ).
The singular dependence of the virtual corrections on in-
frared regulators obeys evolution equations, which imply
factorization of the infrared singularities [16]. One can
use this property to construct the auxiliary amplitude
Ã(2)(me, λ). For example, the collinear divergences are
known to factorize into the external line corrections [17].
This means that the singular dependence of the correc-
tions to the four-fermion amplitude on me is the same
as of the corrections to (the square of) the electromag-
netic fermion form factor. The remaining singular depen-
dence of the amplitude on λ satisfies a linear differential
equation [16] and the corresponding soft divergences ex-
ponentiate. A careful analysis shows that for pure pho-
tonic corrections Ã(2)(me, λ) can be constructed of the
two-loop corrections to the form factor and the products
of the one-loop contributions. Note that the corrections
have matrix structure in the chiral amplitude basis [18].
We have checked that in dimensional regularization the
structure of the infrared divergences of the auxiliary am-
plitude obtained in this way agrees with the one given
in Refs. [5, 19]. Thus in our method the infrared diver-
gences, which induce the asymptotic dependence of the
virtual corrections on the electron and photon masses, are
absorbed into the auxiliary factorized amplitude while
the technically most nontrivial calculation of the match-
ing term δA(2) is performed in the massless approxima-
tion. Note that the method does not require a loop-by-
loop subtracting of the infrared divergences since only a
general information on the infrared structure of the total

two-loop correction is necessary to construct Ã(2)(me, λ).
Clearly, the method can be adopted to different ampli-
tudes, mass spectra and number of loops. For the calcula-
tion of the matching term δA(2) beside the one-loop result
one needs the two-loop corrections to the four-fermion
amplitude and to the form factor in massless approxi-
mation, which are available [5, 20]. For the calculation
of Ã(2)(me, λ) one needs also the two-loop correction to
the form factor for λ ≪ me ≪ s which can be found in
Ref. [21] as a specific limit of the result for an arbitrary
momentum transfer. We independently cross-checked it
by integrating the dispersion relation with the spectral
density computed in Ref. [22]. The closed fermion loop
contribution, which is included into the analysis [21, 22],
can be separated by using the result of Ref. [23]. Let us
now present our result. We define the perturbative ex-
pansion for the Bhabha cross section in the fine structure
constant α as follows: σ =

∑

∞

n=0

(

α
π

)n
σ(n). The leading

order differential cross section reads

dσ(0)

dΩ
=

α2

s

(

1− x+ x2

x

)2

, (1)

where x = (1 − cos θ)/2 and θ is the scattering angle.
Virtual corrections taken separately are infrared diver-
gent. To get a finite scheme independent result we in-
clude the contribution of the soft photon bremsstrahlung
into the cross section. Thus the second order correc-
tions can be represented as a sum of three terms σ(2) =

σ
(2)
vv + σ

(2)
sv + σ

(2)
ss , which correspond to the two-loop vir-

tual correction including the interference of the one-loop
corrections to the amplitude, one-loop virtual correction
to the single soft photon emission, and the double soft
photon emission, respectively. When the soft photon en-
ergy cut is much less than me, the result for the two last
terms in the above equation is known in analytical form
and can be found e.g. in Ref. [10]. The second order cor-
rection can be decomposed according to the asymptotic
dependence on the electron mass

dσ(2)

dσ(0)
= δ

(2)
2 ln2

(

s

m2
e

)

+δ
(2)
1 ln

(

s

m2
e

)

+δ
(2)
0 +O(m2

e/s) ,

(2)

where the coefficients δ
(j)
i are independent onme. The re-

sult for the logarithmically enhanced corrections is known
(see [10] and references therein). For the nonlogarithmic
term we obtain

δ
(2)
0 = 8L2

ε +
(

1− x+ x2
)

−2
[(

4

3
− 8

3
x− x2 +

10

3
x3 − 8

3
x4

)

π2 +
(

−12 + 16x− 18x2 + 6x3
)

ln(x)

+
(

2x+ 2x3
)

ln(1− x) +
(

−3x+ x2 + 3x3 − 4x4
)

ln2(x) +
(

−8 + 16x− 14x2 + 4x3
)

ln(x) ln(1− x)
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+
(

4− 10x+ 14x2 − 10x3 + 4x4
)

ln2(1− x) +
(

1− x+ x2
)2

(16 + 8Li2(x) − 8Li2(1− x))

]

Lε +
(

1− x+ x2
)

−2

×
(

(

1− x+ x2
)2
(

8 + 4f
(2)
0 − 2f

(1)
0

2)

+

(

4

3
− 23

24
x− 25

8
x2 +

121

24
x3 − 19

6
x4

)

π2 +

(

1

18
− 203

360
x+

25

36
x2 − 41

180
x3

+
109

1440
x4

)

π4 +

(

7

2
x− 7x2 + 4x3

)

ζ(3) +

[

−93

8
+

231

16
x− 279

16
x2 +

93

16
x3 +

(

−3

2
+

13

4
x− 7

12
x2 − 11

8
x3

)

π2

+
(

12− 12x+ 8x2 − x3
)

ζ(3)

]

ln(x) +

[

9

2
− 43

8
x+

17

8
x2 +

29

8
x3 − 9

2
x4 +

(

x

4
+

x2

2
+

5

24
x3 +

19

48
x4

)

π2

]

ln2(x)

+

(

67

24
x− 5

4
x2 − 2

3
x3

)

ln3(x) +

(

7

48
x+

5

96
x2 − x3

12
+

43

96
x4

)

ln4(x) +

{

3x+ 3x3 +

(

7

6
x− 73

24
x2 +

15

8
x3

)

π2

+
(

−6 + 6x− x2 − 4x3
)

ζ(3) +

[

−8 +
21

2
x− 45

4
x2 + x4 +

(

1− x

6
+

x2

12
− x3

3
− x4

8

)

π2

]

ln(x) +

(

6− 11x

+
35

4
x2 − 15

8
x3

)

ln2(x) +

(

2

3
+

x

12
− x3

3
+

5

24
x4

)

ln3(x)

}

ln(1 − x) +

[

7

2
− 6x+

45

4
x2 − 6x3 +

7

2
x4 +

(

−17

24

+
7

6
x− 25

24
x2 − 13

48
x4

)

π2 +

(

−3 +
23

4
x− 23

4
x2 +

9

8
x3

)

ln(x) +

(

7

2
− 41

8
x+

31

8
x2 +

3

8
x3 − 13

16
x4

)

ln2(x)

]

× ln2(1− x) +

[

3

8
x+

1

6
x2 +

3

8
x3 +

(

−4 +
29

6
x− 49

12
x2 +

5

6
x3 +

7

8
x4

)

ln(x)

]

ln3(1− x) +

(

1

32
− 3

4
x+

71

48
x2

−29

24
x3 +

9

32
x4

)

ln4 (1− x) +

{

8− 16x+ 24x2 − 16x3 + 8x4 +

(

7

3
− 3x+

3

4
x2 +

5

6
x3 − 2

3
x4

)

π2 +

[

−6 +
11

2
x

−4x2 + x3 +

(

2− 11

4
x+

7

4
x2 +

x3

4
− x4

)

ln(x)

]

ln(x) +

[

3

2
x− x2

4
+ x3 +

(

− 4 + 9x− 15

2
x2 + 2x3

)

ln(x)

+

(

−1− 7

2
x+

25

4
x2 − 5x3 + 2x4

)

ln(1− x)

]

ln(1− x) +
(

2− 4x+ 6x2 − 4x3 + 2x4
)

Li2(x)

}

Li2 (x) +

{

− 8

+16x− 24x2 + 16x3 − 8x4 +

[

−2

3
+

4

3
x+

x2

2
− 5

3
x3 +

2

3
x4

]

π2 +

[

6− 8x+ 9x2 − 3x3 +

(

3

2
x− x2

2
− 3

2
x3

+2x4

)

ln(x)

]

ln(x) +

[

−x− x2

4
− x3

2
+
(

10− 14x+ 9x2
)

ln(x) +

(

−8 + 11x− 31

4
x2 +

x3

2
+ x4

)

ln(1− x)

]

× ln(1− x) +
(

−4 + 8x− 12x2 + 8x3 − 4x4
)

Li2(x) +
(

2− 4x+ 6x2 − 4x3 + 2x4
)

Li2(1− x)

}

Li2 (1− x) +

[

5

2
x

−5x2 + 2x3 +
(

−4− x+ x2 + 2x3 − 2x4
)

ln(x) +
(

6− 6x+ x2 + 4x3
)

ln(1 − x)
]

Li3 (x) +

[

x

2
− x3

2
+
(

− 6 + 5x

+3x2 − 5x3
)

ln(x) +
(

6− 10x+ 10x3 − 6x4
)

ln(1− x)
]

Li3 (1− x) +

(

−2 +
17

2
x− 17

2
x3 + 2x4

)

Li4 (x)

+

(

7x− 9

2
x2 − 4x3 + 6x4

)

Li4 (1− x) +

(

−6 + 4x+
9

2
x2 − 7x3

)

Li4

(

− x

1− x

)

)

, (3)

where ζ(3) = 1.202057 . . . is the value of the Rie-
mann’s zeta-function, Lin(z) is the polylogarithm, Lε =
[1− ln (x/(1 − x))] ln (εcut/ε), ε =

√
s/2, and εcut is the

energy cut on each emitted soft photon. In Eq.(3) f
(n)
0

stands for the n-loop nonlogarithmic coefficient in the se-
ries for the form factor at Euclidean momentum transfer

f
(1)
0 = π2/12− 1 ,

f
(2)
0 =

15

8
+

43

96
π2 − 59

1440
π4 − π2 ln 2

2
− 9

4
ζ(3) . (4)

As it follows from the generalized eikonal representation
[24], in the limit of small scattering angles the two-loop
corrections to the cross section are completely deter-
mined by the corrections to the electron and positron
form factors in the t-channel amplitude. In the limit
x → 0 Eq. (3) agrees with the asymptotic small angle ex-
pression given in [9, 24], which is a quite nontrivial check
of our result. Note that Eq. (3) is not valid for very small
scattering angles corresponding to x<∼m2

e/s and for al-
most backward scattering corresponding to 1−x<∼m2

e/s,
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FIG. 1: Logarithmically enhanced (dashed line) and nonloga-
rithmic (solid line) second order corrections to the differential
cross section of the small angle Bhabha scattering as functions
of the scattering angle for

√

s = 100 GeV and ln(εcut/ε) = 0,
in units of 10−3.

where the power-suppressed terms become important.

The second order corrections to the differential cross
section (α/π)2dσ(2)/dσ(0) are plotted as functions of the
scattering angle for the small angle Bhabha scattering at√
s = 100 GeV on Fig. (1) and for the large angle Bhabha

scattering at
√
s = 1 GeV on Fig. (2). We separate the

logarithmically enhanced corrections given by the first
two terms of Eq. (2) and nonlogarithmic contribution
given by the last term of this equation. All the terms in-
volving a power of the logarithm ln(εcut/ε) are excluded
from the numerical estimates because the corresponding
contribution critically depends on the event selection al-
gorithm and cannot be unambiguously estimated with-
out imposing specific cuts on the photon bremsstrahlung.
We observe that for scattering angles θ<∼18o and θ>∼166o

the nonlogarithmic contribution exceeds 0.05%, and in
the low energy case exceeds the logarithmically enhanced
contribution for θ<∼8o.

To conclude, we have derived the two-loop radiative
photonic corrections to Bhabha scattering in the leading
order of the small electron mass expansion up to non-
logarithmic term. The nonlogarithmic contribution has
been found numerically important for the practically in-
teresting range of scattering angles. Together with the
result of Refs. [6, 7] for the corrections with the closed
fermion loop insertions our result gives a complete ex-
pression for the two-loop virtual corrections. It should
be incorporated into the Monte Carlo event generators
to reduce the theoretical error in the luminosity determi-
nation at present and future electron-positron colliders
below 0.1%.
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√
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F. Zwirner (eds.), Physics at LEP2, CERN-96-01,
hep-ph/9602393; G. Montagna, O. Nicrosini, and F. Pic-
cinini, Riv. Nuovo Cim. 21N9, 1 (1998).

[2] N. Toomi, J. Fujimoto, S. Kawabata, Y. Kurihara, and T.
Watanabe, Phys. Lett. B 429, 162 (1998); R.D. Heuer,
D. Miller, F.Richard, and P.M. Zerwas, (eds.), TESLA
Technical design report. Pt. 3: Physics at an e+e− linear

collider, DESY-01-011C.
[3] C. M. Carloni Calame, C. Lunardini, G. Montagna,

O. Nicrosini, and F. Piccinini, Nucl. Phys. B584, 459
(2000).

[4] M. Bohm, A. Denner, and W. Hollik, Nucl. Phys. B304,
687 (1988).

[5] Z. Bern, L. Dixon, and A. Ghinculov, Phys. Rev. D 63,
053007 (2001).

[6] R. Bonciani, A. Ferroglia, P. Mastrolia, and E. Remiddi,
Nucl. Phys. B701, 121 (2004).

[7] R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi, and
J.J. van der Bij, Nucl. Phys. B716, 280 (2005).

[8] V.A. Smirnov, Phys. Lett. B 524, 129 (2002); Nucl. Phys.
Proc. Suppl. 135, 252 (2004); G. Heinrich and V.A.
Smirnov, Phys. Lett. B 598, 55 (2004); M. Czakon, J.
Gluza, and T. Riemann, Nucl. Phys. Proc. Suppl. 135, 83
(2004); Report No. DESY 04-222 and hep-ph/0412164.

[9] A.B. Arbuzov, V.S. Fadin, E.A. Kuraev, L.N. Lipatov,
N.P. Merenkov, and L. Trentadue, Nucl. Phys. B485,
457 (1997).

[10] A.B. Arbuzov, E.A. Kuraev, and B.G. Shaikhatdenov,
Mod. Phys. Lett. A 13, 2305 (1998)

[11] E.W. Glover, J.B. Tausk, and J.J. van der Bij, Phys.
Lett. B 516, 33 (2001).

[12] T. Kinoshita, J. Math. Phys. 3, 650, (1962); T.D. Lee
and M. Nauenberg, Phys. Rev. B 133, 1549 (1964).

[13] G. Sterman and S. Weinberg, Phys. Rev. Lett. 39, 1436
(1977)

http://arxiv.org/abs/hep-ph/9602393
http://arxiv.org/abs/hep-ph/0412164


5

[14] V.A. Smirnov, Applied Asymptotic Expansions in Mo-

menta and Masses (Springer-Verlag, Heidelberg, 2001).
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Smirnov, Eur. Phys. J. C 17, 97 (2000); Nucl. Phys. Proc.
Suppl. 89, 94 (2000).

[17] J. Frenkel and J.C. Taylor, Nucl. Phys.B116, 185 (1976).
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