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We discuss that hadron-induced atmospheric air showers from ultra-high energy
cosmic rays are sensitive to QCD interactions at very small momentum fractions
x where nonlinear effects should become important. The leading partons from
the projectile acquire large random transverse momenta as they pass through the
strong field of the target nucleus, which breaks up their coherence. This leads to
a steeper xF -distribution of leading hadrons as compared to low energy collisions,
which in turn reduces the position of the shower maximum Xmax. We argue that
high-energy hadronic interaction models should account for this effect, caused by
the approach to the black-body limit, which may shift fits of the composition
of the cosmic ray spectrum near the GZK cutoff towards lighter elements. We
further show that present data on Xmax(E) exclude that the rapid ∼ 1/x0.3 growth
of the saturation boundary (which is compatible with RHIC and HERA data)
persists up to GZK cutoff energies. Measurements of pA collisions at LHC could
further test the small-x regime and advance our understanding of high density
QCD significantly.

1. Introduction

Today, quite little is known about the origin, the spectrum and the composi-

tion of the highest energy cosmic rays. For example, AGASA1 found about

10 events with E > 1011 GeV, well above the Greisen-Zatsepin-Kuzmin

(GZK) cutoff, EGZK ≃ 6 · 1010 GeV, which arises because of interaction

of protons with the cosmic microwave background. On the other hand,

the results of the HIRES2 collaboration agree with the existence of the

1
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GZK cutoff (assuming isotropic sources). Forthcoming Auger3 data near

the GZK cutoff will provide higher statistics and hopefully help to resolve

this puzzle.

The precise knowledge of the primary cosmic ray properties, that is the

particle type, energy and arrival direction, is crucial for the interpretation

of their possible source and acceleration mechanism. Standard candidates

for the highest energy cosmic rays are protons or heavier nuclei, being

accelerated in extreme astrophysical phenomena, or photons, arising for

example from the decay of ultra-heavy X−particles.

Experiments detect cosmic rays indirectly via air showers induced when

they enter the atmosphere. One tries to deduce the properties of the pri-

mary particle from those of the induced shower. Therefore, a good un-

derstanding of the physics of high-energy interactions in the atmosphere

is mandatory. However, the maximum energies exceed those of terrestrial

accelerators by far, and so our knowledge of hadronic interactions needs

to be extrapolated to unknown regimes. Also, as will be discussed in more

detail below, air showers are mostly sensitive to forward particle production

which is less well measured in accelerator experiments.

Several features of strong interactions are expected to change dramat-

ically at very high energies. First, the parameters of the soft interactions

change - the total cross section changes by a factor of ∼ 3, while average im-

pact parameters increase by∼ 50%. The changes in the (semi-)hard interac-

tions are even more dramatic. Indeed, a leading parton from the projectile

propagates through the very strong gluon fields in the target. For example,

for a “low-energy” p+A collision with ELab = 400 GeV, a parton from the

projectile carrying a momentum fraction xp ∼ 0.1 receiving a transverse

kick of pt ∼ 2 GeV interacts with a gluon with xA = 4p2
⊥
/xps ∼ 0.1. At

GZK energy, ELab ∼ 1011 GeV, this corresponds to xA ∼ 10−10 while direct

measurements at HERA covered only the range x ≥ 10−3 and even indirect

ones are sensitive only down to x ≥ 10−4. This is six orders of magnitude

above the x-range to which cosmic rays near the cutoff are sensitive.

Studies at HERA indicate that the gluon density of the nucleon,

xgN (x,Q2), grows very strongly with decreasing momentum fraction x,

roughly as x−λ(Q2), with λ(Q2) ≥ 0.2 for Q2 ≥ 2 GeV2. The data can be

fitted by the NLO QCD evolution equations. The analysis of partial waves

for the interaction of a small dipole with the nucleon at HERA energies

indicates that for qq̄ dipoles the partial waves remain substantially below

the unitarity limit, while for gg dipoles the unitarity limit is practically

reached for virtualities Q2 ≃ 4 GeV2 at top HERA energies. This indicates
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that for higher energies further growth of the gluon density in the proton

should be tamed for a range of virtualities that increases with energy.

The rate at which the growth of the gluon density is “tamed”, depends

strongly on its behavior at small x. One of the most popular approaches

for a long time was the BFKL approximation where one sums the series of

leading, next to leading log(1/x). The series was found to converge poorly,

to a large extent due to the specifics of the treatment of the energy conser-

vation effects. More recent calculations4,5 (some of which were discussed

at the Erice meeting) try to treat simultaneously logarithms of both 1/x

and Q2 and to treat more accurately the phase space available for gluon

emission at a given energy. They appear to indicate that the NLO DGLAP

approximation should effectively work for x ≥ 10−3 for the scattering off

a gluon or, correspondingly, for x ≥ 10−4 for the scattering off a nucleon,

which is consistent with the HERA findings.

It appears natural to expect that the taming effects would still allow

the interactions to reach the maximal possible strength allowed by unitarity

over a wide range of impact parameters which should increase with energy.

Indeed, this is implemented in all models currently on the market with the

only difference being the rate of the approach to the unitarity limit.

If the energies are large enough, the constituents of the projectile

hadron/photon propagating through the nucleus resolve strong small-x

gluon fields in the target. During the propagation through such media

they should experience strong distortions - at the very least they should

obtain significant transverse momenta inversely proportional to the size of

test dipoles for which the interaction becomes black. Also, some of the

processes relevant in this case, like hard scattering of the projectile partons

off small-x partons, lead to fractional energy losses.

However the most important effect for the purposes of near-GZK in-

elastic collisions is loss of coherence of the leading partons of the projectile

as they acquire random transverse momenta. This leads to independent

fragmentation of the leading partons from the projectile over a large range

of rapidities, and hence to a much softer energy spectrum of the leading

particles6,7.

In this paper we review our first efforts to model this effect and to

show its relevance for the understanding of air showers induced by cosmic

rays near the GZK cutoff. Our primary goal is to analyze the implication

of various models for the small-x behavior of the gluon densities beyond

the HERA range. We demonstrate that already the current data on the

longitudinal and lateral structure of giant air showers allow us to rule out
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certain models where gluon densities increase very rapidly with energy8.

At the same time, models which appear to be consistent with the recent

theoretical studies4,5 lead to relatively small effects which are consistent

with the air shower data and suggest that the spectrum near the cutoff is

dominated by protons.

Finally, we also point out that the gluon densities encountered in central

proton-nucleus collisions at LHC are similar to those for central proton-air

collisions near the cutoff energy. Hence, we also present some predictions for

p-”heavy nucleus” central collisions at RHIC and LHC energies which could

test our suggestion for the mechanism of energy degradation by projectile

breakup. Such measurements could help us understand the interactions of

very high energy cosmic rays with the atmosphere and, consequently, of

their composition and origin.

2. Scattering at high energies

The wave function of a hadron (or nucleus) boosted to large rapidity ex-

hibits a large number of gluons at small x. The density of gluons per unit of

transverse area and of rapidity at saturation is denoted by Q2
s, the so-called

saturation momentum. This provides an intrinsic momentum scale which

grows with atomic number (for nuclei) and with rapidity, due to continued

gluon radiation as phase space grows. For sufficiently high energies and/or

large nuclei, Qs can grow much larger than ΛQCD and so weak coupling

methods are applicable. Nevertheless, the well known leading-twist pQCD

can not be used when the gluon density is large; rather, scattering ampli-

tudes have to be resummed to all orders in the density. When probed at

a scale below Qs, scattering cross sections approach the geometrical size

of the hadron (the “black body” limit). A perturbative QCD based mech-

anism for unitarization of cross sections is provided by gluon saturation

effects 9,10,11. On the other hand, for Q2 ≫ Q2
s the process occurs in the

dilute DGLAP 12 regime where cross sections are approximately determined

by the known leading-twist pQCD expressions.

In this section we discuss particle production in the collision of a hadron,

which for the present purposes is either a nucleon or a meson, with a target

nucleus in the atmosphere. The development of the air shower is sensitive

mainly to the distribution of the most energetic particles (see section 4)

while the low-energy particles produced near the nuclear fragmentation

region are less important for the observables studied here. Due to QCD

evolution (section 2.3) this so-called forward region probes the high gluon
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density (small-x) regime of the target, while the density of the projectile

is rather low. Hence, in the relevant rapidity (or Feynman-xF ) region we

are dealing with a “dilute” projectile hadron impinging on a “dense” target

nucleus: Qh
s < QA

s .

This assumption breaks down at large impact parameters, where even

the saturation momentum of the nucleus, QA
s (y, b), is not large. For such

events, as well as for collisions at moderately high energies, no intrinsic

semi-hard scale exists in the problem and so a treatment within weak cou-

pling QCD is not applicable. In accelerator experiments this regime could

be avoided by appropriately tuning the control parameters, such as collision

energy, atomic number of projectile and target, impact parameter (trigger),

rapidity y, transverse momentum pt and so on. This, of course, is not fea-

sible in the case of cosmic ray air showers; here, we model such collisions

using the SIBYLL leading-twist event generator. This is discussed in more

detail in section 3.

2.1. Leading quarks

With this in mind, we now focus on particle production in collisions at suffi-

ciently high energy and sufficiently small impact parameter where the satu-

ration momentum of the nucleus is large enough to warrant a weak-coupling

approach. The dominant process for fast particle production (xF
>∼ 0.1) is

scattering of quarks from the incident dilute projectile on the dense target.

For high quark energy we assume that the eikonal approximation applies

such that p+ is conserved. The transverse momentum distribution of scat-

tered quarks is then given by the correlation function of two Wilson lines,

V (xt) = P̂ exp

[

−ig

∫

∞

−∞

dz−A+(z−, xt)

]

, (1)

running up and down the light cone at transverse separation rt (in the

amplitude and its complex conjugate),

σqA =

∫

d2qtdq
+

(2π)2
δ(q+ − p+)

〈

1

Nc
tr

∣

∣

∣

∣

∫

d2zt e
i~qt·~zt [V (zt)− 1]

∣

∣

∣

∣

2
〉

. (2)

Here, the convention is that the incident hadron has positive rapidity, i.e.

the large component of its light-cone momentum is P+, and that of the

incoming quark is p+ = xP+ (q+ for the outgoing quark). The two-point

function has to be evaluated in the background field of the target nucleus.

When this field is weak, the Wilson lines can be expanded to leading order
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and the problem reduces to evaluating the two-point function of the gauge

field Aµ.

In the strong-field regime gA+ ∼ 1, however, one needs to evaluate

the correlation function to all orders (corresponding to summing over any

number of scatterings of the incident quark). A relatively simple closed

expression can be obtained in the McLerran-Venugopalan model of the

small-x gluon distribution of the dense target10. In that model, the small-x

gluons are described as a stochastic classical non-abelian Yang-Mills field

which is averaged over with a Gaussian distribution. n-point functions then

factorize into powers of the two-point function. The qA cross section is then

given by13

q+
dσqA→qX

dq+d2qtd2b
=

q+

P+
δ

(

p+ − q+

P+

)

C(qt) (3)

C(qt) =

∫

d2rt
(2π)2

ei~qt·~rt
{

exp

[

−2Q2
s

∫

Λ

d2lt
(2π)2

1

l4t

(

1− ei
~lt·~rt

)

]

− 2 exp

[

−Q2
s

∫

Λ

d2lt
(2π)2

1

l4t

]

+ 1

}

. (4)

This expression is valid to leading order in αs (tree level), but to all orders

in Qs since it resums any number of scatterings of the quark in the strong

field of the nucleus. The saturation momentum Qs, as introduced in eq. (3),

is related to χ, the total color charge density squared (per unit area) from

the nucleus integrated up to the rapidity y of the probe (i.e. the projectile

quark), by Q2
s = 4π2α2

s χ (N2
c − 1)/Nc. In the low-density limit, χ is

proportional to the ordinary leading-twist gluon distribution function of

the nucleus14:

χ(x) =
A

πR2
A

∫ 1

x

dx′

(

1

2Nc
q(x′, Q2

s) +
Nc

N2
c − 1

g(x′, Q2
s)

)

, (5)

where q(x) and g(x) denote the quark and gluon distributions of a nucleon,

respectively; note that shadowing in the linear regime15 would tend to

reduce χ somewhat but is neglected here since we are dealing with small

nuclei (mass number 14 → 16) and because the induced air showers are

sensitive mainly to the small-x regime in the nucleus.

The integrals over pt in eq. (3) are cut off in the infrared by some cutoff

Λ, which we assume is of order ΛQCD. At large transverse momentum,

again the first exponential in (3) can be expanded order by order16,17 to

generate the usual power series in 1/q2t :

C(qt) =
1

2π2

Q2
s

q4t

[

1 +
4

π

Q2
s

q2t
log

qt
Λ

+O

(

Q2
s

q2t

)]

. (6)
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This expression is valid to leading logarithmic accuracy. The first term

corresponds to the perturbative one-gluon t-channel exchange contribution

to qg → qg scattering and exhibits the well-known power-law divergence of

leading-twist perturbation theory for small momentum transfer.

On the other hand, for Qs
>∼ qt one obtains in the leading logarithmic

approximation17

C(qt) ≃
1

Q2
s log Qs/Λ

exp

(

− πq2t
Q2

s log Qs/Λ

)

. (7)

This approximation reproduces the behavior of the full expression (3) about

qt ∼ Qs, and hence the transverse momentum integrated cross section rea-

sonably well. It is useful when the cutoff Λ ≪ Qs, that is, when color

neutrality is enforced on distance scales of order 1/Λ ≫ 1/Qs. If, how-

ever, color neutrality in the target nucleus occurs over distances of order

1/Qs
18 then Λ ∼ Qs and one has to go beyond the leading-logarithmic

approximation.

It is essential to realize that the high-energy part of the air shower is

essentially one-dimensional, i.e. the transverse momenta of the produced

hadrons play no rolea (see section 4). This, in turn, implies that when Qs

is large that the high-transverse momentum leading-twist regime can be

neglected. The qt-distribution of forward valence quarks can thus be taken

to be given by the simple expression (7) rather than (4). Note also that

both expressions do conserve probability, i.e.
∫

d2qt C(qt) = 1 . (8)

This is, of course, a very useful property because all charges carried by the

valence quarks are then automatically conserved.

Contrary to the leading twist expression (6), the distribution (7) exhibits

transverse broadening as the density of the target increases (the scattered

quarks are pushed out to larger qt). Consider now the probability of in-

elastic scattering (i.e. with color exchange) to small transverse momentum.

This is given by expression (4,7), integrated from qt = 0 to qt = Λ:

Λ
∫

0

d2qt C(qt) ≃
πΛ2

Q2
s log Qs/Λ

+ · · · . (9)

aWe repeat, however, that the transverse broadening of the distributions of released
partons does play an important role since it destroys the coherence of the projectile
wave function7 and affects the fragmentation into hadrons.
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Here, we have written only the leading term in Λ2/Q2
s, neglecting subleading

power-corrections and exponentially suppressed contributions. Hence, soft

forward inelastic scattering is power-suppressed in the black body limit

because the typical transverse momentum is proportional to QA
s . This

steepens the longitudinal distribution dN/dxF of leading particles since

partons with large relative momenta fragment independently6,7. On the

other hand, for low target density, the projectile’s coherence is not destroyed

completely and leading quarks may recombine, recovering the “leading-

particle” effect observed in pp scattering at not too high energy. This

recombination effect should be taken into account when modeling minimum

bias pA collisions in order to ensure a smooth transition from the high-

density to the low-density regime; our implementation is described and

studied in more detail in section 3.

Integrating over the transverse momentum of the scattered quark, the

elastic and total scattering cross sections for quark-nucleus scattering are13:

σel =

∫

d2b
[

1− exp(−Q2
s/4πΛ

2)
]2

(10)

σtot = 2

∫

d2b
[

1− exp(−Q2
s/4πΛ

2)
]

. (11)

Clearly, when Qs/Λ → ∞, the cross section approaches the unitarity limit.

2.2. Gluons

Gluon bremsstrahlung dominates particle production at xF
<∼ 0.1. At very

large transverse momentum, qt ≫ Qs, the inclusive gluon distribution is

given in collinear factorization by the usual gg → gg LO hard scattering

function convoluted with the DGLAP evolved leading-twist gluon distri-

bution of the projectile and target. However, for the high-energy part of

the air shower only the pt-integrated longitudinal distribution of hadrons

matters (cf. section 4) which is dominated by fragmentation of gluons with

transverse momenta up to ∼ QA
s . In that regime leading-twist perturbative

QCD can not be applied reliably.

Gluon radiation with transverse momentum qt ∼ QA
s in high-energy

hadron-nucleus collisions has been discussed in detail in19,20. The release of

gluons from the hadronic wave functions can be described by convoluting

the gluon distribution in the hadron with a (semi-)hard scattering cross

section. The main qualitative features of the bremsstrahlung spectrum is

that it flattens from ∼ 1/q4t for asymptotically large qt to 1/q2t for qt in
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between the two saturation momenta; for qt → 0, finally, it approaches a

constant (up to logarithms)21.

For the present purposes we require a simple ansatz that can be easily

implemented in a Monte-Carlo model and, at the same time, does incorpo-

rate the above features. A useful approach has been suggested in refs.20.

The “fusion” of two gluon ladders gives rise to the bremsstrahlung spectrum

E
dσ

d3q
= 4π

Nc

N2
c − 1

1

q2t

q2
t
∫

dk2t αs(k
2
t )φh(x1, k

2
t )φA(x2, (qt − kt)

2) , (12)

where φ(x,Q2) denotes the unintegrated gluon distribution function of the

projectile hadron or target nucleus, respectively. It is related to the gluon

density by

x g(x,Q2) =

Q2

∫

dk2t φ(x, k
2
t ) . (13)

Eq. (12) can be integrated by parts to read

dN

dydq2t
= 4παs(q

2
t )

Nc

N2
c − 1

1

q4t
x1gh(x1, q

2
t )x2gA(x2, q

2
t ) . (14)

The ansatz from20 for the infrared-finite gluon densities is

x g(x,Q2) ∝ 1

αs
min(Q2, Q2

s(x)) (1− x)4 , (15)

with αs evaluated at max(Q2
s, Q

2). Note that for large Q2, the x-

dependence of the gluon distribution exhibits the conventional xg(x) ∼
x−λ(1− x)4 behavior; this follows from the evolution of the saturation mo-

mentumb Qs(x) ∼ 1/xλ with x. On the other hand, for small Q2 and

x, the above ansatz exhibits a slow logarithmic growth xg(x) ∼ log x−λ

only. In any case, we consider (15) to be a simple parameterization which

exhibits some generic qualitative features expected from gluon saturation

(e.g. that it is of order 1/αs at small Q2 and x) while, at the same time, it

is roughly consistent with the DGLAP gluon distribution at large Q2 and

x. In fig. 1 we compare the parameterization (15), with the normalization

constant fixed by the condition
∫

dx xg(x,Q2) = 0.5 and with Q2
s ∼ x−0.3,

to the CTEQ5 LO distribution22.

bFor fixed coupling evolution this is true for any x; for running coupling evolution it
holds only for not too small x, see section 2.3.
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Figure 1. Comparison of the gluon distribution from eq. (15) with CTEQ5 LO, in the
DGLAP regime (for a proton).

The constant of proportionality in eq. (15) was chosen in20 such as to

reproduce the overall normalization of the charged hadron rapidity distri-

bution in d+Au collisions at BNL-RHIC energy. This was possible because

the forward region was not considered. On the other hand, here we need

to consider the entire solid angle (in momentum space) and, in particular,

ensure conservation of the energy carried by the projectile. In our approach

we therefore fix the overall number of radiated gluons by the condition of

energy conservation. This is discussed in more detail in section 3 where we

also show that the charged hadron multiplicity in the central region of pA

collisions at BNL-RHIC energy agrees roughly with that from20 and with

available data.

2.3. The saturation momentum as a function of impact

parameter and rapidity

The saturation momentum of the nucleus, QA
s , must of course depend on

the impact parameter as it basically measures the color charge density in

the transverse plane. Hence, in the rest frame of the nucleus, the most naive

estimate (neglecting shadowing15) is that there are A times more valence

quarks in a nucleus than in a nucleon which are distributed over an area

proportional to A2/3; this then results in (QA
s )

2 ∼ A1/3. More elaborate

estimates lead to an additional factor equal to the logarithm of the mass

number.

For realistic nuclei with a non-uniform density distribution in the trans-

verse plane we must replace, of course, the A1/3 factor by the number of

nucleons from the target which interact with the projectile, NA:

NA(b) = Aσin(s)TA(b) (16)
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with TA(b) the nuclear profile functionc and σin(s) the energy dependent

inelastic (non single-diffractive) cross section for the particular projectile

species on protons. Fluctuations in NA(b) are also taken into account in

our Monte-Carlo implementation, as discussed in section 3. The impact

parameter dependence of the nuclear saturation momentum is then taken

to be

QA
s (b) = Λ

√

[1 +NA(b)] log(1 +NA(b)) . (17)

For a single nucleon, this corresponds to a saturation momentum on the

order of Λ. It should be noted that at very high energies, deep in the black-

body limit, the results depend only weakly on the above “initial condition”

for QA
s . However, when the saturation momentum is only moderately large

(for example, for running coupling evolution, see below), the assumed de-

pendence of QA
s on b could play a role. Whether or not Q2

s ∼ NA is the

most appropriate choice will be studied in more detail in the future.

Next, we turn to the dependence of Qs on rapidityd y = log 1/x.

Eq. (17) provides the initial condition in (or near) the rest frame of the

nucleus, y ≃ 0, from valence quarks. As one moves away in rapidity phase

space for gluon radiation opens up and so the gluon density grows; it is

expected to saturate when it becomes of order 1/αs
11. For a recent review

of evolution at small x see e.g.23.

Model studies of deep inelastic scattering (DIS) on protons at HERA

suggest24

Q2
s(x) ∼ x−λ (18)

with λ ≈ 0.3. This scaling relation can be obtained from the fixed coupling

BFKL evolution equation for the scattering amplitude of a small dipole.

The BFKL equation is a linear QCD evolution equation which can not be

applied in the high-density regime. Nevertheless, one can evolve the wave

function of the target in rapidity y = log 1/x and ask when the dipole

scattering amplitude becomes of order one, which leads toe

Q2
s(y, b) = Q2

s(y0, b) exp cᾱsy , (19)

with ᾱs = αsNc/π and c ≈ 4.84 a constant. Hence, LO fixed-coupling

BFKL evolution predicts λ′ = cᾱs of order one, a few times larger than the

cNormalized according to
∫

d2bTA(b) = 1.
dIn this section, we measure the rapidity always relative to the parent hadron.
eWe write only the leading term proportional to y.
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fit (18) to HERA phenomenology. A resummed NLO BFKL analysis cor-

rects this discrepancy and leads to λ′ much closer to the phenomenological

value25. A similar observation is made in5 where both log(1/x) and logQ

effects were considered.

On the other hand one could also consider BFKL evolution with ad-

hoc one-loop running of the coupling23f : ᾱs(Q
2
s) = b0/ log(Q

2
s(x)/Λ

2
QCD),

which leads to

Q2
s(y, b) = Λ2

QCD exp
√

2b0c(y + y0) , (20)

with 2b0cy0 = log2(Q0(b)
2/Λ2

QCD). Insisting that (18) be valid at least in

the y → 0 limit again provides us with a phenomenological value for the

constant c in terms of the saturation momentum at y = 0. The form (20)

leads to a notably slower growth of Qs at high energy. Specifically, for

central proton-nitrogen collisions at RHIC, LHC and GZK-cutoff energies

(total rapidity y = 10.7, 17.3 and 26.0) the saturation momentum of the

nucleus in the rest frame of the projectile hadron is Qs = 1.5, 5, 20 GeV for

fixed coupling evolution, while for running coupling evolution it is Qs = 1,

2.5, 6 GeV, respectively. Clearly, cosmic ray interactions in our atmosphere

should offer a realistic opportunity for distinguishing these scenarios.

3. Monte-Carlo implementation

We first generate a configuration of valence quarks according to the distri-

bution (3,7), convoluted with the respective valence quark distribution of

the projectile at the scale QA
s

7:

dσ

dxd2qtd2b
= fv(x,Q

A
s ) C(qt) (21)

with QA
s is a function of both x and b. For this purpose, we employ the

GRV94 parameterization of the parton distribution functions of a proton26

or a π+27; we assume isospin symmetry to deduce the distributions for other

states. Also, as a rough approximation we take the valence quark distri-

bution of the K+ to be the same as that of the π+, with the replacement

d̄ → s̄.

The remaining momentum is then used to generate a number of glu-

ons according to the distribution (14). These gluons could be fragmented

independently but this is not a good approximation when their transverse

fAgain, we drop subleading terms that grow more slowly with rapidity.
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momenta are soft. Rather, soft collinear gluons should be absorbed by the

parent parton.

The Lund string model28 provides such an infrared safe fragmentation

prescription. We order the produced gluons in rapidity and place them

on strings between the valence quarks and the target nucleus, whose pre-

cise configuration is not important. (Target fragmentation produces only

low-energy particles which do not affect the properties of the air shower

discussed here.)

A baryon-nucleus collision produces three strings (two for a meson-

nucleus collision). However, when the invariant mass of any two of the three

valence quarks is small, one cannot assume anymore that those strings frag-

ment independently. Rather, they will recombine to form a leading diquark,

recovering the “leading particle effect” for low QA
s . This effect should be

taken into account in order to ensure a smooth transition from the regime

of high target density (high energy, central collisions) to low target density

(lower energy, large impact parameter). We model this by introducing a

cut-off in invariant mass,

mcut = mρ = 0.77 GeV (22)

below which two leading quarks are allowed to form a diquark. The effect

on the xF -distribution of fast hadrons is shown below.

Although soft gluon absorption and diquark recombination are taken

into account in our Monte-Carlo implementation of scattering near the

black body limit of QCD (“BBL”), it should nevertheless be clear that

it is restricted to the high-density regime. For example, when QA
s becomes

small, the DGLAP leading-twist regime becomes important and one should

use better approximations for the gluon densities than those from (15).

Also, the fraction of diffractive and elastic events becomes sizable.

A large amount of work has been done to develop models for this regime.

SIBYLL29 and QGSJET30, in particular, are commonly used to model air

showers. We do not intend to duplicate those approaches here but rather to

study whether anything could be learned about small-x QCD from cosmic

ray air showers. Hence, we couple our model to the standard pQCD leading

twist event generator sibyll 2.1 such that the “BBL” Monte-Carlo treats

the high density regime (large saturation momentum of the nucleus, i.e. high

energy and/or small impact parameter) while SIBYLL handles peripheral

or low energy collisions where the saturation momentum of the nucleus is

not sufficiently large.

It is clear, of course, that no sharp boundary between those regimes
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exists and that this artificial separation is performed for purely technical

reasons. It is therefore important to check that the results do not depend

strongly on the precise location of the assumed boundary between low and

high density. As already mentioned above, we do implement some effects

into the BBL model which should facilitate a smooth transition to low

densities, such as soft gluon absorption and diquark recombination. At the

same time, the SIBYLL model also assists the transition to high target

densities by implementing a low-pt cutoff for the DGLAP regime which

grows rapidly with energy, see Engel et al29. We therefore expect that our

results are not very sensitive to where exactly we perform the switch, as

long as it occurs in a reasonable regime; this will be checked below.

The saturation momentum of the nucleus provides an intrinsic scale

for resolving the valence quark structure of the projectile, cf. eq. (21). In

practice, this scale can not be too small because the Q2 evolution of parton

distributions in hadrons is normally obtained from DGLAP; standard PDF

parameterizations typically require a minimal Q2 on the order of 1 GeV2. In

order not to distort the inclusive momentum distribution of valence quarks,

we must therefore ensure that QA
s (x) does not drop below this threshold at

too large an x. Specifically, we require that the valence quark distribution

be probed at least down to x = 10−3:

QA
s (x = 10−3, b) > Qmin ≈ 1 GeV . (23)

In our Monte-Carlo approach, the collision is handled by either BBL or

SIBYLL depending on whether this condition is met or not. The result-

ing boundary between low and high density regimes appears reasonable;

for example, for central collisions of protons on heavy targets like Au or

Pb, the transition occurs just below BNL-RHIC energy,
√
s = 200 GeV.

On the other hand, minimum bias pp collisions essentially never pass the

threshold (23), even at LHC energies and beyond.

As a first check, we apply our model to RHIC energy which represents

the highest presently available energy for proton-nucleus collisions. We

compare the (pseudo-) rapidity distribution of inclusive charged hadrons to

data by BRAHMS31. The fragmentation region of the target should be dis-

regarded since no attempt has been made to treat that realistically. Given

that no special tuning has been performed to fit these particular datag, we

consider the qualitative agreement to be quite good. More importantly, we

gFor example regarding diquark recombination, string fragmentation or initial conditions
for the evolution of the two saturation momenta
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Figure 2. Left: Comparison of the BBL event generator (with running coupling evolu-
tion) to RHIC data (ECM = 100 GeV) from d+ Au collisions by the BRAHMS collab-
oration 31. We have scaled our results for p + Au (obtained with NA = 6 participants)
by a factor of two. Right: our prediction for central p + Pb collisions at LHC energy,
(assuming NA = 10 and ECM = 3000 GeV).

note that both evolution scenarios (running and fixed coupling) can easily

be made to fit the same data at this energy by somewhat readjusting the

initial conditions for Qs (see for example20 for a much better fit than ours

with fixed-coupling evolution). Hence, RHIC energy is too low to reliably

probe the evolution of Qs; rather, results are mostly sensitive to the initial

conditions.

In the right panel we show our result for central p + Pb collisions at

LHC energy, which roughly agrees with that from ref.32. Note, however,

that ref.32 considers the overall normalization to be a parameter, fixed from

low-energy (RHIC) collisions, while in our approach it is determined auto-

matically by momentum conservation. The similarity of dN/dη at central

rapidities obtained via the two methods perhaps suggests that indeed the

number of radiated gluons equals the maximum number allowed by kine-

matics.

Figure 3 shows the xF distribution of pions and nucleons for central

proton-nitrogen events at 109 GeV. We plot on a logarithmic scale to show

the effect at high xF . Very forward particle production is suppressed as

compared to the pQCD model sibyll 2.1, which is a consequence of the

break-up of the projectile into its partonic components. This behavior

affects another key quantity for cosmic ray air showers, the so-called inelas-

ticity, which is one minus the Feynman-x of the most energetic secondary

hadron (shown below). Also note that in the high-density limit diquark

recombination in the forward region is suppressed (see discussion below),

and so the projectile proton mainly decays into a beam of leading mesons7.
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E = 109 GeV. For either model, we show the nucleon and pion spectra separately. One
observes the suppression of forward nucleon production in the high-density limit, which
is due to the complete breakup of the proton.

It would be very useful to check this prediction in central p+ Pb collisions

at the LHC in order to confirm or rule out the basic mechanism of en-

ergy degradation presented here, which is very important for cosmic ray air

showers.
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Figure 4. Mean multiplicity of charged particles (left panel) and the inelasticity (right
panel) as a function of lab energy, for minimum bias p+14N collisions.

Fig. 4 compares the mean multiplicities of charged particles from the

BBL model with fixed and running coupling evolution of the saturation

scale, and the conventional models sibyll 2.1 and qgsjet01. Most signif-

icant is the difference between fixed and running coupling evolution. For

fixed coupling evolution QA
s grows very large over a broad range of impact

parameters (the radius of the black disc approaches the geometrical cross

section of the target nucleus). Hence, even for minimum bias collisions
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forward particle production is strongly suppressed in this case, and the re-

maining energy is used for particle production at small xF . This explains

the large multiplicities as compared to BBL with running coupling evolu-

tion. On the other hand, for energies below 104 − 105 GeV there is little

sensitivity to the evolution scenario for QA
s and the results look rather sim-

ilar. In sibyll 2.1, the growth of the multiplicity is “tamed” by a rapidly

growing pt-cutoff for leading-twist hard processes. It should be kept in

mind though that the multiplicity from large momentum transfer processes

is power-law sensitive to the infrared cutoff.
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Figure 5. The mean charged particle multiplicity and the inelasticity for minimum-bias
p+14N collisions using the combined BBL+sibyll 2.1 model for Qmin = 0.7, 1.0 GeV.

To check the sensitivity to the (artificial) boundary between low and

high density from eq. (23), we compare results for the multiplicity and

for the inelasticity for Qmin = 0.7 GeV and Qmin = 1 GeV in Fig. 5. A

lower value for Qmin leads to a higher fraction of BBL events, but these

are then generated with lower QA
s , and so are more similar to “soft” events

from SIBYLL. In total, we see that there is little sensitivity of physical

observables to the precise threshold between the models, as long as it is

chosen within reasonable bounds. In the following we choseQmin = 0.7 GeV

as default for our calculations.

In Fig. 6, finally, we show the effect of the diquark recombination mech-

anism. We compare the production of protons and neutrons in central colli-

sions to the case without recombination (mcut = 0). At relatively low ener-

gies (E ≈ 106 GeV), one notices a suppression of forward baryon production

when recombination is not taken into account, except for xF ≈ 1. This very

forward peak is in fact produced by elastic or diffractive events within the

SIBYLL model, which still handles about 5% of all central collisions at this
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Figure 6. Diquark recombination effect for p +14N collisions at various energies.

energy if Qs obeys running coupling evolutionh. At E = 108 GeV and

above, essentially all central collisions occur near the black body limit, i.e.

they pass criterion (23). The diquark recombination mechanism then al-

lows more particles to be produced in the forward region since the momenta

of the corresponding valence quarks are combined. Nevertheless, the effect

is less important at higher energies since there QA
s is already too high to

allow for the production of a diquark system with low invariant mass.

4. Air showers

In section 4.1 we give a brief introduction into concepts and observables in

cosmic ray physics for readers from other fields. More detailed discussions

can be found in dedicated textbooks such as the book by Gaisser33.

In section 4.2 we discuss general aspects of air shower simulation and, in

particular, present the so-called cascade equations34 employed here to solve

for the longitudinal shower profile. From those equations, we can cleanly

identify which “input” is required from QCD for their solution and, indeed,

which properties of high-energy hadronic interactions actually influence the

characteristics of very high energy air showers.

4.1. Introduction to air showers

Due to a very low flux at high energies, cosmic rays are detected indirectly

by the measurement of air showers. These are cascades of particles produced

hWe note that the actual configuration of nucleons in the target is generated randomly
in each event by SIBYLL according to the appropriate nuclear density profile. Hence,
fluctuations in the number of target participants are taken into account.
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by the interaction of the primary cosmic ray and subsequent secondaries

with air nuclei. An air shower can be structured into 3 parts: a hadronic,

an electromagnetic and a muonic part. Hadrons are produced in collisions

with air-nuclei. Most of the electromagnetic part is induced by π0-decays,

which have a short life-time and decay instantly up to 1019 eV. Muons are

produced by decays of charged pions and kaons, but since their decay-length

is much longer only low energies particles decay while at higher energies

collision with air nuclei dominates. Once produced, muons propagate with

little interaction (mostly energy-loss) through the atmosphere until they

decay or reach the ground. The most prominent fraction of a shower is

the electromagnetic part. A rule of thumb is that the number of electrons

and positrons at the maximum of the shower is approximately 60% of the

primary energy E0 measured in GeV (a 1011 GeV shower produces about

60 billion particles !).

There are two basic observables associated with air showers, which are

measured by experiments: the longitudinal shower profile and the lateral

distribution functions. The longitudinal profile is the number of charged

particles measured along the shower-axis. One typically expresses this as a

function of slant-depth, which is the density of the atmosphere integrated

along the shower-axis: X =
∫ p

∞
ρAir(l)dl. For a vertical shower, X ranges

from zero (top of the atmosphere) to 1020 g/cm2 (sea level). For inclined

showers with polar angle up to 60◦, the slant depth is related to the vertical

depth by X = Xv/ cos(θ); at larger angles one has to take into account the

curvature of the earth. Typical shower profiles are shown in Fig. 7. The

position where the profile reaches the maximum is defined as the shower

maximum Xmax, the number of charged particles is called the shower size

Nmax. For a fixed energy these values fluctuate quite substantially, which is
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due to the fact that the depth of the first collision can vary according to the

cross section. One therefore usually compares the mean Xmax for a given

primary and energy E0. An important observation is that Xmax ∝ log(E0)

and Nmax ∝ E0. To first approximation, the shower of a nucleus can be

considered to be a superposition of A independent nucleon-initiated show-

ers, each carrying an energy E0/A (E0 is the total energy of the primary,

not per nucleon). The mean XFe
max of an iron-induced shower is therefore

lower than that of a proton induced shower, roughly corresponding to the

mean Xmax of a proton shower at energy E0/A. Experiments measure the

longitudinal profile via the emitted fluorescence light of nitrogen as the

shower swipes through the atmosphere. The energy of the primary cosmic

ray is then proportional to the total number of charged particles, which is

determined by integrating the profile.

A very important quantity for Xmax is the inelastic cross section of

a particle on air. It determines the mean free path in the atmosphere. A

significant amount of uncertainty in models for the longitudinal distribution

of air showers is due to this variable.

The other observable, the lateral distribution function (LDF), describes

the density of particles measured on the ground as a function of the distance

from the shower axis (hence in the shower plane) for given particle typesi.

Most of the lateral spread is generated by low-energy scattering of the

electromagnetic part of an air shower. Hadrons do not spread out very

much to large distances, only the low energy ones influence the tail of the

LDF by producing π0 at large angles or distancesj. Typical LDFs are

depicted in Fig. 7 (right panel). They follow approximately a power law.

Just as Xmax, the slope of the LDF also fluctuates. Showers induced higher

in the atmosphere lead to flatter LDFs since they spread out over a larger

radial distance. Empirically, one finds that these fluctuations cancel at some

distance from the shower axis. Experiments exploit this property to extract

the primary energy of the cosmic ray, which is taken to be proportional to

the density at some distance from the axis. The proportionality constant

is normally computed from simulations.

When studying high energy particle physics with air showers it is im-

portant to notice that the high-energy part of the shower (i.e. the first

iExperiments measure the density in terms of response of whatever detector they use,
e.g. scintillation or Cerenkov light, and normalize by the average signal of atmospheric
muons, which are used for calibration.
jHence, LDFs constrain mostly the low-energy hadronic interaction models35.
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collisions) is almost purely longitudinal, which follows from simple kine-

matics. The targets (air-nuclei) are at rest and the projectiles have huge

γ-factors, resulting in very small scattering angles. Furthermore, forward

scattering is most important in air showers, since large-xF particles carry

most of the energy. This implies, for example, that high-pt QCD jets at

mid-rapidity do not influence the longitudinal shower profile substantially

nor do they contribute significantly to the lateral spread (see also ref.36).

4.2. Simulation of air showers

The simulation of air showers is crucial for cosmic ray physics, since they

are needed for the interpretation of experimental data. Given a hadronic

interaction modelk, and models for electromagnetic and muonic interactions

one could just follow each particle and subsequent secondaries individually.

Of course, since N ∝ E0, this would require huge amounts of computing

time at very high energies. Therefore, Hillas introduced the thinning algo-

rithm: below a given energy threshold, i.e. for E < fth×E0, only one single

secondary particle from a collision is followed, but it is attributed a higher

weight. However, for a large thinning level fth, this introduces artificial

fluctuations into the air shower.

On the other hand, the fact that at high energies the lateral part

of the hadronic shower can be neglected suggests another efficient ap-

proach to solve this problem, which is based on one-dimensional transport

equations34:

∂hn(E,X)

∂X
= −hn(E,X)

[

1

λn(E)
+

dn
Eρ(X)

]

(24)

+
∑

m

∫ Emax

E

hm(E′, X)

[

Wmn(E
′, E)

λm(E′)
+
dmDmn(E

′, E)

E′ρ(X)

]

dE′ .

Here, hn(E,X)dE is the number of particles of type n at altitude X in the

given energy range [E,E + dE]; the functions Wmn(E
′, E) are the energy-

spectra dN/dE of secondary particles of type n in a collision of hadron m

with air; Dmn(E
′, E) are the corresponding decay functions; dn = mn/(cτn)

is the decay constant, and λn(E) ∝ 1/σinel is the mean free path of the par-

ticle. The first term in (24) with the minus sign accounts for particles dis-

appearing by either collisions or decays, whereas the source term accounts

kTypically a Monte-Carlo event generator which generates complete final states and
accounts for fluctuations.
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for production of secondary particles by collisions or decays of particles at

higher energies. Primary particles appearing in eq. (24) are nucleons (pro-

tons, neutrons and their anti-particles), charged pions, charged and neutral

kaons. In addition, we have as secondaries π0s and photons (as direct de-

cay products from η mesons, for example) which feed the electromagnetic

cascade and muons as decay products of charged mesons.

To summarize, the basic ingredients for constructing longitudinal pro-

files of air showers are the inclusive spectra dNn/dxF of the non-strongly

decaying particles and their inelastic cross sections, which determine the

mean free path. The electromagnetic cascade can be treated in a similar

way37.

The first few interactions in an air shower are the main source of fluctu-

ations in Xmax (and, accordingly, in the LDF). Since the cascade equations

cannot account for those (they solve for a mean shower) one could treat

the high energy part by a traditional Monte-Carlo method. This is the so-

called hybrid approach to air shower simulations. On the other hand, if one

solves the cascade equations without fluctuations38 one can still reproduce

the average Xmax to within a few g/cm2.

4.3. Sensitivity of Xmax to the xF distribution

Finally, we analyze which region of the xF -distribution is most important

for the meanXmax of an air shower. From the simple argument that forward

particles carry most of the energy it should be clear that the high xF region

is important. Our goal here is to quantify this statement somewhat.

Given dNn/dxF distributions of secondaries, to study the sensitivity

of Xmax to various regions of xF we solve the cascade equations with a

modified distribution:

dNn

dxF
→ dNn

dxF
(1 + ǫ) for xF < x0

F . (25)

That is, we enhance or suppress the spectra at xF < x0
F relative to the

default reference distributions, depending on the sign of ǫ. At the same

time, we suppress or enhance particles at xF > x0
F in such a way as to

conserve the total energy:

dNn

dxF
→ dNn

dxF
(1− ǫ′) for xF > x0

F , (26)
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with

ǫ′ = ǫ

∑

n

x0

F
∫

0

dxF En(xF )
dNn

dxF

∑

n

1
∫

x0

F

dxF En(xF )
dNn

dxF

. (27)

Note that the dNn/dxF are, of course, energy dependent while we take the

1+ǫ factor in (25) to be constant. Also, we do not modify the inelastic cross

section (i.e. the mean free path in the atmosphere), just the xF -distribution

of secondaries in an inelastic event. We then solve eqs. (24) to determine the

change of Xmax relative to that for the reference distributions as a function

of both ǫ and x0
F .
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Figure 8. The shift of Xmax as a function of ǫ for various x0
F
. This shows that the

shower maximum is sensitive to mainly the forward region, xF
>
∼

10−3.

The result is shown in Fig. 8, assuming a proton primary with energy

E0 = 1010 GeV. The reference dNn/dxF distributions were taken from

qgsjet01. We observe that ∆Xmax is approximately linear in ǫ. For large

x0
F , for example =0.1, there is a significant shift ∆Xmax ≈ 140ǫ. For ǫ < 0

we suppress the xF < 0.1 region and, by energy conservation, enhance the

large-xF part; this leads to deeper penetration into the atmosphere, i.e. to

larger Xmax. In turn, suppression of forward particle production (ǫ > 0 and

ǫ′ < 0) leads to decreasing Xmax.

However, one can also observe that Xmax becomes independent of ǫ for

x0
F
<∼ 10−3. This shows that the small-xF part of the distribution has no

influence on the shower maximum (for fixed cross section). For comparison,

we note that a particle produced at mid-rapidity (in a collision with energy

1010 GeV) with an energy of about the proton mass has xF ≃ 10−5.
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5. Application of the BBL to air showers
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Figure 9. Left panel: mean Xmax(E0) for p and Fe induced showers from sibyll 2.1,
and for p primaries with BBL for fixed and running coupling evolution; data are from
HIRES2; figure from8. Right panel: mean lateral distribution function scaled by the
LDF found by AGASA.

To apply our interaction model to air showers, we tabulated dNn/dE

distributions of the primary particles appearing in an air shower. We then

employ the seneca34 model to solve the cascade equations (24). The

hadron-air inelastic cross sections are taken as parameterized in sibyll 2.1.

In Fig. 9 we compare the results for fixed and running coupling evolution to

those obtained with the sibyll 2.1 model. One notices a huge difference

between fixed and running coupling evolution scenarios. The saturation

momentum in the former case is so high that forward scattering is very

strongly suppressed over a broad range of impact parameters; also, the

discrepancy between those evolution scenarios at the highest energies is

strongly amplified by subsequent hadronic collisions in the cosmic ray cas-

cade. Consequently, for fixed coupling evolution the shower is absorbed very

early in the atmosphere. Hence, if we assume a hadronic primary, then the

HIRES2 data excludes this scenario, since it would require hadrons lighter

than protons. This is a novel result as present accelerator data could not

rule out such a rapid growth of the gluon density (see e.g.24,20); it illustrates

the ability of cosmic ray air showers to provide observational constraints

on small-x QCD 8.

The running coupling result, on the other hand, is compatible with

those data and with a light composition. The results from this model are

similar to those from sibyll 2.1 or qgsjet01 (for proton primaries) within

present theoretical uncertainties. Nevertheless, our results show that the

effects discussed here make near-GZK proton-induced air showers look more
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similar to nucleus-induced cascades from leading-twist models and so favor

a lighter composition near the cutoff.

Lateral distribution functions obtained with both evolution scenarios

are shown in the right panel of Fig. 9. The LDFs were computed for the

AGASA experiment and include a full detector response simulation of the

plastic scintillators. The results are scaled by the empirical formula which

describes the data up to highest energies quite well:

S(R) = C

(

R

RM

)−α(

1 +
R

RM

)−(η−α)
(

1 +

(

R

1 km

)2
)−δ

, (28)

with α = 1.2, δ = 0.6, RM = 91.6 m and η = 3.84 for vertical showers39.

The parameter C is adjusted using the energy conversion formula (13) from

Ref. 39,

E = 2.17× 1017 S(600 m) eV , (29)

which is valid for the average altitude of the AGASA array, =667 m. The

comparison in Fig. 9 shows that the LDF obtained for fixed coupling evolu-

tion is much flatter than that for running coupling evolution, which in turn

agrees better with the data (notice that in the figure, the theoretical curves

are scaled by the data). This is consistent with our finding for Xmax, as

discussed above. When the shower is absorbed earlier in the atmosphere

then it spreads out to larger radial distances from the shower axis.

6. Conclusion and Outlook

In this paper we pointed out that atmospheric air showers induced by the

highest energy cosmic rays are sensitive to QCD interactions at extremely

small momentum fractions x where nonlinear effects are expected to play a

major role and lead to unitarization of partonic scattering cross sections. In

turn, this means that cosmic rays air showers can provide valuable insight

and observational constraints for the strong-field regime of QCD. As an

example, we have shown that present data onXmax(E) already exclude that

the rapid ∼ 1/x0.3 growth of the saturation boundary (which is compatible

with RHIC and HERA data) persists up to GZK cutoff energies8.

The model used here for quantitative calculations can be improved in

many ways, for example by incorporating more advanced estimates for the

small-x gluon densities obtained from the approaches of refs4,5. From the

point of view of learning about cosmic rays from small-x QCD it could

be interesting to extend the studies to nucleus-nucleus collisions and to
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perform a composition analysis near the cutoff. This might also be relevant

for physics well below the cutoff, in the region above the “knee”40 (E ≃
5 ·106 GeV) because for nuclei nonlinearities should set in at lower energies

already.

Cosmic ray air showers offer several important advantages over labo-

ratory experiments: first of all, of course, their energies can exceed those

of accelerators (even LHC) by far. Second, many properties of extensive

air showers are sensitive mainly to the forward region and to transverse

momenta about 〈pt〉, which means that they probe extremely small x in

the target nucleus. Finally, an air shower develops via several subsequent

collisions and so any “distortion” of the momentum-space distribution of

secondaries from high-density effects is strongly amplified (essentially raised

to the power of the number of collisions).

On the other hand, unlike air shower detectors accelerator experiments

can control key parameters of the interaction. For example, aside from

collision energy and centrality one can also chose various projectiles and

targets, from protons over light nuclei up to very massive nuclei such as

gold or lead. Central collisions on lead at LHC energy should provide

similar gluon densities as those on air at cutoff energies. Hence, fruitful

lessons regarding small-x QCD will hopefully emerge from both cosmic ray

and accelerator data in the future. We emphasize that crucial data to be

obtained at the LHC is not limited to the total proton-proton cross section

but includes xF distributions of secondaries from p+A collisions in both the

central and forward regions. The latter would allow us to study the energy

degradation mechanism in central collisions, which plays an important role

for cosmic ray air showers.
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