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Abstract

Field correlators are expressed using background field formalism
through the gluelump Green’s functions. The latter are obtained in
the path integral and Hamiltonian formalism. As a result behaviour
of field correlators is obtained at small and large distances both for
perturbative and nonperturbative parts. The latter decay exponen-
tially at large distances and are finite at x = 0, in agreement with
OPE and lattice data.

1 Introduction

The Method of Field Correlators (MFC), suggested some years ago [1] (see
[2] for a review) has successfully produced a large number of results in non-
perturbative QCD, in particular predicting hadron masses in good agreement
with lattice and experimental data (see e.g. [3] for a review) and unambi-
giously explaining linear confinement [4], [5].

In doing so MFC is exploiting the field correlators known from lattice
data [6] as input parameters. Recent discovery of Casimir scaling for static
potentials [7, 8] allows to neglect all correlators except for the lowest ones
(bilocal or Gaussian) with accuracy about 1% and this fact reduces input
parameters essentially to the string tension σ for the bulk of the hadron
spectrum and in addition correlation length Tg for hadron spin splittings.
Thus all spin-averaged spectrum of hadrons, namely light mesons [9], heavy
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quarkonia [10], hybrids [3, 11, 12], heavy-light mesons [13], glueballs [14] and
baryons [15] are calculated through the only parameter σ in good agreement
(∼ 10%) with experimental and lattice data.

Similar situation occurs for the background perturbation theory in the
real QCD vacuum, where the only additional parameter mB, calculated in
terms of σ, can be used to construct a new improved perturbation series with-
out Landau ghost pole and IR renormalons [16]. With all that the situation
in MFC is not yet satisfactory, since till now field correlators have not been
computed analytically within the method itself. The first attempts in this di-
rection have been done in [17] where equations for field correlators have been
first written and the correlation length Tg was computed in terms of σ, in
reasonable agreement with lattice data [6]. (For earlier developments in the
framework of stochastic quantization method see [18]. Resulting equations
there however contain path integrals and are too complicated for practical
use).

Recently new objects - gluelumps - have been introduced [19], which rep-
resent bound states of a valence gluon in the field of static gluonic charge –
an adjoint equivalent of heavy-light mesons. Spectrum of gluelumps was cal-
culated on the lattice [20] and analytically in [21], being in general agreement
with each other.

It was realized subsequently, that gluelump Green’s functions and field
correlators are the same, if in - and out - states of gluelumps are constructed
with the help of field strength operators.

For the analytic calculations in [21] the Background Field Formalism
(BFF) was used [22, 16], which allows to construct gluelump states and the
Hamiltonian in a very simple local form. Essentially the valence gluon oper-
ators have been introduced in [21] and used to construct the whole hierarchy
of gluelump states, which agrees resultatively with the states used in lattice
calculations [20]. Therefore one can use now the simple technic of [21] to
calculate the gluelump Green’s functions, and through them, the field corre-
lators. In this way the logic of the method is closed, since in principle one
can calculate all field correlators and through them all physical quantities in
terms of only one input parameter - the string tension. In practice calcu-
lations are approximate and use Gaussian approximation, when only lowest
correlators are retained with later improvements.

The full implementation of this program requires solution of three basic
problems:
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1. Dynamical definitions of perturbative and nonperturbative. In terms
of BFF one needs to understand how the nonperturbative fields are
constructed in contrast to the perturbative valence gluon fields.

2. Gaussian dominance, i.e. suppression of contributions of quartic and
higher field correlators.

3. Explicit relation between ΛQCD and σ, so that all resulting quantities
containing both perturbative and nonperturbative contributions, can
be expressed through only one scale parameter.

In the present paper only partial answers will be given to the questions
1 and 3, nevertheless allowing to pave the road for future developments.

The paper is organized as follows. In section 2 the field correlators are
written in the framework of BFF and the correlator D1 is expressed in terms
of gluelump Green’s functions. In section 3 a similar detailed study of the
confining correlators D(x) is done and its behaviour is defined at small and
large x. In section 4 properties and selfconsistency of field correlators are
discussed. Five appendices contain details of derivation of basic equations in
the main text.

2 Field correlators in the Background For-

malism

We start with the standard definitions of the field correlator functions D(x)
and D1(x), defined as in [1]

g2

Nc

〈trf(Fµν(x)Φ(x, y)Fλσ(y)Φ(y, x))〉 ≡ Dµν,λσ(x, y) =

= (δµλδνσ − δµσδνλ)D(x− y) + 1

2

(

∂

∂xµ
hλδνσ + perm.

)

D1(x− y) (1)

where hµ = xµ − yµ, Φ(x, y) = P exp ig
∫ x
y Aµdzµ and trf is the trace in the

fundamental representation. Our final aim in this section will be to connect
D(x), D1(x) to the gluelump Green’s functions. If the latter are defined as it
is done on the lattice [19, 20], i.e. with in- and out- states constructed with
the help of field strength operators, then the connection is trivial

Dµν,λσ(x, y) =
g2

2N2
c

〈traF̂µν(x)Φ̂(x, y)F̂λσ(y)〉 (2)
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and here all dashed letters stand for operators in the adjoint representation.
These Green’s functions are however not accessible for analytic calculation
and to proceed one needs to use BFF [16], where the notions of valence gluon
field aµ and background field Bµ are introduced, so that total gluonic field
Aµ is written as

Aµ = Bµ + aµ (3)

As it can be shown with the help of the ’tHooft identity [16], the independent
functional integration over DB Da does not contain the double counting,
and one can proceed to define perturbation series in powers of (gaµ) as it
was done in [16]. However for our purposes here we need a more explicit
definition of the background and of field separation in (3). To this end one
can use the main idea suggested in [17] which we explain here in the most
simple form. Namely, let us single out some color index a and fix it at a given
number. The field Aa

µ will be identified with aaµ while the rest of fields will
be called Ab

µ = Bb
µ, b 6= a. In the averaging over fields Bb

µ, and only after
this done one integrates also fields aaµ The essential point is as was shown
in [17] that the integration over DBb

µ will provide a white adjoint string for
the gluon aaµ, which keeps the color index a unchanged. This is the basic
physical mechanism behind this background technic and it is connected to
the properties of ensemble gluons: 1) even for Nc = 3 one has one field aaµ
and 7 fields Bb

µ 2) confining string is a colorless object and therefore the
singled out color index a can be preserved during interaction process of the
valence gluon aaµ with the rest of gluons (Bb

µ). These remarks make explicit
the notions of the valence gluon and background field and will be used in
what follows.

Using (3) one can write the total field operator Fµν(x) as follows

Fµν(x) = ∂µAν − ∂νAµ − ig[Aµ, Aν ] =

= ∂µ(aν +Bν)− ∂ν(aµ +Bµ)− ig[aµ +Bµ, aν +Bν ] = (4)

= D̂µaν − D̂νaµ − ig[aµ, aν ] + F (B)
µν .

Here the term, F (B)
µν contains only the field Bb

µ. It is clear that when one
averages over field aaµ and sums finally over all color indices a, one actually

exploits all the fields with color indices from F (B)
µν , so that the term F (B)

µν

can be omitted, if summing over all a is presumed to be done at the end of
calculation. In this section we shall concentrate on the first two terms on the
r.h.s. of (4), leaving discussion of the term [aµ, aν ] to the section 3.
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Assuming the background Feynman gauge, Dµaµ = 0, [21] we shall define
now the gluelump Green’s function as

Gµν(x, y) = 〈traaµ(x)Φ̂(x, y)aν(y)〉 (5)

and the function Dµν,λσ can be written as

Dµν,λσ(x, y) = D
(0)
µν,λσ +D

(1)
µν,λσ +D

(2)
µν,λσ (6)

where the superscript 0,1,2 denotes the power of g coming from the term
(ig)[aµ, aν ] in (4).

For the following one can use the relation

〈tra(Dµaν(x))Φ̂χ〉 =
∂

∂xµ
〈traaνΦ̂χ〉−

− 〈traaν(x)δµ(x)Φ̂χ〉 (7)

where the following notation is used for the contour differentiation (see [23]
for details and earlier refs.)

δµ(x)Φ̂(x, y) = ig
∫ x

y
dzλα(z, y)Φ̂(x, z)F̂µλ(z)Φ̂(z, y). (8)

Analogously for differentiation in the end point one has

Φ̂(x, y)
←−
δµ(y) = −ig

∫ x

y
dzλα(z, x)Φ̂(x, z)F̂µλ(z)Φ̂(z, y) (9)

where α(z, y) =
∣

∣

∣

z−y
x−y

∣

∣

∣ , α(z, x) =
∣

∣

∣

x−z
x−y

∣

∣

∣ .
One has

D
(0)
µν,λσ(x, y) =

g2

2N2
c

{

∂

∂xµ

∂

∂yλ
〈traaν(x)Φ̂(x, y)aσ(y)〉+

+perm.− ∂

∂yλ
〈traaν(x)δµ(x)Φ̂aσ(y)〉 − perm.

− ∂

∂xµ
〈traaν(x)Φ̂(x, y)

←−
δλ(y)aσ(y)〉+

+〈traaν(x)δµ(x)Φ̂(x, y)
←−
δλ(y)aσ(y)〉+ perm

}

. (10)
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From the structure of the r.h.s. of (10) it is clear that all terms except the
last one (and its permutations) contribute to the function D1, which has the
form of the full derivative, cf. Eq.(1). In what follows it is convenient to take
spacial indices for µ, ν in (5), µ → i, ν → k, and consider the correlator of
color-electric fields D4i,4k(x, y), where x, y are taken on the time axis. Hence
the integral in (8), (9) is over dz4 and for µ = 4 both terms (8), (9) disappear.
We can also write for the gluelump Green’s function (5)
Gµν(x, y) = δµνf((x− y)2).

As a result one obtains from (10) the following connection of D(0) and
f((x− y)2)

D
(0)
4i,4k(x, y) =

g2

2N2
c

{

∂

∂x4

∂

∂y4
δikf((x− y)2) +

∂

∂xi

∂

∂yk
f((x− y)2)

}

(11)

on the other hand using (1) with hµ ≡ xµ − yµ one can express D(0) through
D1 as

D4i,4k(h) = δikD(h) +
1

2

(

∂

∂x4
h4D1δik +

∂

∂xi
hkD1

)

(12)

and for hi = 0, i = 1, 2, 3, h4 6= 0 one obtains

D1(x) = −
2g2

N2
c

df(x2)

dx2
(13)

To obtain information about the gluelump Green’s function Gµν one
can use the path-integral representation of Gµν(x, y) in the Fock-Feynman-
Schwinger (FFS) formalism (see [24] for reviews and original references),
which was exploited for gluelump Green’s function in [21]

Gµν(x, y) = tra

∫ ∞

0
ds(Dz)xye

−K〈W (F )
µν (Cxy)〉 (14)

where K = 1
4

∫ s
0

(

dzµ
dτ

)2
dτ and

W F
µν(Cxy) = PPF

{

exp(ig
∫

Aλdzλ) exp(2ig
∫ s

0
dτF̂σρ(z(τ)))

}

µν
(15)

and the closed contour Cxy is formed by the straight line from y to x due
to the heavy adjoint source Green’s function and the path of the valence
gluon aµ from x to y. Note that the nontrivial {µν} dependence of the r.h.s.
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of (15) occurs only due to the F̂νρ, expanding in powers of this term, one

has W F
µν = W (0)δµν +W (1)δµν +W (1)F̂µν + ... Neglecting in Gµν gluon fields

altogether we obtain the perturbative result, Gµν → G(0)
µν

G(0)
µν (x, y) =

Nc(N
2
c − 1)δµν

4π2(x− y)2 , f (0) =
Nc(N

2
c − 1)

4π2(x− y)2 . (16)

This is the leading term in the expansion of Gµν at small |x − y|, while the
higher order terms are given by the OPE formalism [25]

Gµν(x, y) = G(0)
µν (x, y)(1+C1αs ln |x−y|+...)+δµν(C0(x−y)2+C4(x−y)4+...)

(17)
where it is always assumed that C0 ∼ D1(0) ∼ 〈trF 2

µν(0)〉 is finite. The
analysis in [26] using also nonperturbative nonlocal operators is supporting
the expansion (17). To test the behaviour of Gik(x, y) at small (x− y)2, one
should take into account that small Wilson loops have a typical limiting form
[1],1

〈W 〉 = exp

(

−g
2〈trF 2(0)〉
24Nc

S2

)

(18)

where S is the minimal area of the small loop,

S2 =
∫

C
zµ(x)dxν

∫

C
zµ(x

′)dx′ν ≈
∫

z2µ(t)dtT (19)

where T ≡ |x− y|. Introducing (18) into (14) one obtains the path integral
representation

Gik(x, y) = δik

∫ ∞

0
ds(Dz)xy exp

{

−1
4

∫ s

0
ż2µ(τ)dτ − ω2

∫ s

0
z2µdτ

}

(20)

which can be estimated at small |x − y|, as it is explained in Appendix 1.
The result is

Gik(x, y)||x−y|→0 ≈
Nc(N

2
c − 1)

4π2T 2

(

1− ω2T 2

4
+ ...

)

(21)

with ω2 = g2

12Nc
〈trF 2〉T 2, which yields for D1 according to (13),

D1(x) =
4C2αs

π

{

1

x4
+
π2G2

24Nc
+ ...

}

, (22)

1We do not discuss here the renormalization properties of the r.h.s. of (18), since as it
is seen in (22), those reduce to the renormalization of gluonic condensate, widely discussed
in the framework of the OPE and ITEP sum rules [25].
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where G2 is the standard gluonic condensate [25]

D(0) +D1(0) =
g2

12Nc
trF 2(0) =

π2

18
G2. (23)

One can check consistency of the resulting D1(x). First one considers the
singular term, Dsing

1 (x) = 4C2αs

πx4 and inserts it in the static QQ̄ potential.
The static QQ̄ potential can be expressed through D and D1, as was done
in [27].

V (r) = 2r
∫ r

0
dλ
∫ ∞

0
dνD(λ, ν) +

∫ r

0
λdλ

∫ ∞

0
dν[−2D(λ, ν) +D1(λ, ν)] (24)

Inserting in (24) the perturbative part of D1 from (22) one obtains the
standard color Coulomb potential V (r) = −4αs

3r
, thus checking the correct

normalization of D1(x).
Coming now to the constant term in (22) one can compare D1(0) on the

l.h.s. of (22) with the r.h.s., D1(0) =
αsC2

π
· π2

18
G2 =

αsC2

π
(D(0)+D1(0)), where

D(0) +D1(0) on the r.h.s. of (22) are defined by the gluon condensate, Eq.
(23). Since αsC2

π
<∼ 1, this estimate of D1(0) is reasonable and suggests that

for αs = 0.4 the magnitude of D1(0) is 0.2 D(0).
This ratio is in agreement with the lattice calculations in [6].
Another form of Gik(x, y) is available at all distances and practically

important at large |x− y|, namely

Gik(x, y) = Nc(N
2
c − 1)

∞
∑

n=0

Ψ(i)
n (0)Ψ(k)+

n (0)e−Mn|x−y| (25)

where Ψ(i)
n (x),Mn are eigenfunction and eigenvalue of the gluelump Hamil-

tonian, which is derived using the FFS path integral [21], details are given
in Appendices 1,2,3,4 for the convenience of the reader.

H(glump) = H
(glump)
0 +Hspin +HC . (26)

Omitting the spin-splitting term Hspin and the pertubative gluon exchange
term HC , which provide small corrections to the main term, one has for
H

(glump)
0 [21]

H
(glump)
0 =

µ

2
+
p2r
2µ

+
L(L+ 1)/r2

2(µ+
∫ 1
0 dββ

2ν(β))
+
σ2
adjr

2

2

∫ 1

0

dβ

ν(β)
+
∫ 1

0

ν(β)

2
dβ. (27)
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Here µ, ν are the so-called einbein functions to be found exactly from the
stationary point of the Hamiltonian, δH

δµ
= δH

δν
= 0, or approximately [3, 27]

from the stationary point of eigenvalues, e.g. δM0

δµ
= δM0

δν
= 0. In what follows

we shall be interested in the case L = 0, when H0 reduces to

H
(glump)
0 =

µ

2
+
p2r
2µ

+ σadjr →
√

p2 + σadjr. (28)

For Ψ(µ)
n (0) one can use the known equation [28], which is obtained from the

eigenfunctions Ψn of H0 through the connection [29]

Ψ(µ)
n =

eµ√
2µ
ψn,

(

Ψ(µ)
n (0)

)2
=
σadj
4π

. (29)

Inserting (29) into (25) one obtains

Gµν(x, y) ≈ Nc(N
2
c − 1)

∞
∑

n=0

δµν
(σadj)

4π
e−Mn|x−y|. (30)

It is clear that for x→ y the sum in (30) diverges and one should use instead
of (30) the perturbative answer (16). For large |x − y| one can keep in (30)
only the terms with the lowest mass, i.e. for the color electric gluelump state
1−−, which obtains for spacial µ, ν = i, k

Thus one gets

Gik

∣

∣

∣|x−y|→∞ ≈ (N2
c − 1)

Ncσadj
4π

δike
−M0|x−y|. (31)

The eigenvalue M0 was found in [21] to be M0
∼= 1.5 GeV for σf = 0.18

GeV2.
Using (13) one can define from (31) the nonperturbative part ofD1, which

is valid at large |x|,

D
(nonp)
1 (x) =

C2(f)αs2M0σadj√
x2

e−M0|x|, C2(f) =
N2

c − 1

2Nc
(32)

and the total D1 due to (13) and (16) can be represented as

D1(x) =
4C2(f)αs

πx4
+O(α2

s) +D
(nonp)
1 (x) (33)
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3 The correlator D(x)

We now turn to the function D(x) and to this end we specify the indices
fo Dµν,λσ in (6) as Dik,lm(x, y) with i, k, l,m = 1, 2, 3 and take the interval
hµ = xµ − yµ to lie on the temporal axis, h4 6= 0, hi ≡ 0, i = 1, 2, 3. One can
again represent Dik,lm as in (6),

Diklm(x, y) = D
(0)
ik,lm +D

(1)
ik,lm +D

(2)
ik,lm (34)

As in the previous section, D(0) contributes to the function D1, while the
contour differention operation

←−
δ µ introduces the new field Fµ4, so that one

has to do with the triple correlator tr〈FΦFΦF 〉. In this paper we are con-
sidering the Gausian approximation for simplicity and neglect all correlators
except for the quadratic ones, Eq. (1). Therefore the term D(0) and D(1) in
(34) do not contribute to D(x), and we concentrate on the last term in (34),
D(2), which can be written as

D
(2)
ik,lm(x, y) = −

g4

2N2
c

〈tra([ai, ak]Φ̂(x, y)[al, am])〉. (35)

This function can be connected to the two-gluon gluelump Green’s func-
tion. The two gluon gluelumps considered in [21] belong to the symmetric in
color and spin components, while here one can rewrite (35) as

[ai, ak] = iaai a
b
kf

abcT c (36)

and the resulting gluelump function is

Gik,lm = tra〈fabcf defaai (x)a
b
k(x)T

cΦ̂(x, y)T fadl a
e
m〉. (37)

One can immediately see that the gluelump in (37) is antisymmetric both
in color and spin indices, but the total wave function is symmetric and the
relative angular momentum L of the lowest state can be taken as L = 0. One
can fix in (37) color indices a, b; d, e and average the Green’s function over all
fields Ah

µ with h 6= a, b; d, e. Using the same argument as it was done for the
one-gluon gluelump function, one can argue that this averaging will produce
the white string (of triangle shape at any given moment), and hence it will
ensure terms (δadδbe+ permutations). As a result one can represent Gik,lm in
the form

Gik,lm(x, y) = N2
c (N

2
c − 1)(δilδkm − δimδkl)G(2gl)(x, y) (38)
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where G(2gl)(x, y) is the Green’s function of the two-gluon gluelump, which
was studied in [21], and the Hamiltonian and lowest eigenvalue was found
there explicitly (see also Appendix A of [21]).

Comparison of Eqs. (1), (35) and (38) immediately yields the following
expression for D(x).

D(x− y) = g4(N2
c − 1)

2
G(2gl)(x, y). (39)

If one exploits for G(2gl) the perturbative expression

G(2gl)(0)(x, y) =
1

(4π2(x− y)2)2 +O
(αs ln(x− y))

(x− y)4 (40)

then one recovers the corresponding perturbative expansion for D(x), which
was studied in [29]. However, as it was shown in [30], all perturbative terms
of D(x) are cancelled by those of higher correlators, so that they do not
contribute the (divergent) terms in the expression for the string tension

σ =
1

2

∫

d2x(D(x) + higher correlators). (41)

Nonperturbative contribution to D(x) can be written down using the
spectral decomposition for G(2gl)(T ), T = x4 − y4,

G(2gl)(T ) =
∑

|Ψ(2gl)
n (0)|2e−M

(2gl)
n T . (42)

Here Ψ(2gl)
n (ξ,η) is the two-gluon gluelump wave function calculated with

the string Hamiltonian, neglecting spin-spin interaction in the first approxi-
mation, considered in [21], ξ,η are Jacobi coordinates in the system of two
gluons and the adjoint fixed center.

The calculation of M (2gl)
n and Ψ(2gl)

n (0) is discussed in the Appendix 2,
and here we quote the final result for the lowest gluelump state:

M
(2gl)
0 = 2.56GeV, |Ψ(2gl)

n (0)|2 = 0.108σ2
f . (43)

Hence the leading at large T asymptotics of D(x) is

D(2gl)(x) ∼= g4(N2
c − 1)

2
0.108σ2

fe
−M

(2gl)
0 |x|, M

(2gl)
0 |x| ≫ 1, (44)
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The corresponding value of the gluon correlation length is very small
T (2g)
g = 1

M
(2gl)
0

∼= 0.08 fm, and different from the correlation length of D1(x),

which is T (1g)
g ≡ 1

M
(1gl)
0

= 0.13 fm. This fact is in contradiction with the

lattice calculations of the Pisa group in [6], where both correlation lengths
coincide. To understand the reason for this discrepancy one must consider
the higher in αs terms contributing to D(x). Indeed, using the term L3 in the
Lagrangian, which transforms two-gluon state into one-gluon and three-gluon
states, one obtains in D(x) the one-gluon state with the same asymptotics
as in D1(x), namely

D(x) = D(2gl)(x) + C1α
3
sD

(1gl)(x) + C2α
3
sD

(3gl)(x) + ... (45)

Here D(1gl)(x) ∼ exp(−M (1gl)
0 |x|), D(3gl)(x) ∼ exp(−M (3gl)

0 |x|). In a sim-
ilar way D1(x) acquires terms with two-gluon and three-gluon gluelump
asymptotics. Still effectively one expects that correlation lengths satisfy
Tg(D1) > Tg(D), and this in agreement with lattice calculations of Bali
et al (last ref. in [6]).

4 Discussion of results

In (32), (33) and (44) we have obtained the perturbative and nonperturbative
parts of D1(x) and D(x) and this is the main result of the paper.

Coming back to the three basic points outlined in the Introduction, the
first point refers to the distinction between perturbative and nonperturbative
and the essence of the nonperturbative mechanism of confinement. In this
regard one should consider the mechanism which creates massive gluelump,
namely via the path-integral representation (14) and using Wilson loop area
law one obtains the Hamiltonian (27), where nonperturbative dynamics is
connected to the string tension σ. The latter in its turn is expressed through
D(x) as in (41). Thus the signature for the nonperturbative is σ 6= 0, and
one can separate from D(x), D1(x) perturbative parts as the limit of D(x),
D1(x) when σ tends to zero.

One should stress here that it would be in general incorrect to represent
D(x), D1(x) as a sum of perturbative and nonperturbative components. The
expansion (45) gives instead another type of representation where the pertur-
bative and nonperturbative are strongly mixed up. One can only state, that
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at small distances correlators behave perturbatively, while at large distances
decay nonperturbatively.

At this point it is necessary to ask, what is the nonperturbative mech-
anism which creates D(x) and according to (41) also creates confinement
itself.

The answer lies in our separation of (3), where in contrast to the usual
background formalism [22], both fields aaµ and Bb

µ are intrinsically the same,
but the fields Bb

µ with color index b 6= a are assumed to form the collective
field which after averaging acts as a ”white force” on the gluon aaµ with the
correlators D(x), D1(x) as a measure of this force. As a result the gluon
aaµ forms the bound state, which can be used to calculate D(x), D1(x). In
this way the problem becomes self-consistent, when one can ensure that the
same D(x), D1(x) act as input in the ”white force”and result in the outcome
of calculation of correlators. In the present paper this selfconsistency was
checked only partially on the level of the string tension σ.

At the same time the selfconsistency allows one to connect ΛQCD and σ,
thus reducing the number of parameters in theory to one, as it should be in
QCD.

Indeed, calculating σf via (41) and using (44) for D(x) one obtains

σf =
(

αs

0.3

)2

0.53σf (46)

where σf on the r.h.s. is coming from the input D(x), while that on the l.h.s.
is from the resulting D(x). For reasonable values of αs ∼ 0.41 one obtains
that D(2gl)(x) satisfies the selfconsistency criterium (46). Neglecting all other
contributions to D(x) in (45), one can consider (46) as an equation defining

the connection between σf and ΛQCD. Namely writing αs = αs(M
(2gl)
0 ) =

0.41 = 4π

β0ln

(

M
(2gl)
0

ΛQCD

)2 , one finds

ΛQCD(nf = 0) = 0.25M
(2gl)
0 = 0.88

√
σf , (47)

and for σf = 0.18 GeV2 one has ΛQCD = 0.375 GeV. One should compare

this result with the value of Λ
(MS)
QCD , obtained on the lattice (see e.g. [32] and

refs. there), Λ
(MS)
QCD(nf = 0) = 0.242 GeV, which is easily recalculated for

Λ
(V )
QCD = (385± 30) MeV, in good agreement with our theoretical value.
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Keeping in D(x) also higher order terms, as in (45) and inserting in (41)
one obtains instead of (46) an expansion

σf =
(

αs

0.41

)2

σf + C1α
3
sσf + .. (48)

In this way one finds a general type of connection between σf and ΛQCD,
as was stated in the point 3 of Introduction. Coming now to the small x
behaviour in (44) it should be replaced by an analytic one, D(x) ∼ c0 +
c1x

2 + ..., as it follows from [31], and the gluonic condensate calculated from
D(2gl(0) in (44), which is much larger than the standard value [25], will be
replaced by a smaller value, and in addition also D(1gl)(x) in (45) contributes
to σf . Therefore a more detailed analysis, including the behaviour of D(x)
at small x is required, which is relegated to future publications.

Summarizing the results, we have computed the first terms of perturbative
and nonperturbative field correlators D(x) and D1(x) in the expansion in
powers of αs with coefficient functions proportional to the gluelump Green’s
function, and have made the first check of selfconsistency of the resulting
string tension. In this way the preliminary analysis in the paper supports
the confinement mechanism as the formation of the selfconsistent background
field acting as a white string on propagating gluons.

The author is grateful to A.M.Badalian and Yu.S.Kalashnikova for fruitful
discussions, and V.I.Shevchenko for collaboration at the first stages of the
work.

The work is supported by the Federal Program of the Russian Ministry
of industry, Science and Technology No.40.052.1.1.1112, and by the grant for
scientific schools NS-1774. 2003. 2.

Appendix 1

Derivation of Eq. (7)

Consider the general bilocal correlator,

Ψ(x, y) ≡ 〈trK1(x)Φ̂(x, y)K2(y)〉 (A1.1)
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where Φ̂(x, y) is the adjoint parallel transporter,

Φ̂(x, y) = P exp ig
∫ x

y
Âµdzµ (A1.2)

Taking the difference

∆µΨ(x, y) ≡ Ψ(x+ δxµ, y) = 〈trK1(x+ δxµ)φ̂(x+ δxµ, y)K2(y)〉 −Ψ(x, y),
(A1.3)

one can deform identically the shifted contour by insertion of double lines
of the L form N times at distance a from each other, Na = |x − y|. The
explicit form of deformation is shown in Fig.2 of the last ref. [23]. In the
limit when δxµ → 0, and a → 0, N → ∞, any open (a × a) plaquette from
two neighboring L insertions tends to (Fµλa

2) and one obtains

∂µΨ(x, y)

∂xµ
= 〈tr

(

∂K1(x)

∂xµ
− igK1(x)Âµ(x)

)

Φ̂(x, y)K2(y)〉+〈trK1(x)δµ(x)Φ̂(x, y)K2(y)〉
(A1.4)

where δµ(x) is defined in Eq.(8).

Appendix 2

Calculation of D1(x) at small x

One must calculate the path integral for the gluon Green’s function

Gik(x, y) = δik

∫

ds(Dz)xye
−K〈W 〉 (A2.1)

where 〈W 〉 is given in (18) and K = 1
4

∫ s
0 ż

2
µ(τ)dτ .

Making an approximation (19) and introducing the dynamical mass vari-
able µ(t) = dt

2dτ
, where τ ≤ s in the proper time [2, 3], one can replace

ds(Dz4)x4,y4 by the path integral Dµ see [35] for more details) as follows

Gik(0T ) = δik

∫

1

2µ̄
(D3z)0,0Dµe

−
∫ T

0
dt

(

µ

2
+µż2

2
+µω2z2

2

)

(A2.2)
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where we have defined

µω2

2
=

g2

24Nc
〈trF 2

µν〉T, (D3z)Dµ =
N
∏

n=1

d3∆z(n)

l3(n)

dµ(n)

lµ(n)
,

and

lµ(n) =

(

2πµ(n)

∆t

)1/2

, l(n) =

(

2π∆t

µ(n)

)1/2

, ∆tN = T, N →∞.

µ̄ =
1

s

∫ s

0
µ(τ)dτ ≈ 1

T

∫ T

0
µ(t)dt.

The integration over (D3z)00 in (A2.2) is known from the textbook solu-
tion for the Green’s function of oscillator, hence one has

Gik(0T ) = δik

∫

Dµ

2µ̄
e−
∫ T

0
dtµ

2

(

µ̄ω

2πshωT

)3/2

=
1

2µ̄

(

µ̄ω

2πshωT

)3/2

(A2.3)

Now one can obtain µ̄ from the solution of the free Green’s function at
small T , which is realized when ω → 0,

1

2µ̄

(

µ̄

2πt

)3/2

=
1

4π2T 2
, µ̄ =

2

πT
(A2.4)

and expanding further (A2.3), one finally obtains

Gik =
1

4π2T 2

(

1− ω2

4
T 2

)

(A2.5)

and using relation (13) one finds resulting equation (22) for D1(x), where

G2 ≡
2αs

π
〈trF 2

µν〉.

Appendix 3

Derivation of the gluelump Hamiltonian
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One starts with the expressions (14), (15) for the gluelump Green’s func-
tion, obtained in the framework of the FFS formalism [24]. The first step is
the vacuum averaging of 〈W F

µν〉, which is done using the nonabelian Stokes
theorem and the cluster expansion where we systematically keep the lowest
order (quadratic) terms in powers of field correlators, as is explained in the
Introduction. The result is

〈W F
µν〉 = exp

{

−ξ
2

∫

dρρλ(u, τ)
∫

dρρ′λ′(u′, τ ′)Dρλ,ρ′λ′(u, u′)

}

(A3.1)

where we have defined

ξ ≡ C2(adj)

C2(f)
, dρρλ(u, τ) = dσρλ(u)− 2iŜρλdτ, (A3.2)

and dσρλ(u) is the surface element, while Ŝρλ contains gluon spin operators
and prescription of replacing the coordinate u of the surface element by the
coordinate of the boundary – gluon trajectory zµ(τ),

ŜρλFρλ(u) = (SiHi + S̃iEi)δu,z(τ) (A3.3)

In what follows we shall not use the explicit form of Si, S̃i.
In (A3.1) three types of terms are present:

a terms quadratic in dσ, which yield the area law for large area, much
larger than T 2

g ;

b mixed term, proportional to dσρλS̃ρλ. These produce spin-dependent
terms in the Hamiltonian, as it is explained in [21], [27].

c terms quadratic in Ŝ; they give rise to the self-energy terms of the
propagating gluon and are treated in Appendix 3. It is shown there,
that the self-energy terms occurring due to both quartic terms a4 in
the QCD Lagrangian and terms quadratic in Ŝ should cancel in the
framework of BFF.

As a result, if one neglects spin-dependent terms in the first approximation,
one can keep in (A3.1), (A3.2) only the surface element, dρ → dσ, and the
r.h..s. of (A3.1) simplifies, namely

〈W F
µν〉 = δµν exp(−σadjA) (A3.4)
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where A is the area between the gluon path z(τ), τǫ[0, s], and the piece of
the straight line between x and y. It is usually assumed on physical grounds
(and supported by lattice data) that A is the minimal area for the given
boundary.

As a next step one should write the resulting expression for the gluelump
Green’s function, with gluon spin effects neglected,

G(0)
µν (x, y) = δµν

∫ ∞

0
ds(Dz)xye

−K−σadjA, K =
1

4

∫ s

0
dτ(żµ)

2 (A3.5)

in the form, where real time t instead of the proper time τ, s enters.
This is done in Appendix2, Eq. (A2.2) where the relation is used ds(D4z)xy =

(D3z)Dµ
2µ̄

, and explicit expressions for µ̄, Dµ are given. Here µ(t) connects

real (Euclidean) time t and proper time τ, 2µ(t) = dt
dτ
.The transformations

discussed below have been introduced in [36].
One can write the area A in the Nambu-Goto form,

A =
∫ 1

0
dβ
∫ T

0
dt
√

ẇ2
iw

′2
k − (ẇiw′

i)
2, T = |x4 − y4|, (A3.6)

with w(β, t) being the coordinate on the string world sheet, ẇi ≡ ∂wi

∂t
, w′

i ≡
∂wi

∂β
.

One can approximate the minimal area choosing wi(β) in the form of the
piece of the straight line, wi(β, t) = ri(t)β.

One may wonder what is the accuracy of the straight-line approximation,
i.e. of the neglecting the string excitation, which in the background field
formalism amounts to the hybrid excitations, with the energy gap of around
1 GeV. Therefore all nonadiabatic effects of this type are typically of the
order of the hybrid admixture to the given gluelump state. For the ground
state this admixture was calculated and discussed in [37], and appeared to
be of the order of few percent.

As a next step one introduces einbein variables to get rid of the square
root in (A2.6), and as a result the total Euclidean action E as a function of
einbein parameters µ(t), η(t), ν(t) has the form

E(µ, η, ν) =
∫ T

0
dt
∫ 1

0
dβ

[

µṙ2i
2

+
1

2ν
(ẇ2

i + (σadjν)
2r2 − 2η(ẇiri) + η2r2)

]

(A3.7)
Finally the gluelump Green’s function can be written as
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G(0)
µν (x, y) = δµν

∫

D3riDνDη
Dµ

2µ̄
e−E (A3.8)

From (A2.8) integrating over Dη one can go over to the Minkowskian
Hamiltonian in the standard way using the Feynman prescription:

∫

(Dx)ife
iaction = 〈i|e−iHT |f〉 (A3.9)

The Hamiltonian H = H(ν, µ) depends on the auxiliary einbein functions
ν, µ and the remaining integral over DνDµ can be taken using the stationary
point method. The gluelump Hamiltonian H(ν, µ) has the form [21], given
in Eq. (27) of the main text

H(glump) =
µ

2
+
p2r
2µ

+
L(L+ 1)

2Ir2
+

(σadjr)
2

2

∫ 1

0

dβ

ν(β)
+
∫ 1

0

ν(β)

2
dβ (A3.10)

where the factor of inertia moment I is

I = µ+
∫ 1

0
dββ2ν(β) (A3.11)

For L = 0 the Hamiltonian is easily computed taking stationary point

values of ν = ν0 = σadjr and µ = µ0 =
√

p2r,

H(L = 0) =
√

p2r + σadjr (A3.12)

The lowest eigenvalue of (A3.12) is easily calculated to beM0 ≈ 1.5 GeV.
Note that perturbative interaction is not included in (A3.12), taking that
into account the eigenvalue drops to M0 ≈ 1 GeV for αs(r) ≈ ᾱs ≈ 0.2.
Since this interaction is subject to strong radiative corrections of destructive
character, we do not take it into account, see [21] for more discussion.

Appendix 4

The gluon self-energy and auxiliary function method for the ef-
fective Lagrangian of QCD
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One starts with the decomposition of the gauge field Aµ into background
component Bµ and valence gluon component aµ,

Aµ = Bµ + aµ. (A4.1)

We shall not specify below the principle of decomposition, one can use
e.g. the idea of separating one or a group of few colors for aµ, while the rest
of colors is in Bµ, as it was done in [17, 38], which assumes a fixed gauge for
aµ. The following derivations are of general character and do not depend on
the assumed separation. Writing the QCD Lagrangian as

L(A) = L(B + a) =
1

2
trF 2

µν(B + a), (A4.2)

where Fµν is
Fµν(x) = ∂µAν − ∂νAµ − ig[Aµ, Aν ] =

= ∂µ(aν +Bν)− ∂ν(aµ +Bµ)− ig[aµ +Bµ, aν +Bν ] = (A4.3)

= D̂µaν − D̂νaµ − ig[aµ, aν ] + F (B)
µν

one obtains the effective action for the field aµ, Seff(a), after integrating out
the fields Bµ, namely

〈e−
∫

L(B+a)d4x〉B ≡ e−Seff (a). (A4.4)

where

Seff(a) =
∫

〈L(B + a)〉Bd4x−
1

2

∫

d4x
∫

d4y〈〈L(x)L(y)〉〉+ ... (A4.5)

In what follows we shall be interested in the terms of the fourth order
in aµ, which appear in the path-integral representation of the valence gluon
Green’s function, namely [24]

Gµν ≡ 〈aµ(x)aν(y)〉a,B = 〈(D̂2
λδµν − 2igF̂µν)

−1
x,y〉B (A4.6)

where the background Feynman gauge is assumed for aµ, Dµ(B)aµ = 0.
Writing (A4.6) as a path integral, one has

Gµν(x, y) =
∫ ∞

0
ds(Dz)xye

−K0Φµν(x, y) (A4.7)
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where we have defined

K0 =
1

4

∫ ∞

0

(

dzµ
dτ

)2

dτ ; Φµν(x, y) = [PFPA exp(ig
∫ x

y
Aλdzλ)× (A4.8)

× exp(2g
∫ s

0
dτFσρ(z(τ)))]µν (A4.9)

The last exponential factor in(A4.9) represents the interaction of the valence
gluon color magnetic moment with the background field, and the averaging of
this factor over Bµ produces the effective self-energy term which is negative
and which makes the gluon unstable (mass eigenvalues are not bounded from
below). This is the paramagnetic instability of the relativistic charge moving
in the Gaussian stochastic environment. A similar situation occurs for the
quarks where the corresponding term has the form exp(gσµν

∫ s
0 dτFµν(z(τ)))

and produces also the negative self-energy contribution, not bounded from
below when considered outside of perturbation theory. In the quark case
however, the term is a 4×4 Dirac matrix and one recovers the stability when
considering also negative energy states (lower Dirac components) – see [39]
for a discussion.

In the gluon case this mechanism is absent, and we now show that there
is another stabilyzing phenomenon, associated with the gluon term ∼ a4µ in
the QCD Lagrangian.

To this end we consider two characteristic terms in the Lagrangian: the
original quartic and another effective quartic generated by the paramagnetic
term in L(B + a):

L(F ) = gf ikaaiµa
k
νF

a
µν(B) (A4.10)

After averaging the square of L(F ) as in the second term in (A4.5), one
obtains the effective quartic term in the Lagrangian

〈e−L〉quartic = e−S
(4)
eff ; S

(4)
eff =

∫

d4xd4yaaµ(x)a
b
ν(x)a

a′

µ (y)a
b′

ν (y)f
abcfa′b′cK(x, y)

(A4.11)
where we have defined

K(x, y) =
g2

4
δ(4)(x− y)− 2Nc

N2
c − 1

D(x− y) (A4.12)

and D(x) is the standard field correlator [1, 2]

g2〈〈Fλβ(x)Fγδ(y)〉〉 = (δλγδβδ − δλδδβγ)D(x− y) +O(D1). (A4.13)
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One can rewrite S
(4)
eff more conveniently as

S
(4)
eff =

∫

Ψaa′(x, y)K̃aa′,bb′(x, y)Ψbb′(x, y)d
4xd4y ≡ ΨK̃Ψ (A4.14)

and use the Hubbard-Stratonovich identity

e−ΨK̃Ψ =
∫
√

detK̃Dχe−χK̃χ+iΨK̃χ+iχK̃Ψ. (A4.15)

In (A4.14), (A4.15) we have used notations:

K̃aa′,bb′(x, y) = fabcfa′b′cK(x, y) (A4.16)

Ψaa′(x, y) = aaµ(x)a
a′

µ (y) (A4.17)

χ ≡ χaa′(x, y) (A4.18)

On the r.h.s. of (A4.15) the gluons aµ enter only quadratically; combining
quadratic terms from L with the latter, one obtains the term in the partition
function,

Z =
∫

exp(−S(2)
eff − χK̃χ)Dχ (A4.19)

with

S
(2)
eff =

1

2

∫

aaµ(x)[−D̂2
abδµνδ(x− y)− 2iIab(x, y)]abν(y)dxdy (A4.20)

where we have defined

Iaa
′

(x, y) = K̃aa′,bb′(x, y)χbb′(x, y) (A4.21)

After integrating out Daµ one obtains an effective Lagrangian for the
auxiliary fields χ,

Z ∼
∫

Dχe−Leff (χ), Leff(χ) =
1

2
tr ln(−D2 − 2iI) + χK̃χ. (A4.22)

Using the stationary point method for the integral over Dχ, one has
equations

δLeff (χ)

δχ

∣

∣

∣

∣

∣

χ=χ(0)

= 0, χ(0) =
i

2

1

(−D2 − 2iI)
(A4.23)
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and defining the effective mass operator,

M2
0 ≡ −2iI = −2iK̃χ(0) (A4.24)

one has equation forM2
0,

M2
0 = K̃

1

−D2 +M2
0

. (A4.25)

A nonzero solution for M2
0 in (25) would imply the existence of the ef-

fective mass term of the valence gluon. At the same time the ghost Green’s
function does not have both quartic and magnetic moment contribution, so
that for the ghost the effective mass is zero. To ensure the exact cancellation
of the ghost and unphysical gluon degrees of freedom one must require that
M2

0 vanish.
The r.h.s. of (A4.25) is ultraviolet divergent and needs renormalization,

which can be accomplished to satisfy this requirement. Therefore we shall
assume everywhere that the effective gluon mass is zero and the gluon mag-
netic moment term with F̂σρ(z(τ)) in Eq.(15) is absent, as it was assumed in
Appendix 3.

Appendix 5

Spectral representation of the three-body Green’s function

In section 3 we have to evaluate the spectral representation of G(2gl)(T ) in

(42) and the lowest eigenvalue M
(2gl)
0 . In this Appendix we give some details

of derivation, using Appendix A of [21]. The total eigenfunction of two-gluon
gluelump Ψ(ξ,η) where ξ,η are Jacobi coordinates,

η = r12/
√
2, ξ = (r1 + r2)/

√
2, ρ2 = ξ2 + η2 (A5.1)

can be expanded in the hyperspherical basis [33].

Ψ =
∑

K,ν

uνK(Ω)
yνK(ρ)

ρ
(A5.2)
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where yνK(ρ) is the hyperradial wave function and the series (A5.2) is fast
converging for linear confinement (for a recent review and refs. see [34]), so
that one can retain the lowest term in (A5.1) for the two-gluon gluelump
corresponding to K = 0. With the definition u00(Ω) = 1√

π3
, y00(ρ) ≡ y(ρ),

the equation for y(ρ) has the form

y′′ + 3
d

dρ

(

y

ρ

)

+ 2µ(ε(µ)− U(ρ))y = 0 (A5.3)

where U(ρ) = C0σρ, C0 = 32
√
2(1+

√
2)

15π
, and the total mass eigenvalue is

M = min(µ+ ε(µ)). Using the same approach as in [28], one can deduce the
following relation

|ψ(0)|2 = µ

8π3

{

〈 1
ρ4
〉6(M − µ)− 5σC0〈

1

ρ3
〉
}

(A5.4)

where 〈ρ−n〉 =
∫∞
0 y2(ρ)ρ5−ndρ. From the minimization one can find the

optimal µ = µ0 = 2.23
√
σf and from the form of the effective potential, hav-

ing minimum at ρ = ρ0 = 1.15/µ0, one can define with good accuracy that
〈ρ−n〉 ≈ ρ−n

0 . Finally, taking into account the usual relativistic normaliza-
tion of bosons, 1√

2µ
, the total normalization of the two-gluon wave-function

appears as

|Ψn(0)|2 =
1

4µ2
0

|ψ(0)|2 = 0.108σ2
f (A5.5)

which was used in the main text.
The eigenvalue M0 with the account of the hyperfine interaction reads

(see [21] for details)

M
(2g)
0 = 6.15

√
σf +∆MSS (A5.6)

with ∆MSS = S(1)S(2)0.49µ0
4
3
αs, and for S = S(1) + S(2) = 1, and αs = 0.15

one obtains the total eigenvalue, which is M
(2g)
0 = 6.03

√
σf = 2.56 GeV for

σf = 0.18 GeV2.
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