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Abstract

The photon-meson transition form factors of light pseudoscalar mesons π0, η, and η′ are sys-

tematically calculated in a light-cone framework, which is applicable as a light-cone quark model

at low Q2 and is also physically in accordance with the light-cone pQCD approach at large Q2.

The calculated results agree with the available experimental data at high energy scale. We also

predict the low Q2 behaviors of the photon-meson transition form factors of π0, η and η′, which

are measurable in e+A(Nucleus) → e+A+M process via Primakoff effect at JLab and DESY.
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I. INTRODUCTION

The meson-photon and photon-meson transition form factors contain interesting physics

concerning the QCD structure of both photons and mesons. The pion-photon transition

form factor provides a very simple example for the perturbative QCD (pQCD) analysis

to exclusive processes, and was first analyzed by Brodsky and Lepage [1] at large Q2. It

has been shown [2] that the applicability of pQCD can be extended to lower Q2 around a

few GeV2 by taking into the transverse momentum contributions in both hard scattering

amplitude and pion wave function. In our recent study [3] within light-cone quark model, it is

shown that the pion-photon transition form factor is identical to the photon-pion transition

form factor when taking into account only QCD and QED contributions. Therefore the

formalism that applies to the pion-photon transition form factor is also applicable to the

photon-pion transition form factor. Taking the minimal quark-antiquark Fock states of both

the photon and pion as their wave functions, we could calculate the photon-pion transition

form factor by using the Drell-Yan-West assignment. This framework is applicable at low

Q2 as a light-cone quark model approach, and it is also physically in accordance with the

light-cone pQCD approach at large Q2. Thus we can describe the photon-pion form factors

at both low Q2 and high Q2 within a same framework. The purpose if this work is to apply

this framework [3] for a systematic description of the photon-meson transition form factors

of pseudoscalar mesons π0, η, and η′, at both Q2 → 0 and Q2 → ∞ limits, and to make

predictions in a wide Q2 range.

The photon-meson transition form factor γ∗γ → M can be realized in e+ e→ e+ e+M

or e + A(Nucleus) → e + A + M processes. The γ∗γ → M transition form factors of

π0, η, and η′ at medium to high Q2 have been measured at Cornell [4] and at DESY [5]

through the e+ + e− → e+ + e− +M process, while the latter process e + A(Nucleus) →
e + A + M is convenient to provide measurement of the photon-meson transition form

factors at low Q2. Moreover, high precision measurements of the electromagnetic properties

of these pseudoscalar mesons via Primakoff effect are proposed by PrimEx Collaboration

at the Thomas Jefferson National Accelerator Facility (JLab) [6], which would give the

experimental value of transition form factors Fγ∗γ→M(Q2) of π0, η, and η′ at low Q2 (0.001−
0.5 GeV2), and lead to a clarification on the obvious disagreement between the former

Primakoff experiment and collider cases in the measurements of Γ(η → γγ) and a more
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precise determination of the η-η′ mixing angle. Similar measurements can be also performed

by HERMES Collaboration at Deutsche Elektronen-Synchrotron (DESY) [7]. Therefore,

theoretical predictions at low Q2 are necessary and essential for comparison with future

experimental measurements.

It is well known that the physical η and η′ states dominantly consist of a flavor SU(3)

octet η8 and singlet η0 in the SU(3) quark model, respectively. The usual mixing scheme

reads: 
 η

η′


 =


 cos θ − sin θ

sin θ cos θ




 η8

η0


 . (1)

Using different sets of experimental data, we recalculate the value of the mixing angle θ by

employing the limiting method developed by Cao-Signal [8]. Our results are also compatible

with other approaches [9] for the mixing angle and scheme.

In general, people use the chiral perturbation theory [10] or some other methods [11] which

deal with current quark masses in order to take the chiral symmetry and chiral anomaly into

account, since the chiral symmetry predominates the π0(η, η
′

)γγ vertex at large Q2 [12], and

chiral anomaly determines the π0(η, η′) transition form factors at Q2 = 0 (Eqs. (30-33)).

In addition, the chiral perturbation theory is also very useful and effective in discussing the

η and η′ mixing properties [13]. Since we are consistently using the valence quark masses

in the light-cone treatment to the form factor calculation, it is not very applicable to start

with current quark mass within the chiral symmetry and investigate the chiral limits in the

transition form factor computation. However, our main purpose of this paper is to employ

the new light-cone γ → qq, ss wave functions [3, 14, 15] to compute the transition form

factors of the light mesons. Moreover, we considered the chiral symmetry when we choose

η and η′ mixing scheme, and took the chiral limit approximation when we try to determine

and fix the parameters. Therefore our results respect the chiral symmetry and its breaking

at some extent. Phenomenologically, we could give the predictions of the η and η′ mixing

angle within the light-cone formalism, as well as the photon-meson transition form factor

which is applicable at both low and high energy scales.

This paper is organized as follows. In section 2 we present the formalism for the photon-

meson transition form factor using the minimal quark-antiquark Fock states of the photon

and pion as wave functions. In section 3, we will introduce the η-η′ mixing scheme used

in our calculation. In section 4, we calculate systematically the photon-meson transition
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form factors of π0, η, and η′, and show that the calculated results agree with the available

experimental data at medium to large Q2 scale. We also predict the low Q2 behaviors of

the photon-meson transition form factors of π0, η, and η′, which are measurable in e +

A(Nucleus) → e+A+M process via Primakoff effect at JLab and DESY. In section 5, we

present a brief summary.

II. FORMALISM OF PHOTON-MESON TRANSITION FORM FACTOR

We work in the light-cone formalism [16], which provides a convenient framework for

the relativistic description of hadrons in terms of quark and gluon degrees of freedom, and

for the application of perturbative QCD to exclusive processes. The transition form factor

Fγ∗γ→M (M = π0, η, and η′), in which an on-shell photon is struck by one off-shell photon

and decays into a meson, as schematically shown in Fig. 1, is defined by the γ∗γM vertex,

Γµ = −ie2Fγ∗γ→M(Q2)εµνρσp
ν
Mǫ

ρqσ, (2)

in which q is the momentum of the off-shell photon, Q2 = −q2 = q2
⊥ − q+q− = q2

⊥ is the

squared four momentum transfer of the virtual photon, and ǫ is the polarization vector of

the on-shell photon. We choose the light-cone frame





P = (P+,
q2+q2

⊥

P+ , 0⊥),

P ′ = (P ′+, M2

P ′+ ,q⊥),

q = (0, Q2

P+ ,q⊥),

p1 = (xP+,
k2
⊥
+m2

xP+ ,k⊥)

p2 = ((1− x)P+,
k2
⊥
+m2

(1−x)P+ ,−k⊥),

p′1 = (xP ′+,
k′2
⊥
+m2

xP+ ,k′
⊥).

(3)

Instead of calculating the diagram directly, we introduce the quark-antiquark wave func-

tion of the photon [3] by calculating the matrix elements of

u(p+1 , p
−
1 ,p1⊥)√
p+1

γ · ǫv(p
+
2 , p

−
2 ,p2⊥)√
p+2

, (4)

which are the numerators of the wave functions corresponding to each constituent spin

Sz configuration. The two boson polarization vectors in light-cone gauge are ǫµ = (ǫ+ =

0, ǫ−, ǫ⊥), where ǫ⊥↑,↓ = ∓ 1√
2
(x̂ ± ŷ). To satisfy the Lorentz condition kphoton · ǫ = 0, the
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FIG. 1: The diagram for the contribution to the transition form factor Fγ∗γ→M . The arrows
indicate the particle moving directions.

polarizations have the relation ǫ− = 2 ǫ⊥·k⊥

k+
with khoton, thus we have





Ψ↑
R(x,k⊥, ↑, ↓) = −

√
2(k1+ik2)
1−x

ϕγ , [l
z = +1]

Ψ↑
R(x,k⊥, ↓, ↑) = +

√
2(k1+ik2)

x
ϕγ, [lz = +1]

Ψ↑
R(x,k⊥, ↑, ↑) = −

√
2m

x(1−x)
ϕγ , [lz = 0]

Ψ↑
R(x,k⊥, ↓, ↓) = 0,

(5)

in which:

ϕγ =
eq
D

=
eq

λ2 − m2+k2
⊥

x
− m2+k2

⊥

1−x

, (6)

where λ is the photon mass and equals to 0. Each configuration satisfies the spin sum

rule:Jz = Sz
q + Sz

q + lz = +1. Therefore, the quark-antiquark Fock-state for the photon

(Jz = +1) has the four possible spin combinations:

∣∣Ψ↑
γ

(
P+,P⊥

)〉
=

∫
d2k⊥dx

16π3

×
[
Ψ↑

R(x,k⊥, ↑, ↓)
∣∣xP+,k⊥, ↑, ↓

〉
+Ψ↑

R(x,k⊥, ↓, ↑)
∣∣xP+,k⊥, ↓, ↑

〉

+Ψ
↑

R(x,k⊥, ↑, ↑)
∣∣xP+,k⊥, ↑, ↑

〉
+Ψ

↑

R(x,k⊥, ↓, ↓)
∣∣xP+,k⊥, ↓, ↓

〉]
.

(7)

The quark-antiquark Fock-state wave function of the pion is also derived [3] by using the

relativistic field theory treatment of the interaction vertex along with the idea in [17, 18].

In the light-cone frame of pion,




P = (P+, M
2

P+ , 0⊥),

p1 = (xP+,
p2
1⊥

+m2

xP+ ,p1⊥)

p2 = ((1− x)P+,
p2
2⊥

+m2

(1−x)P+ ,p2⊥),

(8)
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we can obtain the four components of the spin wave function by calculating the matrix

elements of
v(p+2 , p

−
2 ,−k⊥)√
p+2

γ5
u(p+1 , p

−
1 ,k⊥)√
p+1

, (9)

from which we have 



v↓√
p+
2

γ5
u↑√
p+
1

= − 2mP+

4mx(1−x)P+2 ,

v↓√
p+
2

γ5
u↑√
p+
1

= + 2mP+

4mx(1−x)P+2 ,

v↑√
p+
2

γ5
u↑√
p+
1

= + 2(k1+ik2)P+

4mx(1−x)P+2 ,

v↓√
p+
2

γ5
u↓√
p+
1

= + 2(k1−ik2)P+

4mx(1−x)P+2 ,

(10)

where m is the mass of the quark. After the normalization, we can obtain light-cone rep-

resentation for the spin structure of the pion, which is the minimal Fock-state of the pion

light-cone wave function:





ΨπL(x,k⊥, ↑, ↓) = − m√
2(m2+k2

⊥
)
ϕπ, [l

z = 0]

ΨπL(x,k⊥, ↓, ↑) = + m√
2(m2+k2

⊥
)
ϕπ, [lz = 0]

ΨπL(x,k⊥, ↑, ↑) = + k1+ik2√
2(m2+k2

⊥
)
ϕπ, [lz = −1]

ΨπL(x,k⊥, ↓, ↓) = + k1−ik2√
2(m2+k2

⊥
)
ϕπ, [lz = +1]

(11)

in which we may employ the Brodsky-Huang-Lepage (BHL) prescription [19],

ϕπ(x,k) = A exp

[
− 1

8β2

k2
⊥ +m2

x(1− x)

]
, (12)

for the momentum space wave function, which is a non-relativistic solution of the Bethe-

Salpeter equation in an instantaneous approximation in the rest frame for meson. Each

configuration satisfies the spin sum rule: Jz = Sz
q + Sz

q + lz = 0. Hence, the Fock expansion

of the two particle Fock-state for the pion has these four possible spin combinations:

〈
Ψπ

(
P+,P⊥ = 0⊥

)∣∣ =

∫
d2k⊥dx

16 π3

×
[
ΨπL(x,k⊥, ↑, ↓)

〈
xP+,k⊥, ↑, ↓

∣∣+ΨπL(x,k⊥, ↓, ↑)
〈
xP+,k⊥, ↓, ↑

∣∣

+ΨπL(x,k⊥, ↑, ↑)
〈
xP+,k⊥, ↑, ↑

∣∣+ΨπL(x,k⊥, ↓, ↓)
〈
xP+,k⊥, ↓, ↓

∣∣] .

(13)

There are two higher helicity (λ1+ λ2 = ±1) components in the expression of the light-cone

spin wave function of the pion besides the ordinary helicity (λ1 + λ2 = 0) components.
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Such higher helicity components come from the Melosh-Wigner rotation in the light-cone

quark model [20, 21], and the same effect plays an important role to understand the proton

“spin puzzle” in the nucleon case [22, 23]. One may also state that these higher helicity

components contain contribution from orbital angular moment from a relativistic viewpoint

[24].

In addition, we would like to add some more remarks on the Gaussian-type wavefunction

of the BHL prescription that we employ above. As a matter of fact, the Gaussian wave

function is a non-relativistic solution of the Bethe-Salpeter equation in an instantaneous

approximation in the rest frame of the meson as the space wave function. The BHL wave-

function Eq. (12) is an extension from a non-relativistic wavefunction into a relativistic form

by using the Brodsky-Huang-Lepage Ansatz [19], and we can consider it as an approximate

wavefunction that respects the Lorentz invariance in the light-cone formalism. However, it

works phenomenologically well in a lot of calculations (e.g., [3, 21, 25, 26]). Moreover, Don-

nachie, Gravelis, and Shaw [25] indicated that the other four possible different space wave

functions have similar analytical properties with the BHL wavefunction when the parameter

β is small (The β is equal to PF in their paper, the small β is corresponding to the ρ and φ

mesons cases). However, they also illustrated that the BHL wavefunction is better than the

other four wave functions in the high β situation (for the J/ψ meson). Hence, it gives us

the idea that the the BHL wavefunction may be an appropriate choice that we could have

right now. (Noticing that the space wave functions for the vector mesons are the same with

those for the pseudoscalar mesons, the argument that made by Donnachie et al is also valid

for π0 and other pseudoscalar mesons.)

For the physical state of π0, one should also take into account the color and flavor degrees

of freedom into account [1, 2]

|Ψπ0〉 =
∑

a

δab√
nc

1√
2

[∣∣uaub
〉
−
∣∣∣dadb

〉]
, (14)

where a and b are color indices, nc = 3 is the number of colors, and now
∣∣qaqb

〉
contains the

full spin structure shown above. So we can get the photon-meson transition form factor of

7



the pion:

Fγγ∗→π(Q
2) =

Γ+

−ie2(ǫ⊥ × q⊥)p′−π

= 2
√
3(e2u − e2d)

∫ 1

0

dx

∫
d2k⊥

16π3
ϕπ(x,k

′
⊥)

{
m

x
√
m2 + k′2

⊥
×
[

1

−λ2 + m2+k2
⊥

x
+

m2+k2
⊥

1−x

]
+ (1 ↔ 2)

}
(15)

= 4
√
3(e2u − e2d)

∫ 1

0

dx

∫
d2k⊥

16π3

[
ϕπ(x,k

′
⊥)

m

x
√
m2 + k′2

⊥

× 1
m2+k2

⊥

x
− m2+k2

⊥

1−x

]
, (16)

in which k′
⊥ = k⊥ + (1− x)q⊥ after considering the Drell-Yan-West assignment [27], and λ

(= 0) is the mass of photon.

III. THE η-η′ MIXING SCHEMES

In fact, there are two popular mixing schemes for η and η′. Feldmann et al [9] suggested

the mixing scheme based on the quark flavor basis qq = (uu+ dd)/
√
2 and ss,


 η

η′


 =


 cosφ − sinφ

sinφ cos φ




 ηq

ηs


 , (17)

and 
 f q

η f s
η

f q
η′ f

s
η′


 =


 cos φ − sin φ

sinφ cosφ




 fq 0

0 fs


 , (18)

where φ is the mixing angle. The qq-ss mixing only introduces one mixing angle in the

mixing of the decay constants.

On the other hand, people also use the mixing scheme based on the basis of η8 and η0

mixing for η and η′. In the SU(3) quark model, the physical η and η′ states dominantly

consist of a flavor SU(3) octet η8 =
1√
6
(uu+ dd− 2ss) and a singlet η0 =

1√
3
(uu+ dd+ ss),

respectively. The usual mixing scheme reads:





|η〉 = cos θ |η8〉 − sin θ |η0〉 ,
|η′〉 = sin θ |η8〉+ cos θ |η0〉 ,

(19)
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in which θ is the mixing angle. For the calculation of the decay constants of the η8 and η0

mixing, Feldmann-Kroll indicate that two mixing angle scheme could be better from their

former investigations[28]:


 f 8

η f 0
η

f 8
η′ f

0
η′


 =


 cos θ8 − sin θ0

sin θ8 cos θ0




 f8 0

0 f0


 . (20)

In addition, one could find that these two schemes could be related by the following

equation through the mixing angles finally:

θ = φ− arctan
1√
3
. (21)

From the point view of the chiral symmetry and the SU(3) symmetry as well as their

breaking mechanisms, we find that the η8 and η0 mixing scheme may be more reasonable

and physical.

First of all, let us have a brief review on the chiral symmetry and its breaking which have

underlying relationship with the π0, η and η′ mesons[6]. In the chiral symmetry limit, it

is well-known that the Lagrangian has the SU(3)L × SU(3)R × U(1)B × U(1)A symmetry,

but the absence of this symmetry in the ground state (the QCD vacuum) leads to the

chiral symmetry spontaneously breaking into SU(3)×U(1)B symmetry. Because there are 8

spontaneously broken continuous symmetries (there are 9 when taking into account the chiral

anomaly which is associated with the the U(1)A symmetry breaking), there are 8 massless

Goldstone Bosons (which finally are identified as meson octet) and 1 massive particle (which

is known as η0) according to the Goldstone’s theorem and chiral anomaly, respectively. The

massless octet includes the meson π0
8 and η8. Together with η0, they mix into massive mesons

π0, η and η′ during the explicit SU(3) symmetry breaking after introducing the quark mass

term into the Lagrangian.

From the above discussion, we may reach a physical intuitive idea that it is natural and

straightforward to use the η0 and η8 mixing scheme as a direct result of the SU(3) symmetry

breaking if we assume that the π0
8 does not mix with η0 and η8 at all. From this point of

view, the introduction of η0 and η8 is more reasonable than ηq and ηs.

Moreover, since it is well-known that pion, kaon, and η8 belong to the same group of octet

mesons in the SU(3) symmetry limit, their parameters should be the same except the quark

masses. In this sense, one may relate the decay constants of η and η′, to pion and kaon in

9



the η8 − η0 mixing scheme. The CLEO Collaboration[4] reported their pole fit results as

Λπ = 776±10±12±16MeV , Λη = 774±11±16±22MeV , and Λη′ = 859±9±18±20MeV .

These results imply that the nonperturbative properties of π and η are very similar. In

addition, the absolute value of θ is small and cos θ |η8〉 is the leading order in the η8 − η0

mixing scheme of the η. They are consistent with the basic physical intuition that both

π and η8 are in the SUf (3) octet and are pseudo-massless Goldstone particles. Therefore,

that is why the authors of [29] take the parameters of η8 as equal to pion, such as b8 = bπ

in their paper. From a strict sense, if pion, kaon, and η8 are in the same group of octet

mesons, the mass of mq, ms, and β8 = βπ in the BHL wave function should be the same in

the calculations of the π, η and η′ transition form factors.

Therefore, we employ the intuitive η8-η0 mixing scheme in the calculations of the π, η

and η′ transition form factors by using the uniform parameters, which shows that the SU(3)

symmetry limit works well in this work.

In practice, we utilize the SUf (3) broken form of wave functions for flavor octet η8 and

singlet η0:

|η8〉 =
1√
6
(uu+ dd)φq

8(x,k⊥)−
2√
6
ssφs

8(x,k⊥), (22)

|η0〉 =
1√
3
(uu+ dd)φq

0(x,k⊥) +
1√
3
ssφs

0(x,k⊥), (23)

in which we use Gaussian wave function of the BHL prescription:

φq
8(x,k⊥) = A8 exp

[
−

m2
q + k2

⊥

8β2
8x(1 − x)

]
, (24)

φs
8(x,k⊥) = A8 exp

[
− m2

s + k2
⊥

8β2
8x(1 − x)

]
, (25)

φq
0(x,k⊥) = A0 exp

[
−

m2
q + k2

⊥

8β2
0x(1 − x)

]
, (26)

φs
0(x,k⊥) = A0 exp

[
− m2

s + k2
⊥

8β2
0x(1 − x)

]
, (27)

and qq and ss are the spin parts of the wave functions which are similar to the pion with

all possible spin states.

Moreover, it is convenient to use the method for the η8-η0 mixing scheme which was

developed by Cao-Signal [8] in obtaining the mixing angle θ and the decay constants. In

this treatment, we can get θ, f8 and f0 directly without involving θ8 and θ0. In the η8-η0
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mixing scheme, we have:

Fγγ∗→η(Q
2) = Fγγ∗→η8(Q

2) cos θ − Fγγ∗→η
0
(Q2) sin θ, (28)

Fγγ∗→η′(Q
2) = Fγγ∗→η8(Q

2) sin θ + Fγγ∗→η0(Q
2) cos θ. (29)

While for the π0 case, we have:

Γ(π0 → γγ) =
πα2m3

π0

4
|Fγγ∗→π(0)|2, (30)

Γ(π0 → γγ) =
α2m3

π0

64π3

1

f 2
π

. (31)

Generalizing these equations to η8 and η0, we have

Γ(η → γγ) =
πα2m3

η

4
|Fγγ∗→η(0)|2 =

α2m3
η

64π3

(
cos θ√
3f8

− 2
√
2 sin θ√
3f0

)2

, (32)

Γ(η′ → γγ) =
πα2m3

η′

4
|Fγγ∗→η′(0)|2 =

α2m3
η′

64π3

(
sin θ√
3f8

+
2
√
2 cos θ√
3f0

)2

. (33)

Thus we could get:

ρ1 =
Fγγ∗→η(0)

Fγγ∗→η′(0)
=

tan θ08 − tan θ

1 + tan θ08 × tan θ
, (34)

= tan (θ08 − θ) , (35)

in which we let tan θ08 = f0√
8f8

. Along with the same idea by taking the Q2 → ∞ limit, we

could have:

ρ2 =
Fγγ∗→η(Q

2 → ∞)

Fγγ∗→η′(Q2 → ∞)
=
Fγγ∗→η8(Q

2 → ∞) cos θ − Fγγ∗→η
0
(Q2 → ∞) sin θ

Fγγ∗→η8(Q
2 → ∞) sin θ + Fγγ∗→η

0
(Q2 → ∞) cos θ

=
1− 8 tan θ08 × tan θ

tan θ + 8 tan θ08
, (36)

in which we have limQ2→∞Q2F8(Q
2) = 2f8√

3
and limQ2→∞Q2F0(Q

2) = 4
√
2f0√
3
. CLEO [4]

proposed that the γγ∗ →M transition form factors could be approximated by:

Fγγ∗→M(Q2) = Fγγ∗→M(0)× 1

1 +Q2/Λ2
M

, (37)

thus we obtain:

ρ2 = ρ1
Λ2

η

Λ2
η′
. (38)
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Finally one obtains:

tan θ =
−9(ρ1 + ρ2) +

√
81(ρ1 − ρ2)2 + 32(ρ1ρ2 + 1)2

2(8− ρ1ρ2)
, (39)

f0
f8

=
√
8 tan(θ + arctan ρ1), (40)

and gets

f8 =
1

4
√
3π2 [Fγγ∗→η(0) cos θ + Fγγ∗→η′(0) sin θ]

, (41)

f0 =

√
8

4
√
3π2 [Fγγ∗→η′(0) sin θ − Fγγ∗→η(0) cos θ]

, (42)

by using the above results.

IV. γ∗γ → η AND γ∗γ → η TRANSITION FORM FACTORS

There have been many different approaches to discuss the photon-meson transition form

factors of light pseudoscalar mesons π0, η, and η′, such as the light-cone perturbation theory

by Cao-Huang-Ma [2, 29], the light-front quark model by Hwang and Choi-Ji [26], QCD sum

rule calculation by Radyushkin-Ruskov [30], and also other approaches et al. [31]. We now

perform a systematic calculation of these transition form factors in the light-cone framework

just presented in section 2. The advantage of this new framework is that the predictions

should be applicable at both low and high energy scales.

Similar to the pion transition form factor and from Eq. (22) and Eq. (23), we can get η8

and η0 transition form factors:

Fγγ∗→η8(Q
2) = 4(e2u + e2d)

∫
dxd2k⊥

16π3

mq

x
√
m2

q + k′2
⊥

φq
8(x,k

′
⊥)
x(1− x)

m2
q + k2

⊥

−8e2s

∫
dxd2k⊥

16π3

ms

x
√
m2

s + k′2
⊥
φs
8(x,k

′
⊥)
x(1 − x)

m2
s + k2

⊥
, (43)

Fγγ∗→η0(Q
2) = 4

√
2(e2u + e2d)

∫
dxd2k⊥

16π3

mq

x
√
m2

q + k′2
⊥

φq
0(x,k

′
⊥)
x(1− x)

m2
q + k2

⊥

+4
√
2e2s

∫
dxd2k⊥

16π3

ms

x
√
m2

s + k′2
⊥
φs
0(x,k

′
⊥)
x(1− x)

m2
s + k2

⊥
, (44)
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in which k′
⊥ = k⊥ + (1 − x)q⊥ after considering the Drell-Yan-West assignment, and then

we get Fγγ∗→η(Q
2) and Fγγ∗→η′(Q

2) in the η8-η0 mixing scheme

Fγγ∗→η(Q
2) = Fγγ∗→η8(Q

2) cos θ − Fγγ∗→η0(Q
2) sin θ, (45)

Fγγ∗→η′(Q
2) = Fγγ∗→η8(Q

2) sin θ + Fγγ∗→η0(Q
2) cos θ. (46)

A. Numerical calculations

First of all, we would like to determine the mixing angle θ and decay constants of f8

and f0 by employing Eq. (39) to Eq. (42) with two different sets of experimental data which

may cast some light on the clarification of the obvious current disagreement between the

former Primakoff experiments and collider results in the measurements of Γ(η → γγ), and

then give more reasonable predictions on the mixing angle θ. From the Particle Data Group

book [32], we get:

Γ(π0 → γγ) = 7.74± 0.54 eV, (47)

Γ(η → γγ) = 0.46± 0.04 keV, (48)

Γ(η′ → γγ) = 4.29± 0.15 keV, (49)

and

mπ0 = 134.9766± 0.0006 MeV, (50)

mη = 547.30± 0.12 MeV, (51)

mη′ = 957.78± 0.14 MeV. (52)

We can get θ = −14.7◦ ± 2.0◦, f0 = 1.13 ± 0.08fπ and f8 = 0.97 ± 0.07fπ. However,

Γ(η → γγ) = 0.511±0.026 keV if we do not include the Primakoff production measurement

of η → γγ (Γ(η → γγ) = 0.324 ± 0.046 keV) which obviously disagrees with other collider

measurement. Therefore, we obtain θ = −16.1◦ ± 1.5◦, f0 = 1.11 ± 0.08fπ and f8 = 0.95±
0.07fπ. Moreover, we find that the mixing angle φ = θ + arctan 1√

3
= 38.6◦ is compatible

with [9] which gives the phenomenological value of the mixing angle φ = 39.3◦ ± 1.0◦ from

eight decay and scattering processes. The mixing independent ratio R can be defined as

13



follow:

R ≡ M3
π

Γ(π → γγ)

[
Γ(η → γγ)

M3
η

+
Γ(η′ → γγ)

M3
η′

]
(53)

=
1

3

(
f 2
π

f 2
8

+ 8
f 2
π

f 2
0

)
. (54)

The current experimental value of R which was given in the proposal of the PrimEx Collab-

oration [6] at JLab is Rexp = 2.5± 0.5(stat)± 0.5(syst). We can get R = 2.45 and R = 2.54

respectively by using the above two sets of the parameters. With the latter set of the fitted

value of the mixing angle θ and decay constants of f8 and f0 as the input parameters, we

can fix the left seven parameters by the following nine constraints.

In the formulas of the transition form factor Fγγ∗→P (Q
2) (P = π, η8, η0), the parameters

are the normalization constants Aπ, A8 and A0, the harmonic scale βπ = β8 and β0, and

the quark masses mq = mu = md and ms. In order to take a numerical calculation of the

transition form factor Fγγ∗→M(Q2) and compare it with the available experimental data,

we need to employ nine constraints to fix those seven parameters above. Thus, we can

determine all these seven parameters in the transition form factor uniquely.

1. The decay widths of π, η and η′ [4, 32]:

Fπγ(0) =

√
4

α2πM3
π

Γ(π → γγ) = 0.274± 0.010 GeV−1, 0.274 GeV−1, (55)

Fηγ(0) =

√
4

α2πM3
η

Γ(η → γγ) = 0.273± 0.009 GeV−1, 0.277 GeV−1, (56)

Fη′γ(0) =

√
4

α2πM3
η′
Γ(η′ → γγ) = 0.342± 0.006 GeV−1, 0.343 GeV−1. (57)

2. The Q2 → ∞ limiting behavior of Q2Fγγ∗→P (0)Fγγ∗→P (Q
2) [1, 8, 33]:

lim
Q2→∞

π2Q2Fγγ∗→π(0)Fγγ∗→π(Q
2) =

1

2
, 0.49, (58)

lim
Q2→∞

3π2Q2Fγγ∗→η8(0)Fγγ∗→η8(Q
2) =

1

2
, 0.48, (59)

lim
Q2→∞

3π2Q2Fγγ∗→η0(0)Fγγ∗→η0(Q
2) = 4, 3.99. (60)
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3. The Q2 → ∞ limiting behavior of Q2Fγγ∗→P (Q
2) [1, 8, 33]:

lim
Q2→∞

Q2Fγγ∗→π(Q
2) = 2fπ = 184.8± 0.2 MeV, 184.8 MeV, (61)

lim
Q2→∞

Q2Fγγ∗→η8(Q
2) =

2√
3
f8 = 101± 7 MeV, 95 MeV, (62)

lim
Q2→∞

Q2Fγγ∗→η0(Q
2) =

4
√
2√
3
f0 = 334± 15 MeV, 332 MeV, (63)

in which the weak decay constant fπ = 92.4 MeV is defined [34] from π → µν decay.

These constraints are not completely independent, but are necessary since some of them

are free from uncertainties, for example, Eqs. (59-60) are free from the decay constants f0

and f8. Combined with consideration of other properties of the pion [3], we can obtain

mq = 200 MeV, ms = 550 MeV, βπ = β8 = 410 MeV, β0 = 475 MeV, Aπ = 0.0475 MeV−1,

A8 = 0.0331 MeV−1, and A0 = 0.0440 MeV−1. Among these 7 parameters, 3 of them (mq,

Aπ and βπ) are the same in our previous work [3] and have already been fixed, only the other

4 are new parameters. These three parameters satisfy Eqs. (55), (58) and (61) very well.

Then we fix the 4 new parameters by using the four equations Eqs. (56), (57), (59) and (60).

Since the parameter fixing scheme is somehow unique, numerical results of these parameters

do not have much room to vary, and not surprisingly we find these fixed 7 parameters give

very good prediction for Eqs. (62)-(63). Reversely, we can compute the values of the above

nine constraints by using the above seven fixed parameters, and we also provide the fitted

values at the end of each equation. Therefore, after this simple parameter fixing scheme, we

could start to calculate the transition form factor for these mesons.

The results are in good agreement with the experimental data which we have listed above.

Moreover, it is interesting to notice that the masses of the light-flavor quarks (the up quarks

and down quarks) from the above constrains are just in the correct range (e.g., 200 ∼
300 MeV) of the constituent quark masses from more general considerations. Naturally, the

transition form factor results emerging from this assumption are in quite good agreement

with the experimental data.

Fig. 2 indicates that the theoretical values of the photon-pion (γγ∗ → π) transition form

factors in the case of low Q2 fit the experimental data well. One may consider this work

as a light-cone version of relativistic quark model [20, 21], which should be valid in the

low-energy scale about Q2 ≤ 2 GeV2. However, it is also physically in accordance with the

light-cone perturbative QCD approach [1, 2], which is applicable at the high-energy scale of
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in the BHL prescription compared with the experimental data. The data for the transition form
factor are taken from Ref. [5].
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FIG. 3: Theoretical prediction of Q2|Fγγ∗→π(Q
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are taken from Ref. [4] and Ref. [5].
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Q2 > 2 GeV2. The reason is that the hard-gluon exchange between quark and antiquark of

the meson, which should be generally considered at high Q2 for exclusive processes, is not

necessary to be incorporated in the light-cone perturbative QCD approach for pion-photon

transition form factor [1, 2]. As a result, there is no wonder that our predictions for the

transition form factor at high Q2 also agree with the experimental data at high energy scale

in Fig. 3.

Fig. 4 and Fig. 5 show that our predictions for the γ∗γ → η transition form factors agree

with the experimental data in the low and high energy scale, respectively. In addition, the

numerical results of γ∗γ → η′ transition form factor also give good fit of the experiments

both in the low and moderately high energy scale in Fig. 6 and Fig. 7. The prediction that

we have made for the low Q2 (0.001− 0.5 GeV2) behaviors of the photon-meson transition

form factors of π0, η and η′ are measurable in e + A(Nucleus) → e + A +M process via

Primakoff effect at JLab and DESY.

Generally speaking, the medium to high Q2 behavior of the transition form factors should

include leading-twist order (so-called pQCD picture) and NLO corrections [37, 38], but we

only take the leading order into account in this literature. However, we find that our results

for the leading order of the transition form factors fit the experimental data at small Q2 well

and are also physically consistent with the light-cone pQCD approach at large Q2.

V. CONCLUSION

The light-cone formalism provides a convenient framework for the relativistic description

of hadrons in terms of quark and gluon degrees of freedom, and for the application of

perturbative QCD to exclusive processes. With the minimal Fock-state expansions of the

pion and photon wave functions from the light-cone representation of the spin structure

of the pseudoscalar meson and photon vertexes, we investigate the photon-meson transition

form factors by adopting the Drell-Yan-West assignment to get the light-cone framework that

works at both low Q2 and high Q2. We employ the experimental values of the decay widths of

π, η and η′, the limiting behavior of limQ2→∞Q2Fγ∗γ→M(Q2)Fγ∗γ→M(0) (M = π, η8, η0), and

the limiting behavior of Q2Fγ∗γ→M(Q2) as the nine constrains to fix those seven parameters

in the π, η8, and η0 wave functions. With the fixed π, η8, and η0 wave functions, we find that

our numerical predictions for the photon-meson transition form factors of light pseudoscalar
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mesons π, η, and η′ agree with the experimental data at both low and high energy scale, in

a wide region comparing to previous studies.
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