
ar
X

iv
:h

ep
-p

h/
05

01
12

8v
2 

 2
0 

D
ec

 2
00

5
WM-05-101, INT-PUB 05-02, SLAC-PUB-10965

QCD and a Holographic Model of Hadrons

Joshua Erlich,1 Emanuel Katz,2 Dam T. Son,3 and Mikhail A. Stephanov4

1Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, USA
2Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309, USA

3Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550, USA
4Department of Physics, University of Illinois, Chicago, Illinois 60607-7059, USA

(Dated: January 2005)

We propose a five-dimensional framework for modeling low-energy properties of QCD. In the
simplest three parameter model we compute masses, decay rates and couplings of the lightest mesons.
The model fits experimental data to within 10%. The framework is a holographic version of the QCD
sum rules, motivated by the anti-de Sitter/conformal field theory (AdS/CFT) correspondence. The
model naturally incorporates properties of QCD dictated by chiral symmetry, which we demonstrate
by deriving the Gell-Mann–Oakes–Renner relationship for the pion mass.

Introduction.—QCD has eluded an analytic solution,
despite extensive efforts applied to this problem in the
past 30 years. Recently, the gravity/gauge, or anti-
de Sitter/conformal field theory (AdS/CFT) correspon-
dence [1] has revived the hope that QCD can be reformu-
lated as a solvable string theory. So far, theories which
can be solved using AdS/CFT techniques differ substan-
tially from QCD, most notably by the strong coupling
in the ultraviolet (UV) regime and the lack of asymp-
totic freedom. Nevertheless, certain important proper-
ties of QCD, such as confinement and chiral symmetry
breaking, are present in many of these theories, and the
gravity/gauge duality provides a new approach to study-
ing the resulting dynamics. An important development
in the prototypical example of N = 4 super Yang-Mills
(SYM) theory has been the introduction of fundamental
quarks using probe D7 branes [2]. The mesons that ap-
pear in these theories behave in many ways similarly to
the mesons in QCD [3, 4].

Inspired by the gravity/gauge duality we propose the
following complementary approach. Rather than deform
the SYM theory to obtain QCD [5], we start from QCD
and attempt to construct its five-dimensional (5D) holo-
graphic dual. In this Letter, we present an exploratory
study of a simple holographic model of QCD. The field
content of the 5D theory is chosen to reproduce holo-
graphically the dynamics of chiral symmetry breaking in
QCD, the boundary theory. The model has four free pa-
rameters, one of which is fixed by the number of colors;
the remaining three parameters can be fitted using three
well-measured observables, e.g., the ρ meson mass, the
pion mass, and the pion decay constant. The model then
predicts other low-energy hadronic observables with sur-
prisingly good accuracy.

Such an approach is similar in spirit to the construc-
tion of the QCD moose theory in Ref. [6], where the holo-
graphic description arises in the continuum limit of in-
finitely many hidden local symmetries (see also Ref. [7]).
As in Ref. [6], vector meson dominance and QCD sum
rules are natural consequences of our model. Hence, the
success of the model is not coincidental, but a result of

linking several proven approaches through the AdS/CFT
correspondence. We expect the success of our model to
diminish above roughly the scale given by the mass of the
lightest isospin-carrying spin-2 resonance, namely the a2

(1318 MeV [8]). In particular, we are completely neglect-
ing stringy physics which becomes important at higher
energies, and we have not included in our description any
modes with spin larger than 1. At this stage, we also ne-
glect running of the QCD coupling, which is likely a poor
approximation for a larger range of energies. While our
model is too simple to provide a complete dual descrip-
tion of QCD, its success seems to suggest that there is
a quantitatively useful reformulation of QCD as a string
theory in a higher-dimensional curved space.

Field content.—Table I illustrates the field content of
our model. The choice of the 5D fields is dictated by a
principle of the AdS/CFT correspondence: each opera-
tor O(x) in the 4D field theory corresponds to a field
φ(x, z) in the 5D bulk theory. The 5D theory dual
to QCD should, therefore, contain an infinite number
of fields corresponding to the infinite number of oper-
ators in QCD. There is, however, a small number of
operators that are important in the chiral dynamics:
the left- and right-handed currents corresponding to the
SU(Nf )L×SU(Nf )R chiral flavor symmetry, and the chi-
ral order parameter (see Table I). We shall include in
our model only the 5D fields which correspond to these
operators and neglect all other fields.

The 5D masses m5 of the fields Aa
Lµ, Aa

Rµ, and X are
determined via the relation [9, 10] (∆ − p)(∆ + p− 4) =
m2

5, where ∆ is the dimension of the corresponding p-
form operator—see Table I. We assumed here that these
operators keep their canonical dimensions, which is true

TABLE I: Operators/fields of the model

4D: O(x) 5D: φ(x, z) p ∆ (m5)
2

q̄LγµtaqL Aa
Lµ 1 3 0

q̄RγµtaqR Aa
Rµ 1 3 0

qα
Rqβ

L (2/z)Xαβ 0 3 −3
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only for the conserved currents. However, for the field
X we could easily incorporate corrections to its classical
dimension. The factor 1/z in Table I is dictated by the
dimension of the operator q̄q, while the factor of 2 is of no
physical significance and is chosen for later convenience.

We shall choose the simplest possible metric for our
model, namely, a slice of the anti-de Sitter (AdS) metric,

ds2 =
1

z2
(−dz2 + dxµdxµ), 0 < z ≤ zm. (1)

The fifth coordinate z corresponds to the energy scale, as
higher energy (or momentum transfer Q2) QCD physics
is reflected by the behavior of the fields closer to the
AdS boundary z = 0: Q ∼ 1/z. By virtue of the con-
formal isometry of the AdS space, in such a model the
running of the QCD gauge coupling is neglected in a win-
dow of scales until an infrared (IR) scale Qm ∼ 1/zm. To
make the theory confining, one introduces an IR cutoff
in the metric at z = zm where spacetime ends, in anal-
ogy with the case of the cascading gauge theory studied
in Ref. [11]. We shall call z = zm the “infrared brane”
and impose certain boundary conditions on the fields at
z = zm. Certainly, this is only a crude model of con-
finement. Indeed, our model requires two dimensionful
parameters related to chiral symmetry breaking, whereas
in QCD there is only one. In addition, an UV cutoff can
be provided by setting the boundary to z = ǫ instead of
z = 0. Below we shall frequently use such a cutoff as a
mathematical tool, but we shall always imply the limit
of ǫ→ 0 for simplicity.

5D action and chiral symmetry breaking.—The action
of the theory in the bulk is

S =

∫

d5x
√
g Tr

{

|DX |2 + 3|X |2 − 1

4g2
5

(F 2

L + F 2

R)
}

(2)

where DµX = ∂µX − iALµX + iXARµ, AL,R = Aa
L,Rt

a,
and Fµν = ∂µAν −∂νAµ− i[Aµ, Aν ]. As usual, the gauge
invariance in the 5D theory corresponds to the conserva-
tion of the global symmetry current in the 4D theory.

At the IR brane we must impose some gauge invariant
boundary conditions, and we make the simplest choice:
(FL)zµ = (FR)zµ = 0. QCD does not a priori fix this
boundary condition: for example, there may be addi-
tional terms in the Lagrangian localized at zm, such as
|DX |2 and F 2

L + F 2
R. To estimate the sensitivity to such

terms, we checked that an F 2 boundary term with O(1)
coefficient (keeping the ρ mass fixed) yields a 10% cor-
rection to the ρ decay constant. We will be using the
gauge Az = 0 and neglecting boundary terms in the La-
grangian. In this case our boundary conditions are sim-
ply Neumann.

The expectation value of the field X is determined by
the classical solution satisfying the UV boundary condi-

tion (2/ǫ)X(ǫ) = M for quark mass matrix M :

X0(z) =
1

2
Mz +

1

2
Σz3, (3)

The matrix Σ is determined by the IR boundary con-
dition on X . Instead of specifying this condition we
shall choose Σ as an input parameter of the model. The
meaning of Σ in QCD can be found by calculating the
variation of the vacuum energy with respect to M [12]:
Σαβ = 〈q̄αqβ〉. We shall assume, as usual, Σ = σ1 and
take M = mq1.

At this stage the model has four free parameters: mq,
σ, zm and g5. The gauge coupling g5 will be fixed by the
QCD operator product expansion (OPE) for the product
of currents, leaving three adjustable parameters.

We will focus on the Nf = 2 lightest flavors and neglect
effects of O(m2

q). Therefore, in Table I, α, β = 1, 2; a, b =
1, 2, 3 and ta = σa/2, where σa are the Pauli matrices.

Matching the 5D gauge coupling.—We will use the
holographic duality to relate of the 5D coupling g5 in (2)
to the number of colors Nc in QCD. The precise sense
of the holographic correspondence is the equivalence be-
tween the generating functional of the connected correla-
tors in the 4D theory W4D[φ0(x)] and the effective action
of the 5D theory S5D,eff [φ(x, ǫ)], with UV boundary val-
ues of the 5D bulk fields set to the value of the sources
in 4D theory:

W4D[φ0(x)] = S5D,eff [φ(x, ǫ)] at φ(x, ǫ) = φ0(x). (4)

QCD Green’s functions can therefore be obtained by dif-
ferentiating the 5D effective action with respect to the
sources. In the case that stringy effects can be neglected,
S5D,eff is simply given by Eq. (2). The action is evalu-
ated on solutions to the 5D equations of motion subject
to the condition that the value of each bulk field at the
boundary z = ǫ → 0 be given by the source φ of the
corresponding 4D operator O (see Table I).

We may now fix the 5D gauge coupling by comparing
the result for the vector current two-point function ob-
tained from the above prescription with that of QCD.
Introducing the vector field as V = (AL + AR)/2, one
finds, in the Vz(x, z) = 0 gauge, the equation of motion
for the transverse part of the gauge field:

[

∂z

(

1

z
∂zV

a
µ (q, z)

)

+
q2

z
V a

µ (q, z)

]

⊥

= 0. (5)

Here V a
µ (q, z) is the 4D Fourier transform of V a

µ (x, z).
The equations of motion are linearized, as is appropriate
for determination of two-point functions. Evaluating the
action on the solution leaves only the boundary term

S = − 1

2g2
5

∫

d4x

(

1

z
V a

µ ∂zV
µa

)

z=ǫ

. (6)

If V µa
0

(q) is the Fourier transform of the source of the
vector current Ja

µ = q̄γµt
aq at the boundary then letting
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V µ(q, z) = V (q, z)V µ
0

(q), we require that V (q, ǫ) = 1.
Differentiating twice with respect to the source V0, we
arrive at the vector current two-point function,

∫

x

eiqx〈Ja
µ(x)Jb

ν(0)〉 = δab(qµqν−q2gµν)ΠV(Q2), (7a)

ΠV(−q2) = − 1

g2
5
Q2

∂zV (q, z)

z

∣

∣

∣

∣

z=ǫ

, (7b)

where Q2 = −q2. For large Euclidean Q2 we only need
to know V (q, z) near the boundary,

V (Q, z) = 1 +
Q2z2

4
ln(Q2z2) + . . . (8)

which up to contact terms gives

ΠV(Q2) = − 1

2g2
5

lnQ2. (9)

On the other hand, we can compute ΠV from QCD by
evaluating Feynman diagrams [13]. The leading-order
diagram is the quark bubble,

ΠV(Q2) = − Nc

24π2
lnQ2. (10)

This leads to the identification

g2

5 =
12π2

Nc
, (11)

which completes the definition of the action (2).
Hadrons.—The hadrons of QCD correspond to the nor-

malizable modes of the 5D fields. These normalizable
modes satisfy the linearized equation of motion and decay
sufficiently rapidly near the boundary z → 0 so as to have
a finite action. The IR boundary condition gives rise to
a discrete tower of normalizable modes. The eigenvalue
of a normalizable mode is the squared mass of the cor-
responding meson, and the derivative of the mode near
the UV boundary yields the decay constant.

To illustrate the above, consider the tower of the ρ
mesons. A ρ wavefunction, ψρ(z), is a solution to Eq. (5)
for an arbitrary component of Vµ with q2 = m2

ρ, sub-
ject to ψρ(ǫ) = 0, ∂zψρ(zm) = 0 and normalized as
∫

(dz/z)ψρ(z)
2 = 1. Consider the Green’s function cor-

responding to Eq. (5) for an arbitrary component of V µ:

G(q; z, z′) =
∑

ρ

ψρ(z)ψρ(z
′)

q2 −m2
ρ + iε

. (12)

(The iε prescription, among other things, guarantees the
positivity of the spectral function, contrary to the claim
of Ref. [14].) One can show that V (q, z′) of Eq. (7b) is
given by −(1/z)∂zG(q; z, z′) at z = ǫ. Now from (7b) we
find:

ΠV (−q2) = − 1

g2
5

∑

ρ

[ψ ′
ρ (ǫ)/ǫ]2

(q2 −m2
ρ + iε)m2

ρ

. (13)

This allows us to extract the decay constants Fρ:

F 2

ρ =
1

g2
5

[ψ ′

ρ (ǫ)/ǫ]2 =
1

g2
5

[ψ ′′

ρ (0)]2, (14)

where Fρ is defined by 〈0|Ja
µ |ρb〉 = Fρδ

abεµ for a ρ meson
with polarization εµ. Eqs. (9) and (13) are the holo-
graphic version of the QCD sum rules.

In the axial sector (a1 and π mesons), the action to
quadratic order is

S =

∫

d5x

[

− 1

4g2
5
z
F a

AF
a
A +

v(z)2

2z3
(∂πa −Aa)2

]

, (15)

where we have defined v(z) = mqz + σz3, A = (AL −
AR)/2, and X = X0 exp(i2πata). In the Az = 0 gauge,
the resulting equations of motion in 4D momentum space
are (Aµ = Aµ⊥ + ∂µϕ)

[

∂z

(

1

z
∂zA

a
µ

)

+
q2

z
Aa

µ − g2
5v

2

z3
Aa

µ

]

⊥

= 0; (16)

∂z

(

1

z
∂zϕ

a

)

+
g2
5v

2

z3
(πa − ϕa) = 0; (17)

−q2∂zϕ
a +

g2
5v

2

z2
∂zπ

a = 0. (18)

The a1, being a spin-1 particle, is the solution to Eq. (16)
with ψa1

(0) = ∂zψa1
(zm) = 0. The a1 decay constant,

Fa1
, is given by an expression similar to Eq. (14), but

with ρ replaced by a1.
Our theory has all the consequences of chiral symme-

try built in. Let us derive the Gell-Mann–Oakes–Renner
(GOR) relation,

m2

πf
2

π = (mu +md)〈q̄q〉 = 2mqσ. (19)

Since 〈0|Aµ|π〉 = ifπqµ, the axial current correlator in
the mπ = 0 limit has a singularity at q2 = 0: ΠA(−q2) →
−f2

π/q
2. Using the holographic recipe [cf. Eq. (7)],

f2

π = − 1

g2
5

∂zA(0, z)

z

∣

∣

∣

∣

z=ǫ

, (20)

where A(0, z) is the solution to Eq. (16) with q2 = 0,
satisfying A′(0, zm) = 0, A(0, ǫ) = 1. The pion is the so-
lution to Eqs. (17) and (18), subject to ϕ′(zm) = ϕ(ǫ) =
π(ǫ) = 0. We may construct such a solution perturba-
tively in mπ by letting ϕ(z) = A(0, z) − 1. Then, from
Eq. (18), to leading order in m2

π,

π(z) = m2

π

∫ z

0

du
u3

v(u)2
1

g2
5
u
∂uA(0, u) . (21)

The function u3/v(u)2 has a significant support only for
u ∼ zc ≡

√

mq/σ. The function ∂uA(0, u)/(g2
5u) for such

small values of u can be replaced by its value at u = ǫ,
which is related to fπ via (20). Performing the integral
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one finds that π = −m2
πf

2
π/(2mqσ) for z ≫ zc. Equations

(16) and (17) are solved by ϕ = A(0, z)−1 and π = const
for z ≫ zc only if π = −1, hence m2

πf
2
π = 2mqσ+O(m2

q).
Meson interactions and gρππ.—The meson interactions

can be read from the nonbilinear terms in the 5D action.
For example, we find that the π-ρ coupling is given by

gρππ = g5

∫

dz ψρ(z)

(

φ′(z)2

g2
5
z

+
v(z)2(π − φ)2

z3

)

. (22)

The normalization of π is fixed by the pion kinetic term:
integrating the function in parentheses in Eq. (22) gives 1.
One must be aware that this 3-meson amplitude could be
sensitive to the F 3 terms not yet included in our model.

Predictions.—From Eq. (5) and the Dirichlet boundary
conditions, the ρ wavefunctions are Bessel functions with
masses determined by zeroes of J0(qzm). Hence, mρ =
2.405/zm = 776 MeV fixes zm = 1/(323 MeV). mq and
σ can then be fit to the experimental values of mπ and
fπ, yielding mq = 2.29 MeV and σ = (327 MeV)3. These
parameters correspond to Model A in Table II.

The rms error, εrms =
(
∑

O(δO/O)2/n
)1/2

(where
δO/O is the fractional error of an observable O and n = 4
equals the number of observables minus the number of
parameters) for Model A is 15%.

A global fit to all seven observables (Model B) yields
the parameters, zm = 1/(346 MeV), mq = 2.3 MeV and
σ = (308 MeV)3. The last column of Table II lists the
calculated observables in this model. The rms error of
Model B is a remarkably small 9%.

Discussion and outlook.—The holographic model of
QCD studied here is quite crude and depends on only
three free parameters, but it agrees surprisingly well with
the seven experimentally measured observables which we
have studied. There are several ways in which we may
attempt to extend and improve the model. (i) The glue-
ball spectrum can be calculated from the gravitational
and dilaton modes in the theory, which were not in-
cluded in this study. (ii) It is straightforward to de-
scribe power corrections in the current correlators [17].
Here we matched the gauge coupling g5 in our model to
the leading term—the unit operator—in the OPE of the
product of currents. Higher dimension operators also ap-
pear in the OPE, suppressed by powers of the Euclidean
momentum Q. These corrections can be calculated in
QCD [13]. In the holographic model, these corrections
arise from trilinear and higher terms in the 5D action,
such as

∫

d5x
√
gX2F 2. Matching the QCD OPE coef-

ficients to the coefficients of the 5D action provides a
method of building and constraining the effective 5D ac-
tion. (iii) Including the strange quark into the model
with an approximate SU(3)×SU(3) chiral symmetry is a
natural extension of the model. (iv) The chiral anomaly
can be incorporated via a 5D Chern-Simons term. (v) We
can include corrections to the dimensions of the chiral or-
der parameters by varying the mass of the corresponding

TABLE II: Results of the model for QCD observables. Model
A is a fit of the three model parameters to mπ, fπ and mρ

(see asterisks). Model B is a fit to all seven observables.

Measured Model A Model B

Observable (MeV) (MeV) (MeV)

mπ 139.6±0.0004 [8] 139.6∗ 141

mρ 775.8±0.5 [8] 775.8∗ 832

ma1
1230±40 [8] 1363 1220

fπ 92.4±0.35 [8] 92.4∗ 84.0

F
1/2

ρ 345±8 [15] 329 353

F
1/2

a1
433±13 [6, 16] 486 440

gρππ 6.03±0.07 [8] 4.48 5.29

fields X in the 5D theory, and we can include running
of the gauge coupling via logarithmic corrections to the
AdS geometry. It is interesting to note in this context,
that those results which follow from partial conservation
of the axial current, e.g., the GOR relation, continue to
hold as we vary the 5D mass of X in the model [17].
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