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Recent developments from lattice QCD

Thomas DeGrand
Department of Physics, University of Colorado, Boulder, CO 80309 USA

This year lattice QCD has become very public. A new generation of simulations (including
light dynamical quarks) have produced results which are in close agreement with many “easy”
experimental quantities, and precise predictions for quantities which are tests of the Standard Model.
Is QCD over? Reality is somewhat more nuanced. I will try to put the recent results into context:
as in any theoretical calculation, there are always hidden assumptions! Hopefully I can give you a
feel for some of them.

I. INTRODUCTION

According to the BaBar Physics Book[1], the purpose of lattice QCD calculations are “to solve QCD directly by a
numerical simulation.”
Wasn’t QCD solved years ago?
Well, not really. For many years people have been able to calculate many non-perturbative quantities (hadron

masses, decay constants) at the 10-20 per cent level, as long as the quark masses are not too small. That is not
really accurate enough to be useful for Standard Model tests. We think we understand confinement and probably
chiral symmetry breaking in the strong coupling limit of QCD, but there isn’t a really convincing story about either
of these in the continuum limit (like a graduate student would use in an oral exam). Lattice techniques got us the
10-20 per cent numbers, and will probably do a lot better in the next few years. There still may not be an answer for
the graduate student.
The theory[2] behind the BaBar mission statement goes as follows: One begins with the generating functional for

Green’s functions for QCD, regulated with a UV cutoff, with a set of bare couplings, and the bare quark masses

Z(J) =

∫

[dAµ][dψ][dψ] exp(−S(ψ̄, ψ,A)). (1)

We integrate out the fermions, leaving the gauge action SG(A) and the fermion determinant,

Z(J) =

∫

[dAµ] det(D/ +m)Nf exp(−SG(A)). (2)

A correlator is measured from (for example)

CΓ(x, y) =
1

Z

∫

[dAµ][dψ][dψ̄] exp(−S(ψ̄, ψ,A))ψ̄xΓψxψ̄yΓψy (3)

which is equal to

CΓ(x, y) =

∫

d4q
∑

h

|〈0|ψ̄Γψ|h〉|2
q2 +m2

h

eiq(x−y), (4)

and masses and matrix elements can be extracted from averages of CΓ(x, y): for example,

∫

d3~xC(x0, ~x; 0, 0) =
∑

h

exp(−mhx0)
|〈0|ψ̄Γψ|h〉|2

2mh
. (5)

The lattice comes in when one regulates the action with a UV cutoff which is a mesh of space-time points (with
some lattice spacing a), replaces the continuum action with a lattice action (which is a function of bare parameters
defined at the cutoff scale), and replaces the fields by some bare lattice fields. The bare action and fields are
defined so that any desired symmetries survive discretization. Monte Carlo comes in when one replaces Z(J) by an
ensemble of “snapshots” of the gauge fields, where the probability of finding a particular snapshot is proportional to
det(D/ +m)Nf exp(−SG(A), and the correlator CΓ(x, y) is approximated by an ensemble average

1

N

N
∑

j=1

CΓ(x, y, {A}j) +O(
1√
N

). (6)
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The ensemble of snapshots is generated on a computer. All lattice simulations are done at unphysical values of
renormalized constants with a nonzero cutoff, in finite volume. Neglecting quark masses for the moment, a lattice
calculation of a mass ratio will be a ratio of quantities measured in units of the cutoff, and will be equal to a
cutoff-independent value plus a sum of cutoff effects

m1(a)a

m2(a)a
=
m1

m2
+O(a) +O(a2) + . . . . (7)

Lattice people talk about “controlled systematic errors” when they think that they can take the volume to infinity,
the lattice spacing to zero, and the quark mass to a physical value (that is, the bare quark mass from cutoff scale a is
tuned so that some ratio of hadron masses takes its experimental value). The actual route from action to answer soon
becomes horribly technical. Matrix elements of operators with anomalous dimensions have their own complications.
So much for ideology, on to reality. All theoretical calculations have hidden assumptions, and the lattice is no

exception!
Lattice calculations begin by picking a lattice discretization of one’s desired theory. In principle, constructing lattice

actions is no different from the usual particle physics game that you all play: An author recognizes some interesting
IR physics and invents a UV completion for his/her theory to get it. The interesting IR physics from the lattice was
confinement: A lattice regulated gauge theory automatically confines if g(a) ≫ 1. Now the UV cutoff is taken away
(by taking g(a) to zero). Maybe the desired IR physics will remain. Unfortunately, in addition to the desired IR
physics, there will be a set of cutoff dependent corrections ( O(p2a2) for physics at scale p?). These effects are new
physics. If they are not seen in experiment, one must argue that the energy scale for the UV completion is higher
than some cutoff. The only difference between an ordinary particle theorist and a lattice theorist is that the ordinary
theorist might believe that the UV completion corresponds to something real. For us, the lattice spacing is unphysical,
and we know it. Nowadays we invent lattice actions which are designed to hide the cutoff effects, in order to do our
simulations at larger values of the cutoff. This is called an “improvement program.”
Unfortunately, this game has two big problems. First, cutoffs usually don’t respect symmetries unless they are

carefully designed. One will typically have to do some kind of fine-tuning of bare parameters to achieve symmetries in
the IR. The lattice is particularly unfriendly to chiral symmetries, which is not good news for simulations with small
quark mass.
The second problem is that numerical simulation is a big part of a lattice calculation, and computer resources are

always finite. People naturally neglect things that they don’t think are important. It may be hard to correct for
this, later. Prime candidates are the extrapolation in quark masses, the use of the correct number of flavors, or the
volume. Dynamical fermions are difficult because computers can’t handle Grassman variables, so they are integrated
out at the start. The fermion determinant is complicated and non-local. For years, lattice calculations have used the
“quenched approximation,” in which the number of dynamical flavors is set to zero: det(D/ +m)Nf → 1. That’s quite
an approximation!

II. THE END OF QUENCHING

Lattice phenomenology dates from 1974, with Wilson’s discovery of confinement[3] and (a bit later) of chiral
symmetry breaking[4, 5] for lattice-regulated gauge theories. The first[6] Monte Carlo simulations were done in 1979,
and the first calculations of hadron spectroscopy[7] date from 1981. A standard set of post-dictions (the proton mass)
and predictions (BK , fB, fD, . . .) have been part of the lattice menu ever since. It is a subject characterized by
gradual progress, punctuated by little revolutions. “QCD has been solved” – several times. Fig. 1 shows spectroscopy
from 1994 [8]. You could not ask for anything better.
Of course, standards always go up, and QCD has been un-solved several times, too.
To view the past, we again visit the BaBar Physics Book (fall 1998), which has an appendix about lattice predictions.

At that time, fD and fB had about a 20 MeV statistical uncertainty, BB was a 5-10 % number, and BK = 0.61(6).
The book did not quote a big systematic uncertainty: these calculations were done in quenched approximation. That
apparently matters a lot for some quantities. Back then fDs

≃ 220(30) MeV. A recent calculation[9] with 2+1 flavors
gives fDs

= 263(+5,−9)(24) MeV (the two error bars are statistics and estimates of matching to the continuum),
which is certainly not the same number. This illustrates the size of a “quenching systematic.”
The quenched approximation has many of the ingredients of successful hadron phenomenology. Quarks are confined

(with a linear confining potential if they are heavy). Chiral symmetry is spontaneously broken. In it, all states are
(at first glance) infinitely narrow, because qq̄ pairs cannot pop out of the vacuum. One might also try to “justify” the
quenched approximation by an appeal to the quark model: in the quenched approximation, all mesons are qq̄ pairs,
and all baryons are qqq states. This also appears to be rather similar to the large-Nc limit of QCD.
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FIG. 1: Comparison of quenched results from Ref. [8] with experiment.

The best way to see what is going on in the quenched approximation is to consider the low energy limit of QCD. Do
not think about quarks and gluons, but in terms of an effective field theory of QCD, described by a chiral Lagrangian
in which the would-be Goldstone bosons are fundamental fields. These Lagrangians have a set of bare parameters
(quark masses, fπ, the quark condensate Σ, . . .). As far as the chiral Lagrangian is concerned, these are fundamental
parameters. As far as QCD is concerned, one could compute these parameters from first principles (for example,
fπmπ = 〈0|ψ̄γ0γ5ψ|π〉), this would fix the parameters of the chiral Lagrangian, and then one could throw away the
lattice and compute low energy physics using the chiral Lagrangian. Quenched QCD and QCD with nonzero flavor
numbers are different theories and their low energy parameters will be different. But there is more. In full QCD
the eta prime is heavy and can be decoupled from the interactions of the ordinary Goldstone bosons. In quenched
QCD the eta prime is not really a particle. The would-be eta prime gives rise to “hairpin insertions” which pollute
essentially all predictions.
Let’s consider the eta prime channel in full QCD and quenched QCD. In ordinary QCD, the eta prime propagator

includes a series of terms in which the flavor singlet qq̄ pair annihilates into some quarkless state, then reappears,
over and over. This is shown in Fig. 2. The eta prime propagator is

η′(q) = C(q)−H0(q) +H1(q) + . . . (8)

where C(q) = 1/d, d = q2 +m2
π, is the “connected” meson propagator, the same as for any other Goldstone boson.

Hn is the nth order hairpin (with n internal fermion loops). Assuming that each vertex is a constant V allows us to
sum the geometric series

η′(q) =
1

q2 +m2
π + V

(9)

and generate a massive eta prime.
However, the quenched limit is different – there are no loops. In that case (of course)

η′(q) =
1

d
− 1

d
V
1

d
. (10)
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FIG. 2: The eta-prime propagator in terms of a set of annihilation graphs summing into a geometric series to shift the eta-prime
mass away from the mass of the flavor non-singlet pseudoscalar mesons. In the quenched approximation, only the first two
terms in the series survive as the “direct” and “hairpin” graphs.

In the eta prime channel there is an ordinary (but flavor singlet) Goldstone boson and a new contribution–a double-
pole ghost (negative norm) state. In the Nc = ∞ limit, the double pole decouples, but finite Nc quenched QCD
remains different from finite Nc full QCD. The limits of large Nc and quenching don’t commute.
Where the eta-prime comes in is in the calculation of corrections to tree-level relations[10, 11]. These are typically

dominated by processes with internal Goldstone boson loops, contributing terms like
∫

d4kG(k,m) ≃ (
m

4π
)2 log(

m2

Λ2
) (11)

(plus cutoff effects). The eta-prime hairpin can appear in these loops, replacing G(k,m) by −G(k,m)V G(k,m) and
altering the chiral logarithm. Thus, in a typical observable, with a small mass expansion

Q(mPS) = A(1 +B
m2

PS

f2
PS

logm2
PS) + . . . (12)

quenched and Nf = 3 QCD can have different coefficients (different B’s in Eq. 12), seemingly randomly different.
(Quenched fπ has no chiral logarithm while it does in full QCD, the coefficient of O+, the operator measured for BK ,
is identical in quenched and full QCD, etc.) Even worse, one can find a different functional form. For example, the
relation between pseudoscalar mass and quark mass in full QCD is

m2
PS = Amq(1 +

m2
PS

8π2f2
log(m2/Λ2)] + . . . . (13)

In quenched QCD, the analogous relation is

(mPS)
2/(mq) = A[1− δ(ln(m2/Λ2) + 1)] + . . . (14)

where δ = V/(8π2Ncf
2
π) is expected to be about 0.2 using the physical η′ mass. This means that m2

PS/mq actually
diverges in the chiral limit!
While there are some lattice observations of Eq. 14 behavior (with noisy fits to δ), what has really happened is

a crisis in confidence for phenomenology. People want to extrapolate their simulations (run at unphysically heavy
quark masses) to the chiral limit. The best way to do that is to use an effective chiral Lagrangian to predict the
quark mass dependence. But if the chiral Lagrangian which describes quenched QCD is different from the one which
describes Nf = 3 QCD, what are you supposed to do? (And for that matter, if quenched QCD and Nf = 3 QCD are
really different theories, how can you be sure that matching one or a few parameters means that other quantities will
match?)
And since people think that they can do simulations with dynamical quarks, why bother with the quenched ap-

proximation?
We are in the middle of an exciting and peculiar time in lattice QCD, with two essentially uncoupled developments.

One of them is much more mature from the point of simulations, and it is the one which has gotten most of the
publicity lately: these are simulations with three flavors of light dynamical fermions. The other development is the
discovery of lattice fermion actions which have exact chiral symmetry at nonzero lattice spacing.
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III. LATTICE CHIRAL SYMMETRY IN A NUTSHELL

A naive discretization of the Dirac operator ψ̄γµpµψ → ψ̄γµ
1
a sin(pµa)ψ “doubles” the spectrum; all the modes

with at least one pµ ≃ π/a are as light as the one near p = 0, and the chiral charges of all the doublers plus the p = 0
mode cancel. The Nielsen-Ninomiya[15] theorem encodes a dilemma: no lattice fermion action can be quadratic, well-
behaved, have a conserved local axial charge Q which is quantized, without having an equal number of left-handed
and right-handed fermions for each eigenvalue of Q. Thus the “classic” division of lattice fermions into Wilson-like,
which have no doublers but explicitly break chiral symmetry with higher dimensional operators, or staggered fermions,
which double but preserve a relic of chiral symmetry. An exact transformation and decimation to one-component
fermions living on the sites of a hypercube shrinks the multiplicity-16 naive fermion into a multiplicity-4 staggered
fermion, and leaves a U(1)⊗ U(1) chiral symmetry.
However, if something is really forbidden, they don’t pass laws against it, and smart people invented a number of

ways to evade the Nielsen-Ninomiya theorem. Back in 1982, Ginsparg and Wilson[16] used renormalization group
ideas to propose a modification of chiral symmetry; they could not provide an explicit example of an action and the
idea was forgotten. In the early ’90’s Kaplan[17] and later Shamir[18] studied QCD in five-dimensional worlds. The
sound bite is very familiar: we (and the chiral fermion) live on a brane or a boundary in a higher dimensional world.
A transfer matrix version of this idea, to give a chiral four-dimensional fermion, was developed at the same time by
Narayanan and Neuberger[19]. (Quenched) simulations with domain wall fermions began in 1996. The bulk of the
community not doing these things woke up in 1997 when the Ginsparg-Wilson was rediscovered, and Luscher[20] gave
us a modified rule for a chiral transformation involving the Dirac operator D itself

δψ = ǫγ5(1 + aD)ψ; δψ̄ = ǫψ̄γ5 (15)

which encodes the Ginsparg-Wilson relation,

{γ5, D} = aDγ5D. (16)

This is a magic formula, which guarantees that all chiral Ward identities are satisfied on the lattice at nonzero
lattice spacing, up to contact terms. The index theorem is exact for the overlap: topology can be computed by
counting fermionic chiral zero modes. The overlap of Neuberger and Narayanan is an exact[21] realization of the
Ginsparg-Wilson relation, using any nonchiral Dirac operator d, it is

Dov = R0(1 +
d−R0

√

|d−R0|2
) (17)

With it, quenched simulations with the overlap began a year or two later.

IV. STAGGERED FERMION PHENOMENOLOGY

With essentially zero overlap with the last section, since 1987 members of the MILC collaboration have been doing
simulations of QCD with two and three flavors of ever lighter dynamical staggered fermions. By 2001 they were up
to lattice sizes of L = 2 fm, and down to a strange quark at its physical value, and non-strange quarks of about 20
MeV. A major problem with staggered quarks is that interactions mix and split hadrons made of the four “tastes” of
a single staggered flavor, producing a pattern reminiscent of the effect of crystal fields on atomic spectral lines (See
Fig. 3 for an example.) The MILCmen[12] redesigned the gauge connection of the staggered fermion to reduce this
to a small value, so that it made sense to talk about pions and kaons as separated collections of states.
Their next crucial breakthrough was in the data analysis: The key to doing this was provided by the Sharpe

and Lee[13] analysis of taste mixing, whose construction of a low energy chiral effective theory including explicit
taste-breaking interactions predicted the degeneracies shown in Fig. 3. Their work was generalized by Aubin and
Bernard[14]. One writes down a low energy effective field theory for the Goldstones (Σ is the usual exponential of the
particle fields, traces over the 16 taste-product qq̄ bilinears of each staggered flavor) and the Lagrangian is

L =
f2

8
Tr(∂µΣ∂µΣ

†)− 1

4
µf2Tr(MΣ+MΣ†) (18)

+
2m2

0

3
(UI +DI + SI + · · ·)2 + a2V , (19)

where the m2
0 term weighs the analog of the flavor singlet η′. (The “I” subscripts display that this involves the taste

singlet term for each flavor.) The a2V term is the taste-breaking interaction, a sum of terms quadratic in Σ with
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FIG. 3: An example of flavor or taste symmetry breaking in an improved staggered action. The different γ’s are a code for the
various pseudoscalar states. Data are from Ref. [12]. For an explanation of the splitting, see Ref. [13].

various taste projectors, parameterized by six coefficients (only one is big). Now one computes “any” desired quantity
with this Lagrangian, typically to one loop, as a function of quark masses and all other coefficients. Parameters of
Nature are determined when mass-dependent Monte Carlo data is fit to this functional form. For example, a one-loop
fit to mPS/(m1 +m2) for the true would-be Goldstone boson made of quarks of mass m1 and m2 would involve µ, f ,
two Gasser-Leutwyler parameters, three otherwise unconstrained lattice parameters, and involves chiral logarithms
whose arguments are all the observed pseudoscalar masses. Fits to fπ or fK are similar.
Last year they were joined by other collaborations who used their configurations for backgrounds for other QCD

phenomenology. In Ref. [22] they presented results for a variety of post-dictions, which certainly set a new standard
for claimed precision: Fig. 4 shows their results.
Since then, they and their collaborators have gone on to do

• The strong coupling constant at the Z-mass: see Fig. 5

• Form factors for semileptonic B and D meson decay (See Ref. [23]).

• Marciano[24] has proposed using a lattice calculation of fK/fπ to fix Vus. The present MILC data give
Vus = 0.2236(30); the error is compatible with other determinations of Vus and can be shrunk by better lattice
simulations

• Blum [25] is using MILC data to compute the hadronic contribution to muon (g − 2) from first principles

• MILC[26] has determined the strange and nonstrange quark masses from a fit to spectroscopy: ms(MS,µ = 2
GeV) = 76 MeV, the nonstrange average mass 2.8(4) MeV. The up quark is not massless, by many standard
deviations.

and much more.
There is one problem with the MILC results, however. Recall that a single staggered flavor corresponds to four

continuum “tastes.” To get the correct flavor weighting of the determinant, MILC takes the quarter root of the
staggered determinant so that det(Dstagg)

1/4 approximates det(D1−flavor). If we had a theory of 4 degenerate

fermions, each with its Dirac operator D1, then one could define an operator D4 = (D1)
4 and then det(D4)

1/4 =
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FIG. 4: Comparison of quenched results with results from simulations with 2+1 flavors of staggered fermions, from Ref. [22]

.

FIG. 5: Lattice calculations of α
MS

(MZ) vs. year of publication. The burst is the recent 2+1 flavor result of Ref. [22]. Squares
are earlier staggered simulations, mostly with two flavors of dynamical simulations, and the crosses are Nf = 2 simulations
with clover or Wilson fermions. The horizontal lines along the right edge show the one-sigma PDG average.

detD1. But gluons introduce taste-breaking terms among the four tastes, and it is not clear if there is an analog
of D1 for staggered fermions, which is theoretically well behaved. If it exists, it would be undoubled and chiral. It
would, therefore, collide with the Nielsen-Ninomaya theorem unless its chiral properties are unusual.
Lattice simulations treat valence quarks and sea quarks differently. Basically, valence quarks (the ones attached to

the external sources) do not have any quantum numbers (other than their mass and spin). One computes classes of
Feynman diagrams on the lattice, then re-weights them with global symmetry indices and bundles them together. (For
example, the same propagators are used for the quark and the antiquark in a mass-degenerate meson). In staggered
fermions, one uses a single flavor of staggered fermions, with its four tastes, and computes correlation functions in
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which the sources project (nearly) onto the same initial and final taste. The quark could hop temporarily into a
different taste state as it propagates across the lattice (this would happen by emitting and absorbing hard gluons),
but this is just cutoff scale physics which contributes O(a2g2) scale violations. It is the sea quarks which are the
problem, and it is a peculiar exchange of limits problem: if taste symmetry were exactly restored below some lattice
spacing, then the spectrum would be exactly degenerate, and the fractional determinant would correctly count the
eigenvalues of a single flavor. But that is not what happens, taste symmetry is only restored in the continuum limit.
The whole business is very puzzling and unresolved. Some people who worry about this believe that there is no local

action whose determinant is equal to det(Dstagg)
1/4, so that the theory which is being simulated is not a legitimate

quantum field theory. Being nonlocal is bad: there is no possibility of a renormalization group, because short distance
physics cannot be integrated out. This means universality is lost.

Bunk, Della Morte, Jansen and Knechtli [27] did a direct study of whether D
1/4
stagg (actually a form of

(D†
staggDstagg)

1/2) was local. It was not. However, saying that two matrices have identical determinants is not
the same as saying that the matrices are identical. All one needs is to find one local D, the fact others are nonlocal
is not important.
A number of people[28, 29, 30] have done comparisons of staggered fermions with overlap fermions, with various

choices for discretizations of the gauge-fermion connections. They compare the spectrum of Dirac eigenmodes in
various circumstances. Staggered fermions do not have zero modes in the presence of instantons, but people find that
they can tune these actions to make the modes more and more small and degenerate. To me, this is more a statement
about the properties of the valence quarks than an exact result about determinants.
Dürr and Hoelbling[31] have done simulations of the Schwinger model with fractional powers of staggered quarks

and with overlap quarks. They ascribe the differences they see to cutoff dependence of the staggered quarks, but do
not see a smoking gun of anything going obviously wrong.
Finally, there has been a spate of activity with free field theory. Maresca and Peardon [32] have constructed local

actions for free fermions whose dispersion relation is equal to that for staggered fermions and whose determinant is
equal to det(Dstagg)

1/4. They must impose a Ginsparg-Wilson type of chiral rotation on their construction to get
locality for this transformation. Adams[33] has proposed a Wilson-type action with the same determinant. Shamir[34]
has shown that under RG transformations the free staggered action blocks into an action with a quadrupled spectrum
(in the limit of infinitely many blocking steps). If one could construct such an action[35] and use it in simulations,
all would be well, but that is not what is done in practice: the fractional root is taken first. It is unknown if any of
these constructions can be extended to the interacting theory.
MILC’s fits to the staggered chiral Lagrangian include the effective number of sea quarks as a free parameter. They

have done fits freeing it, and find[26] (for various observables) 1.2 to 1.4 “fit flavors” (with an uncertainty of about
0.2) where 1 is desired.

None of these studies constitutes a demonstration for or against the det1/4 trick. For the present, MILC data
must dominate any phenomenological analysis which needs a hadronic matrix element to constrain a Standard Model
parameter. It is clearly better than a quenched calculation, and their quark masses are the smallest ones being
simulated. No other formulation of fermions allows simulations at such small quark masses nor large volumes: it is
hard to get below mPS/mV = 0.6.

V. CONCLUSIONS

Lattice people are hard at work. The MILC program is a major part of American lattice QCD. Many groups are
using their configurations to do phenomenology including the effects of dynamical fermions. MILC is doing upgrades
– dropping the quark mass and the lattice spacing, raising the volume. These are the best lattice numbers for

phenomenologists to use to date. But the problem remains: is the det1/4 trick a controlled approximation, or not?
Simulations with dynamical chiral fermions are just beginning. The RBC collaboration[36] is doing production runs

with big lattices with Nf = 2 flavors of domain wall fermions. Dynamical overlap simulations are theoretically clean
and beautiful, but remote. Only a few visionary (?) people are playing with them[37]. For you at this conference, the
most interesting message might be that such methods are beginning to appear; one might be able to cleanly address
interesting questions about chiral fermions with them.
Presumably QCD will be solved a few more times before we retire.
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