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Abstract

In the framework of perturbative QCD approach, we calculate the branching ratio and CP

asymmetry for B0
s (B̄s) → π±K∓ and Bs(B̄s) → π0K̄0(K0) decays. Besides the usual fac-

torizable diagrams, both non-factorizable and annihilation type contributions are taken into

account. We find that (a) the branching ratio of B0
s (B̄s) → π±K∓ is about (6 − 10) × 10−6;

Br(Bs(B̄s) → π0K̄0(K0)) about (1− 3)× 10−7; and (b) there are large CP asymmetries in the

two processes, which can be tested in the near future LHC-b experiments at CERN and BTeV

experiments at Fermilab.
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I. INTRODUCTION

The rare charmless B meson decays arouse more and more interest, since it is a good

place for testing the Standard Model (SM), studying CP violation and looking for possible

new physics beyond the SM. Since 1999, the B factories in KEK and SLAC collect more

and more data sample of rare B decays. In the future CERN Large Hadron Collider

beauty experiments (LHC-b), the heavier Bs and Bc mesons can also be produced. With

the bright hope in LHC-b experiments and BTeV experiments at Fermilab, following a

previous study of Bs → π+π− decay [1], we continue to investigate other Bs rare decays.

The most difficult problem in theoretical calculation of non-leptonic B decays is the

calculation of hadronic matrix element. The widely used method is the factorization

approach (FA) [2]. It is a great success in explaining the branching ratio of many decays [3,

4], although it is a very simple method. In order to improve the theoretical precision, QCD

factorization [5] and perturbative QCD approach (PQCD) [6] are developed. Perturbative

QCD factorization theorem for exclusive heavy-meson decays has been proved some time

ago, and applied to semi-leptonic B → D(π)lν decays [6], the non-leptonic B → Kπ [7],

ππ [8] decays. PQCD is a method to factorize hard components from a QCD process,

which can be treated by perturbation theory. Non-perturbative parts are organized in

the form of universal hadron light cone wave functions, which can be extracted from

experiments or constrained by lattice calculations and QCD sum rules. More information

about PQCD approach can be found in [6, 9].

In this paper, we would like to study the B0
s (B̄s) → π±K∓ and Bs(B̄s) → π0K̄0(K0)

decays in the perturbative QCD approach. In our calculation, we ignore the soft final

state interaction because there are not many resonances near the energy region of Bs

mass. Our theoretical formulas for the decay Bs → πK in PQCD framework are given

in the next section. In section III, we give the numerical results of the branching ratio of

Bs → πK and discussions for CP asymmetries and the form factor of Bs → K etc. At

last, we give a short summary in section IV.

II. PERTURBATIVE CALCULATIONS

For decay Bs → πK, the related effective Hamiltonian is given by [10]

Heff =
GF√
2

{

VudV
∗
ub [C1(µ)O1(µ) + C2(µ)O2(µ)]− V ∗

tbVtd

10
∑

i=3

Ci(µ)Oi(µ)

}

, (1)
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FIG. 1: The lowest order diagrams for B0
s → πK decay.

where Ci(µ)(i = 1, · · · , 10) are Wilson coefficients at the renormalization scale µ and

Oi(i = 1, · · · , 10) are the four quark operators

O1 = (b̄iuj)V−A(ūjdi)V−A, O2 = (b̄iui)V−A(ūjdj)V−A,

O3 = (b̄idi)V−A

∑

q(q̄jqj)V−A, O4 = (b̄idj)V−A

∑

q(q̄jqi)V−A,

O5 = (b̄idi)V−A

∑

q(q̄jqj)V+A, O6 = (b̄idj)V−A

∑

q(q̄jqi)V+A,

O7 =
3
2
(b̄idi)V−A

∑

q eq(q̄jqj)V+A, O8 =
3
2
(b̄idj)V−A

∑

q eq(q̄jqi)V+A,

O9 =
3
2
(b̄idi)V−A

∑

q eq(q̄jqj)V−A, O10 =
3
2
(b̄idj)V−A

∑

q eq(q̄jqi)V−A.

(2)
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Here i and j are SU(3) color indices; the sum over q runs over the quark fields that are

active at the scale µ = O(mb), i.e., q ∈ {u, d, s, c, b}. Operators O1, O2 come from tree

level interaction, while O3, O4, O5, O6 are QCD-Penguins operators and O7, O8, O9, O10

come from electroweak-penguins.

Working at the rest frame of Bs meson, we take kaon and pion masses MK ∼ Mπ ∼ 0,

which are much smaller than MBs
. In the light-cone coordinates, the momenta of the Bs,

K and π can be written as :

P1 =
MB√
2
(1, 1, 0T ), P2 =

MB√
2
(0, 1, 0T ), P3 =

MB√
2
(1, 0, 0T ). (3)

Denoting the light (anti-)quark momenta in B, K and π as k1, k2 and k3, respectively,

we can choose:

k1 = (x1p
+
1 , 0,k1T ), k2 = (0, x2p

−
2 ,k2T ), k3 = (x3p

+
3 , 0,k3T ). (4)

In the following, we start to compute the decay amplitudes of Bs → πK.

According to effective Hamiltonian (1), we draw the lowest order diagrams of Bs → πK

in Fig. 1. Let us first look at the usual factorizable diagrams (a) and (b). they can give the

Bs → K form factor if take away the Wilson coefficients. The operators O1, O2, O3, O4, O9

and O10 are (V −A)(V − A) currents, and the sum of their contributions is given by

Fe[C] = 16πCFM
2
B

∫ 1

0

dx1dx2

∫ ∞

0

b1db1 b2db2 φB(x1, b1)

×
{

[(2− x2)φ
A
K(x2)− rK(1− 2x2)φ

P
K(x2)

+ rK(1− 2x2)φ
T
K(x2)]αs(t

1
a)ha(x1, 1− x2, b1, b2) exp[−SB(t

1
a)− SK(t

1
a)]C(t1a)

+ 2rKφ
P
K(x2)αs(t

2
a)ha(1− x2, x1, b2, b1) exp[−SB(t

2
a)− SK(t

2
a)]C(t2a)

}

, (5)

where rπ = m0π/mB = m2
π/[mB(mu + md)], rK = m0K/mB = m2

K/[mB(ms + mu)].

CF = 4/3 is the group factor of the SU(3)c gauge group. The expressions of the meson

distribution amplitudes φM , the Sudakov factor SX(ti)(X = Bs, K, π), and the functions

ha are given in the appendix. In above formula, the Wilson coefficients C(t) of the

corresponding operators are process dependent.
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The operator O5, O6, O7, O8 have the structure of (V − A)(V + A), their amplitude is

F P
e [C] = 32πCFM

2
Brπ

∫ 1

0

dx1dx2

∫ ∞

0

b1db1 b2db2 φB(x1, b1)

×
{

[φA
K(x2)− rK(x2 − 3)φP

K(x2)

+ rK(1− x2)φ
T
K(x2)]αs(t

1
a)ha(x1, 1− x2, b1, b2) exp[−SB(t

1
a)− SK(t

1
a)]C(t1a)

+ 2rKφ
P
K(x2)αs(t

2
a)ha(1− x2, x1, b2, b1) exp[−SB(t

2
a)− SK(t

2
a)]C(t2a)

}

. (6)

For the non-factorizable diagrams (c) and (d), all three meson wave functions are

involved. Using δ function δ(b1 − b3), the integration of b1 can be preformed easily. For

the (V −A)(V − A) operators the result is:

Me[C] = −32

3
πCF

√

2NcM
2
B

∫ 1

0

dx1dx2dx3

∫ ∞

0

b2db2 b3db3 φB(x1, b3)

×
{

[(x3 − 1)φA
π (x3)φ

A
K(x2) + rK(1− x2)φ

A
π (x3)φ

P
K(x2) + rK(1− x2)φ

A
π (x3)φ

T
K(x2)]C(t1c)

αs(t
1
c)h

(1)
c (x1, x2, x3, b2, b3) exp[−SB(t

1
c)− Sπ(t

1
c)− SK(t

1
c)]− [(x2 − x3 − 1)φA

π (x3)φ
A
K(x2)

+ rK(1− x2)φ
A
π (x3)φ

P
K(x2)− rK(1− x2)φ

A
π (x3)φ

T
K(x2)]C(t2c)

αs(t
2
c)h

(2)
c (x1, x2, x3, b2, b3) exp[−SB(t

2
c)− Sπ(t

2
c)− SK(t

2
c)]

}

. (7)

For the(V −A)(V + A) operators, the formula is:

MP
e [C] = −32

3
πCF

√

2NcM
2
Brπ

∫ 1

0

dx1dx2dx3

∫ ∞

0

b2db2 b3db3 φB(x1, b3)

×
{

[rK(x2+x3− 2)φP
π (x3)φ

P
K(x2)− rK(x2−x3)φ

P
π (x3)φ

T
K(x2)− rK(x2−x3)φ

T
π (x3)φ

P
K(x2)

− rK(2− x2 − x3)φ
T
π (x3)φ

T
K(x2)− (1− x3)φ

P
π (x3)φ

A
K(x2)− (1− x3)φ

T
π (x3)φ

A
K(x2)]C(t1c)

αs(t
1
c)h

(1)
c (x1, x2, x3, b2, b3) exp[−SB(t

1
c)−Sπ(t

1
c)−SK(t

1
c)]+ [rK(1−x2+x3)φ

P
π (x3)φ

P
K(x2)

+rK(x2+x3−1)φP
π (x3)φ

T
K(x2)−rK(x2+x3−1)φT

π (x3)φ
P
K(x2)−rK(1−x2+x3)φ

T
π (x3)φ

T
K(x2)

+ x3φ
P
π (x3)φ

A
K(x2)− x3φ

T
π (x3)φ

A
K(x2)]C(t2c)

αs(t
2
c)h

(2)
c (x1, x2, x3, b2, b3) exp[−SB(t

2
c)− Sπ(t

2
c)− SK(t

2
c)]

}

. (8)

Similar to (c),(d), the annihilation diagrams (e) and (f) also involve all three meson wave

functions. Here we have two kinds of amplitudes, Ma is the contribution containing the

operator of type (V −A)(V −A), and MP
a is the contribution containing the operator of

5



type (V − A)(V + A).

Ma[C] = −32

3
πCF

√

2NcM
2
B

∫ 1

0

dx1dx2dx3

∫ ∞

0

b1db1 b2db2 φB(x1, b1)

×
{

[x3φ
A
π (x3)φ

A
K(x2) + rπrK(2 + x2 + x3)φ

P
π (x3)φ

P
K(x2)− rπrK(x2 − x3)φ

P
π (x3)φ

T
K(x2)

− rπrK(x2 − x3)φ
T
π (x3)φ

P
K(x2)− rπrK(2− x2 − x3)φ

T
π (x3)φ

T
K(x2)]C(t1e)

αs(t
1
e)h

(1)
e (x1, x2, x3, b1, b2) exp[−SB(t

1
e)− Sπ(t

1
e)− SK(t

1
e)]− [x2φ

A
π (x3)φ

A
K(x2)

+ rπrK(x2+x3)φ
P
π (x3)φ

P
K(x2)+ rπrK(x2−x3)φ

P
π (x3)φ

T
K(x2)+ rπrK(x2−x3)φ

T
π (x3)φ

P
K(x2)

+ rπrK(x2 + x3)φ
T
π (x3)φ

T
K(x2)]C(t2e)

αs(t
2
e)h

(2)
e (x1, x2, x3, b1, b2) exp[−SB(t

2
e)− Sπ(t

2
e)− SK(t

2
e)]

}

, (9)

MP
a [C] = −32

3
πCF

√

2NcM
2
B

∫ 1

0

dx1dx2dx3

∫ ∞

0

b1db1 b2db2 φB(x1, b1)

×
{

[rK(2− x2)φ
A
π (x3)φ

P
K(x2) + rK(2− x2)φ

A
π (x3)φ

T
K(x2)− rπ(2− x3)φ

P
π (x3)φ

A
K(x2)

− rπ(2− x3)φ
T
π (x3)φ

A
K(x2)]C(t1e)

αs(t
1
e)h

(1)
e (x1, x2, x3, b1, b2) exp[−SB(t

1
e)− Sπ(t

1
e)− SK(t

1
e)] + [rKx2φ

A
π (x3)φ

P
K(x2)

+ rKx2φ
A
π (x3)φ

T
K(x2)− rπx3φ

P
π (x3)φ

A
K(x2)− rπx3φ

T
π (x3)φ

A
K(x2)]C(t2e)

αs(t
2
e)h

(2)
e (x1, x2, x3, b1, b2) exp[−SB(t

2
e)− Sπ(t

2
e)− SK(t

2
e)]

}

. (10)

The factorizable annihilation diagrams (g) and (h) involve only two light mesons wave

functions. Fa is for (V − A)(V − A) type operators, and F P
a is for (V − A)(V + A) type

operators:

Fa[C] = 16πCFM
2
B

∫ 1

0

dx2dx3

∫ ∞

0

b2db2 b3db3

×
{

[−x2φ
A
π (x3)φ

A
K(x2)− 2rπrK(1 + x2)φ

P
π (x3)φ

P
K(x2) + 2rπrK(1− x2)φ

P
π (x3)φ

T
K(x2)]

αs(t
1
g)hg(x2, x3, b2, b3) exp[−Sπ(t

1
g)− SK(t

1
g)]C(t1g)

+ [x3φ
A
π (x3)φ

A
K(x2) + 2rπrK(1 + x3)φ

P
π (x3)φ

P
K(x2)− 2rπrK(1− x3)φ

T
π (x3)φ

P
K(x2)]

C(t2g)αs(t
2
g)hg(x3, x2, b3, b2) exp[−Sπ(t

2
g)− SK(t

2
g)]

}

, (11)
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F P
a [C] = 32πCFM

2
B

∫ 1

0

dx2dx3

∫ ∞

0

b2db2 b3db3

×
{

[rKx2φ
A
π (x3)φ

P
K(x2)− rKx2φ

A
π (x3)φ

T
K(x2) + 2rπφ

P
π (x3)φ

A
K(x2)]

αs(t
1
g)hg(x2, x3, b2, b3) exp[−Sπ(t

1
g)− SK(t

1
g)]C(t1g)

+ [2rKφ
A
π (x3)φ

P
K(x2) + rπx3φ

P
π (x3)φ

A
K(x2)− rπx3φ

T
π (x3)φ

A
K(x2)]

C(t2g)αs(t
2
g)hg(x3, x2, b3, b2) exp[−Sπ(t

2
g)− SK(t

2
g)]

}

. (12)

From Equation (5)-(12), the total decay amplitude for Bs → π+K− can be written as

A(B0
s → π+K−)

= fπFe

[

VudV
∗
ub(

1

3
C1 + C2)− V ∗

tbVtd(
1

3
C3 + C4 +

1

3
C9 + C10)

]

−fπV
∗
tbVtdF

P
e

[

1

3
C5 + C6 +

1

3
C7 + C8

]

+Me [VudV
∗
ubC1 − V ∗

tbVtd(C3 + C9)]

−V ∗
tbVtdM

P
e (C5 + C7)− V ∗

tbVtdMa

(

C3 −
1

2
C9

)

− V ∗
tbVtdM

P
a

(

C5 −
1

2
C7

)

−fBV
∗
tbVtdFa

[

1

3
C3 + C4 −

1

6
C9 −

1

2
C10

]

− fBV
∗
tbVtdF

P
a

[

1

3
C5 + C6 −

1

6
C7 −

1

2
C8

]

,

(13)

and the decay width is expressed as

Γ(B0
s → π+K−) =

G2
FM

3
B

128π
|A(B0

s → π+K−)|2. (14)

The Wilson coefficient C ′
is should be calculated at the appropriate scale t which can be

found in the Appendix of Ref. [8]. The decay amplitude of the charge conjugate channel

B̄0
s → π−K+ can be obtained by replacing VudV

∗
ub to V

∗
udVub and V ∗

tbVtd to VtbV
∗
td in Eq.(13).

For the decay Bs → π0K̄0, its amplitude can be written as

A(B0
s → π0K̄0)

= fπFe

[

VudV
∗
ub(C1 +

1

3
C2)− V ∗

tbVtd(−
1

3
C3 − C4 +

1

6
C9 +

1

2
C10)

]

−fπV
∗
tbVtdF

p
e

[

−1

3
C5 − C6 +

1

6
C7 +

1

2
C8

]

+Me

[

VudV
∗
ubC2 − V ∗

tbVtd(−C3 +
1

2
C9)

]

−V ∗
tbVtdM

p
e

(

1

2
C7 − C5

)

− V ∗
tbVtdMa

(

1

2
C9 − C3

)

− V ∗
tbVtdM

p
a

(

1

2
C7 − C5

)

−fBV
∗
tbVtdFa

[

−1

3
C3 − C4 +

1

6
C9 +

1

2
C10

]

− fBV
∗
tbVtdF

p
a

[

−1

3
C5 − C6 +

1

6
C7 +

1

2
C8

]

.

(15)

7



and the decay width is then expressed as

Γ(B0
s → π0K̄0) =

G2
FM

3
B

256π

∣

∣A(B0
s → π0K̄0)

∣

∣

2
. (16)

III. NUMERICAL EVALUATION

The following parameters have been used in our numerical calculation [11, 12]:

MBs
= 5.37 GeV, m0π = 1.4 GeV, m0K = 1.6GeV,Λf=4

QCD = 0.25 GeV, fBs
= 230 MeV,

fπ = 130 MeV, fK = 160 MeV, τB0
s
= 1.46× 10−12s, |V ∗

tbVtd| = 0.0074, |V ∗
ubVud| = 0.0031.

(17)

We leave the CKM phase angle α = φ2 as a free parameter, whose definition is

α = arg
[

− V ∗
tbVtd

VudV ∗
ub

]

. (18)

In this language, the decay amplitude of Bs → π+K− in eq.(13) can be parameterized as

A = V ∗
ubVudT − V ∗

tbVtdP = V ∗
ubVudT [1 + zei(α+δ)], (19)

where z = |V ∗
tbVtd/V

∗
ubVud||P/T |, and δ is the relative strong phase between tree diagrams

T and penguin diagrams P . z and δ can be calculated from PQCD. Using the above

parameters in (17), we get z = 22% and δ = 134◦ from PQCD calculation, which shows

the dominance of the tree contribution in this decay and a large strong phase calculated

from PQCD.

Similarly, the decay amplitude for B̄s → π−K+ can be parameterized as

Ā = VubV
∗
udT − VtbV

∗
tdP = VubV

∗
udT [1 + zei(−α+δ)]. (20)

Therefore the averaged decay width for B0
s (B̄

0
s ) → π±K∓ is

Γ(B0
s (B̄

0
s ) → π±K∓) =

G2
FM

3
B

128π
(|A|2/2 + |Ā|2/2)

=
G2

FM
3
B

128π
|V ∗

ubVudT |2[1 + 2z cosα cos δ + z2]. (21)

It is a function of cosα cos δ.

In Fig. 2, we plot the averaged branching ratio of the decay B0
s (B̄

0
s ) → π±K∓ with

respect to the parameter α. Since the latest experiment constraint upon the CKM angle

α from Belle and BaBar is α around 100◦ [13], we can arrive from Fig. 2:

6.2× 10−6 < Br(B0
s (B̄

0
s ) → π±K∓) < 8.1× 10−6, for70◦ < α < 130◦. (22)
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Br
(B
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K)
[1
0-6

]

(degree)
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5
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8

FIG. 2: The averaged branching ratio of B0
s (B̄s) → π±K∓ decay as a function of CKM angle α.

Previous naive and generalized factorization approach gives a similar branching ratios

at 6 − 9 × 10−6 with the form factor FBs→K ≃ 0.27 [14]. In paper [15], Beneke et.al

also calculate this decay mode using QCD improved factorization approach (BBNS). It

is based on naive factorization approach. The dominant contribution is still proportional

to Bs → K form factor, which is introduced as an input parameter. In principal, the

decay amplitude expand as series of αs and Λ/mB. But in practice, only the first order

of αs corrections is calculated, including the so called non-factorizable contributions. The

annihilation type contribution is power (Λ/mB) suppressed in BBNS approach. Therefore,

the branching ratio predicted in QCD factorization and PQCD should not differ too much;

but the CP violation in these two approaches will be different, since it depends on many

non-leading order contributions (See below for discussion). In Ref.[15], the branching ratio

is about 10 × 10−6, which is larger than our PQCD result and previous FA method [14],

because their form factor FBs→K(0) = 0.31 [15] is larger than the previous factorization

approach and our calculation below.

The diagrams (a) and (b) in Fig. 1 correspond to the Bs → K transition form factor

FBs→K(q2 = m2
π ≃ 0), where q = P1 − P2 is the momentum transfer. The sum of

their amplitudes have been given by Eq. (5), so we can use PQCD approach to compute

this form factor. Our result is FBs→K(0) = 0.27, if ωb = 0.5; and FBs→K(0) = 0.32,

if ωb = 0.45. In our approach, this form factor is sensitive to the decay constant and

9



wave function of Bs meson, where there is large uncertainty; but not sensitive to the K

meson wave function. Eventually this form factor can be extracted from semi-leptonic

experiments Bs → K−l+νl in the future.

In our calculation, the only input parameters are wave functions, which stand for the

non-perturbative contributions. Up to now, no exact solution is made for them. So

the main uncertainty in PQCD approach comes from Bs, K, π wave functions. In this

paper, we choose the light cone wave functions which are obtained from QCD Sum Rules

[16, 17]. For π meson, the distribution amplitude of light cone wave function should take

asymptotic form if the energy scale µ → ∞. But in our case, the scale is not more than

5GeV, so we choose the corrected asymptotic form for twist 2 distribution amplitude φA
π ,

and other twist 3 distribution amplitudes derived using equation of motion by neglecting

three particle wave functions [17]. These functions are listed in the Appendix, which are

also used in decay mode B → Kπ [7] and B → ππ [8] etc.

We also try to use the asymptotic form for π meson, for all the three distribution

amplitudes φA
π , φ

P
π and φT

π , since we have very poor knowledge about twist 3 distribution

amplitudes [18]. The branching ratio of Bs → π+K− is nearly unchanged (only 3%),

because the branching ratio of Bs → π+K− is mainly determined by the form factor

FBs→K(0) (see Fig.1(a) and (b)) which is not dependent on π wave function. However, the

CP asymmetry changes from −28% to −13% by −54%, when α = 100◦. This is because

the direct CP asymmetry depend on the strong phase (see discussion below), which comes

from non-factorizable and annihilation diagrams, where all three meson wave functions

are involved. The CP asymmetry predicted here should be used with great care, since it

depends on two much uncertainties.

For heavy B and Bs meson, its wave function is still under discussion using different

approaches [19]. In this paper, we find the branching ratio of B0
s (B̄s) → π±K∓ is sensitive

to the wave function parameter ωb. For 0.45 < ωb < 0.5, the resulted branching ratio will

decrease from about 10 × 10−6 to about 7 × 10−6. When we set ωb = 0.45, our result is

more closer to that of QCD factorization [15]. This sensitive dependence should be fixed

by the Bs → K form factors from the semi-leptonic Bs decays. Other uncertainties in

our calculation include the next-to-leading order αs QCD corrections and higher twist

contributions, which need more complicated calculations.

From our calculation, we find that the dominant contribution comes from tree level

diagrams (see Fig.1 (a) and (b)) in this decay. If SU(3) symmetry is good, the branching

10
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FIG. 3: The averaged branching ratio of Bs(B̄s) → π0K̄0(K0) decay as a function of CKM angle

α.

ratio of Bs → π+K− should be equal to that of B0 → π+π−. The experimental result of

B0 → π+π− is Br(B → π+π−) = (4.3+1.6
−1.4 ± 0.5) × 10−6 [20]. The predicted branching

ratio of Bs → πK is about 1.7 times that of Bd → π+π−, where the difference comes

mainly from SU(3) symmetry breaking: the decay constant fBs
larger than fB and fK

larger than fπ. In the calculation, we also find that the electroweak-penguins contribution

is negligibly small as 0.001% in branching ratio.

For the experimental side, there is recent upper limit on the decay B0
s → π+K− [21],

Br(B0
s → π+K−) < 7.5× 10−6, (23)

at 90% C.L. Our predicted result is consistent with this upper limit.

For the decays of Bs(B̄s) → π0K̄0(K0), the tree level contribution is suppressed due

to the small Wilson coefficients C1 + C2/3. Thus the penguin diagram contribution is

comparable with the tree contribution. We study the averaged branching ratio of the

decay Bs(B̄s) → π0K̄0(K0) as a function of α in Fig. 3. It is similar with Fig.2. We find

that the branching ratio of Bs(B̄s) → π0K̄0(K0) is about 1.8× 10−7 when α is near 100◦,

it is a little smaller than the result of Ref. [15].

In SM, the CKM phase angle is the origin of CP violation. Using Eqs.(19) and (20),

11



the direct CP violation parameter can be derived as

Adir
CP =

|A|2 − |Ā|2
|A|2 + |Ā|2 =

−2z sinα sin δ

1 + 2z cosα cos δ + z2
. (24)

It is approximately proportional to CKM angle sinα, strong phase sin δ and the relative

size z between penguin contribution and tree contribution. We show the direct CP vi-

olation parameters as a function of CKM angle α in Fig. 4. From this figure one can

see that the direct CP asymmetry parameter of B0
s (B̄

0
s ) → π±K∓ and π0K̄0(K0) can be

as large as −31% and −62% when α is near 75◦. The larger direct CP asymmetry of

B0
s (B̄

0
s ) → π0K̄0(K0) decay is mainly due to a larger z in B0

s (B̄
0
s ) → π0K̄0(K0) than in

B0
s (B̄

0
s ) → π±K∓.

The direct CP asymmetry predicted in QCD factorization approach is quite differ-

ent from our result, due to the different source of strong phases. In QCD factorization

approach, the strong phase mainly comes from the perturbative charm quark loop dia-

gram, which is αs suppressed [15]. While the strong phase in PQCD comes mainly from

non-factorizable and annihilation type diagrams. The sign of the direct CP asymmetry

is different for these two approaches in B0
s (B̄

0
s ) → π±K∓ decay, and the magnitude of

CP asymmetry in QCD factorization (about 5%) is also smaller than PQCD. The future

LHC-b experiments can make a test for the two methods.

For the decays of Bs(B̄s) → π0K̄0(K0), the final K̄0(K0) mesons can not be detected

directly. What the experiments measured are their mixtures Ks and KL, thus a mixing

induced CP violation is involved. Following notations in the previous literature [22], we

define the mixing induced CP violation parameter as

aǫ+ǫ′ =
−2Im(λCP )

1 + |λCP |2
, (25)

where

λCP =
V ∗
tbVts〈π0K0|Heff |B̄0

s 〉
VtbV

∗
ts〈π0K̄0|Heff |B0

s〉
. (26)

Using unitarity condition of the CKM matrix VtbV
∗
td = −VubV

∗
ud−VcbV

∗
cd, and Eqs.(19,20),

we can get

λCP =
e−iγ + x

eiγ + x
, (27)

where x =
VcbV

∗

cd

|VubV
∗

ud
|

P
T+P

. Combining eq.(27) and (25), we can get

aǫ+ǫ′ =
sin 2γ + 2Re(x) sin γ

1 + |x|2 + 2Re(x) cos γ
. (28)
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FIG. 4: Direct CP violation parameters of B0
s (B̄s) → π±K∓ (dashed line) and Bs(B̄s) →

π0K̄0(K0) (solid line) as a function of CKM angle α.

If |x| is a very small number, the mixing induced CP asymmetry is proportional to sin 2γ,

which will be a good place for the CKM angle γ measurement. However as we already

mentioned, the tree contribution in this channel is suppressed, |x| = 2.3 is a large number,

so that the sin γ behavior is dominant in the eq. (28). The result of mixing induced CP

violation is shown in Fig. 5, which is indeed a roughly sin γ behavior. The tail near

γ ∼ 180◦ also shows the contribution from sin 2γ in eq.(28).

IV. SUMMARY

In this work, we study the branching ratio and CP asymmetry of the decays B0
s (B̄

0
s ) →

π±K∓ and Bs(B̄s) → π0K̄0(K0) in PQCD approach. From our calculation, we find

that the branching ratio of B0
s (B̄

0
s ) → π±K∓ is about (6 ∼ 10) × 10−6; Br(Bs(B̄s) →

π0K̄0(K0)) around 2× 10−7 and there are large CP violation in the processes, which may

be measured in the future LHC-b experiments and BTeV experiments at Fermilab.
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APPENDIX A: FORMULAS FOR THE CALCULATIONS USED IN THE

TEXT

In the appendix we present the explicit expressions of the formulas used in section II.

First, we give the expressions of the meson distribution amplitudes φM . For Bs meson

wave function, we use the similar wave function as B meson [7, 8]:

φBs
(x, b) = NBs

x2(1− x)2 exp

[

−M2
Bs

x2

2ω2
b

− 1

2
(ωbb)

2

]

. (A1)

We set the central value of parameter ωb = 0.5 GeV in our numerical calculation, and

NBs
= 63.7GeV is the normalization constant using fBs

= 230MeV.
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The π meson’s distribution amplitudes are given by light cone QCD sum rules [17]:

φA
π (x) =

3fπ√
2Nc

x(1− x)
{

1 + 0.44C
3/2
2 (t) + 0.25C

3/2
4 (t)

}

,

φP
π (x) =

fπ

2
√
2Nc

{

1 + 0.43C
1/2
2 (t) + 0.09C

1/2
4 (t)

}

,

φT
π (x) =

fπ

2
√
2Nc

(1− 2x)
{

1 + 0.55(10x2 − 10x+ 1)
}

, (A2)

where t = 1− 2x. The Gegenbauer polynomials are defined by:

C
1/2
2 (t) =

1

2
(3t2 − 1), C

1/2
4 (t) =

1

8
(35t4 − 30t2 + 3),

C
3/2
2 (t) =

3

2
(5t2 − 1), C

3/2
4 (t) =

15

8
(21t4 − 14t2 + 1). (A3)

We use the distribution amplitude φA,P,T
K of the K meson from Ref. [16]:

φA
K(x) =

6fK

2
√
2Nc

x(1− x)[1 + 0.15t+ 0.405(5t2 − 1)],

φP
K(x) =

fK

2
√
2Nc

[1 + 0.106(3t2 − 1)− 0.148(3− 30t2 + 35t4)/8],

φT
K(x) =

fK

2
√
2Nc

t[1 + 0.1581(5t2 − 3)], (A4)

whose coefficients correspond to m0K = 1.6GeV.

In our numerical analysis, we use the one loop expression for the strong running cou-

pling constant,

αs(µ) =
4π

β0ln(µ2/Λ2)
, (A5)

where β0 = (33 − 2nf )/3 and nf is the number of active quark flavor at the appropriate

scale µ. Λ is the QCD scale, which we take Λ = 250MeV at nf = 4.

SBs
, Sπ+ , Sk− used in the decay amplitudes are defined as

SBs
(t) = s(x1P

+
1 , b1) + 2

∫ t

1/b1

dµ̄

µ̄
γ(αs(µ̄)), (A6)

Sπ+(t) = s(x3P
+
3 , b3) + s((1− x3)P

+
3 , b3) + 2

∫ t

1/b3

dµ̄

µ̄
γ(αs(µ̄)), (A7)

SK−(t) = s(x2P
−
2 , b2) + s((1− x2)P

−
2 , b2) + 2

∫ t

1/b2

dµ̄

µ̄
γ(αs(µ̄)), (A8)

where the so called Sudakov factor s(Q, b) resulting from the resummation of double

logarithms is given as [23, 24]

s(Q, b) =

∫ Q

1/b

dµ

µ

[

ln

(

Q

µ

)

A(α(µ̄)) +B(αs(µ̄))
]

(A9)
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with

A = CF
αs

π
+

[

67

9
− π2

3
− 10

27
nf +

2

3
β0 ln

(

eγE

2

)]

(αs

π

)2

, (A10)

B =
2

3

αs

π
ln

(

e2γE−1

2

)

. (A11)

Here γE = 0.57722 · · · is the Euler constant, nf is the active quark flavor number. For

the detailed derivation of the Sudakov factors, see Ref. [6, 25].

The functions hi(i = a, c.e.g) come from the Fourier transformation of propagators of

virtual quark and gluon in the hard part calculations. They are given as

ha(x1, x2, b1, b2) = St(x2)K0(MB

√
x1x2b1)

×
[

θ(b2 − b1)I0(MB

√
x2b1)K0(MB

√
x2b2) + (b1 ↔ b2)

]

, (A12)

h(j)
c (x1, x2, x3, b2, b3) =

{

θ(b2 − b3)I0(MB

√

x1(1− x2)b3)K0(MB

√

x1(1− x2)b2)

+ (b2 ↔ b3)

}

×





K0(MBF(j)b3), for F 2
(j) > 0

πi
2
H

(1)
0 (MB

√

|F 2
(j)| b3), for F 2

(j) < 0



 , (A13)

where H
(1)
0 (z) = J0(z) + iY0(z), and F(j)’s are defined by

F 2
(1) = x1 + x2 + x3 − x1x2 − x2x3 − 1, F 2

(2) = x1 − x3 − x1x2 + x2x3; (A14)

h(j)
e (x1, x2, x3, b1, b2) =

{

θ(b2 − b1)
πi

2
H

(1)
0 (MB

√
x2x3 b2)J0(MB

√
x2x3 b1)

+ (b1 ↔ b2)

}

×





K0(MBFe(j)b1), for F 2
e(j) > 0

πi
2
H

(1)
0 (MB

√

|F 2
e(j)| b1), for F 2

e(j) < 0



 , (A15)

where Fe(j)’s are defined by

F 2
e(1) = x1 + x2 + x3 − x1x2 − x2x3, F 2

e(2) = x1x2 − x2x3; (A16)

hg(x2, x3, b2, b3) = St(x2)
πi

2
H

(1)
0 (MB

√
x2x3b3)

×
[

θ(b3 − b2)J0(MB

√
x2b2)

πi

2
H

(1)
0 (MB

√
x2b3) + (b2 ↔ b3)

]

. (A17)
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We adopt the parametrization for St(x) contributing to the factorizable diagrams [26],

St(x) =
21+2cΓ(3/2 + c)√

πΓ(1 + c)
[x(1 − x)]c, c = 0.3. (A18)

The hard scale t′is in Eq.(5)-(12) are chosen as

t1a = max(MB

√
1− x2, 1/b1, 1/b2),

t2a = max(MB

√
x1, 1/b1, 1/b2),

t1c = max(MB

√

|F 2
(1)|,MB

√

x1(1− x2), 1/b2, 1/b3),

t2c = max(MB

√

|F 2
(2)|,MB

√

x1(1− x2), 1/b2, 1/b3),

t1e = max(MB

√

|F 2
e(1)|,MB

√
x2x3, 1/b1, 1/b2),

t2e = max(MB

√

|F 2
e(2)|,MB

√
x2x3, 1/b1, 1/b2),

t1g = max(MB

√
x2, 1/b2, 1/b3),

t2g = max(MB

√
x3, 1/b2, 1/b3). (A19)

They are given as the maximum energy scale appearing in each diagram to kill the large

logarithmic radiative corrections.
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