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EXPLICIT EQUATIONS FOR RENORMALIZATION PRESCRIPTIONS

IN THE CASE OF PION-NUCLEON SCATTERING ∗

A.VERESHAGIN

University of Bergen and St. Petersburg State University

E-mail: Alexander.Vereshagin@ift.uib.no

This talk is a natural continuation of that given by V. Vereshagin [1]. We discuss

some details not covered in that talk and review the calculational technique using

the πN elastic scattering as an example. Finally, we briefly mention some results of

numerical comparison with experimental data. More technical details can be found

in the talk by K. Semenov-Tian-Shansky [2] devoted to the analysis of elastic KN

scattering.

1 General notes

As explained in the talk [1], our approach does not assume any “nuclear democracy”. In

contrast, it discriminates between stable particles and resonances. Only stable particles

survive as asymptotic states, and it is the stable sector where the S-matrix is unitary

(see, e.g. [3]). If we restrict ourselves by a consideration of the strong non-strange sector,

then the only stable particles are pions and nucleons. Hence, to illustrate the application

of our technique by the relatively simple process, we can choose among ππ, NN , and

πN -elastic scattering (along with the cross-symmetric processes). Our choice of (πN) is

mainly dictated by the absence of extra phenomenological symmetries appearing in the

former two reactions and, at the same time, by the relatively rich set of experimental

data.

When working in the framework of effective theory one has to take account of all

possible vertices and resonances which can contribute to the amplitude of the reaction

under consideration. Since the perturbation theory which we rely upon is of Dyson’s

type, we need to construct the perturbation series order by order, starting from the tree

level. However, at this very first step we immediately meet the difficulty because to

obtain the tree level amplitude we need to sum an infinite number of contact vertices

and exchange graphs (Fig. 1).
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Figure 1: Tree graphs: Rs, Rt and Ru stand for all admissible resonances in the s-, t-,

and u-channels, respectively; summation over all possible kinds of vertices is implied,

though the summation order is still unspecified.

The resulting sum is nothing but functional series, thus the problem of summation order

is essential one. As it is demonstrated in [1, 4, 5, 6], our approach gives a way to overcome

the obstacle. Simply speaking, the recipe we suggest reads:

1. Classifying all possible graphs and switching to the minimal parametrization [6]

single out the set of resultant parameters of the given level (here — tree level). The

latter are assigned the physical values with the help of relevant renormalization

prescriptions (RP’s).

2. Being guided by the uniformity and summability [1] principles use the Cauchy

formula for given order (tree level) amplitude in certain domain of the space of

kinematical variables.

3. Equating different expressions for the amplitude (the latter results from the Cauchy

formula application) in the domains of their mutual validity, obtain the system

of bootstrap equations. The latter allow one to specify the exact expressions of

the amplitude under consideration and give restrictions for the values of physical

parameters of the theory.

In this talk we shall take a closer look at the first and the last steps.

2 Minimal (resultant) vertices and renormalization conditions

As it is seen from Fig 1, there are Hamiltonian1 three- and four-leg couplings and masses

which parametrize the tree level amplitude in our case.

Minimal parametrization is a first step toward the constructing of so-called essential

parameters [7, 6] — the independent parameters needed to describe the (on-shell) S-

matrix. In case of general process amplitude of arbitrary loop order the minimal couplings

1In [6] it is explained why it is preferably to use the effective Hamiltonian, rather than Lagrangian

when constructing a theory with unlimited number of field derivatives.
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are the natural building blocks for the resultant parameters of which, in turn, the essential

parameters can be constructed. However, in case of triple vertices at tree level, this

structure gets simplified, and all the contributing three-leg minimal couplings appear

also to be “resultant”.

The minimal vertices are, roughly speaking, the on-shell vertices. One just needs to

take the effective vertex of a given order (at tree level this is a matrix element of the sum

of all Hamiltonian vertices constructed of a given set of fields with all possible derivatives

and matrix structures), put it on the mass shell, present the result in a Lorentz-covariant

form and cross the wave functions out. The structure surviving after this is done, being

considered as a function of independent components of off-shell momenta2 is called the

minimal vertex. The coefficients in the formal series for the corresponding formfactors

are called the minimal couplings3. One easily observes that the tree-level triple minimal

couplings are constants, because on the mass shell any triple vertex does not depend upon

external momenta. For example, all the minimal vertices with resonances of isospin 1

2

and half-integer spin l + 1

2
contributing to our process at tree level can be listed as the

following “Hamiltonian monomials”4:

g
R̂
NσR̂µ1...µl

∂µ1. . . ∂µlπ +H.c. for the resonance parity P = (−1)l+1, and

igRNσγ5Rµ1...µl
∂µ1. . . ∂µlπ +H.c. for the resonance parity P = (−1)l,

where σa stands for Pauli matrix, π, N , and R denote pion, nucleon and resonance fields,

respectively, while g’s are the minimal coupling constants which, of course, depend on the

resonance spin and mass. The essence of the reduction theorem proved in [6] is that any

vertex that differs from the listed above by the number (or/and position) of derivatives,

when added to the Feynman rules will only result in certain rescaling of g’s as long as

one computes the S-matrix.

In the same way we can specify all the 4-leg minimal couplings contributing at tree

level, but in our case it appears to be unnecessary. The reason is not simple, so let

us not discuss their structure at this stage and suppose that transition to the minimal

2Energy-momentum conservation is, of course, implied. For the precise definition of minimal vertex

and the related classification see [6]
3They are, of course, functions of initial Hamiltonian couplings. However the latter functional de-

pendence is not of interest anymore: we are not going to fix any of couplings in the initial Hamiltonian,

rather, we will prefer to operate with minimal (resultant) parameters directly.
4Lacking space here, we do not list the remaining vertices with half-integer spin resonances and those

with integer spin contributing in t-channel.
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parametrization has been done. The main thing one should keep in mind is that the

S-matrix is completely specified when the values of all the minimal couplings are given.

The way one assigns certain values to the S-matrix parameters in perturbation theory

is the renormalization prescriptions (RP’s). To obtain our tree level amplitude, we need

to specify 3- and 4-leg couplings and masses. Forgetting for a while about 4-leg couplings

we concern ourselves with the remaining parameters. As pointed out in [6], the resultant

parameters are the natural candidates to impose the RP’s under the condition that the

renormalization point is taken on shell and renormalized perturbation theory is used. In

this scheme the action is written in terms of physical parameters plus counter terms, the

latter are tuned in a way that the values of those parameters remains unchanged after

renormalization. So, we imply that the Feynman rules are written in the form of physical

part plus counter terms at every loop order and it is the real parts of physical masses

that appear in bare propagators. Simply speaking, we impose the following set of RP’s:

Re V (p1, p2, p3) = Gphys at p
2
i = M2

iphys
,

and

Re Σ(p) = 0 at p2 = M2
phys,

for every self-energy Σ and every three-point vertex V . Now we are at tree level, thus

there are no counter terms relevant, therefore the couplings g are also physical (experi-

mentally measurable).

There is no phenomenological evidence that the mass spectrum and spin values of

resonances are bounded from above. Therefore we need to reserve the possibility to

work with infinite set of resonances of arbitrary high spin value. In other words, there

is still infinite number of minimal couplings coming even from three-leg vertices. One of

the main points of our work is that these couplings are not independent: there are self-

consistency conditions that restrict their values. We call this conditions as the bootstrap

equations.

3 Bootstrap and experimental data

Because of lack of space we do not discuss here the method of constructing the well defined

expressions for the amplitude at tree level or at any given order of perturbation theory.

It is enough to say that the main tool allowing to do this is just the celebrated Cauchy

integral formula with the summability and asymptotic uniformity conditions discussed

in [1]. The final expression turns out to be completely parametrized by the minimal
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couplings. Moreover, in the case of tree level πN elastic scattering amplitude only triple

resultant vertices enter this expression. The joint contribution of four-leg vertices turns

out to be uniquely determined by masses and triple couplings5.

The bootstrap equations mirror the crossing symmetry of a given order amplitude

within our perturbation scheme. They can be rewritten in a form of infinite set of

numerical equations for the amplitude parameters [4, 5]. What is essential to stress here

is that the parameters that enter those equations are all minimal, and hence, as explained

in the previous section, they are physical or (at least, in principle) measurable.

Using the renormalized perturbation theory with on-shell RP’s at each loop level

one obtains certain set of bootstrap equations which should be satisfied to ensure self-

consistency (usually crossing symmetry). The form of these equations may vary from

level to level, but all of them are the equations for physical parameters, and the full

set of RP’s should be compatible with all of them. To put it another way, the set of

renormalization prescriptions for couplings and masses must be a solution to the full set

of the bootstrap constraints.

We do not know how the solution of this latter set looks like. Even at tree level their

form is highly non-linear. However, if our perturbation scheme can describe nature, then

the experimentally fitted values of coupling constants and masses must fulfil the system

of bootstrap conditions. That is why we have performed various calculations to check

the consistency of our approach with the experimental data. Namely, we checked the

tree level bootstrap equations for ππ and πK elastic scattering amplitudes (see [4] and

references therein), and recently analogous calculations were performed for the cases of

πN [8] and KN elastic scattering (the latter case is discussed in the talk by K. Semenov-

Tian-Shansky [2]). There were no contradiction found so far, and in most cases examined

the experimental data seem to support our approach nicely.

Apart from the question of formal compatibility with experiment, there is a question

of efficiency. One can ask how many loops should be taken into account and how many

parameters fixed to obtain the amplitude that could fit well the data at least at some

kinematical region. To check this point we performed a calculation of low energy coeffi-

cients6 for the πN amplitude. This coefficients measured and fitted in [9] are reproduced

in our approach with very good accuracy already at tree level7, and to gain reasonable

5This statement is by no means trivial and requires separate consideration. The main reason for it is

the known values of Regge intercepts which, by uniformity principle, define the asymptotic behavior of

the tree level amplitude. This analysis will be published elsewhere.
6Taylor expansion coefficients around the crossing symmetry point.
7Of course, it is partly because this region is relatively far from the branch cut points. In case if the



6 A. VERESHAGIN HSQCD 2004

precision it is enough to specify the parameters of just few lightest resonances. The

results of this analysis were summarized in [8]; the details will be published elsewhere.
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