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Diffraction, the Color Glass Condensate and String Theory
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We explain the main ideas of the color glass condensate in high energy collisions. Differ-
ent approaches to the problem are outlined with emphasis on the resummation approach.
We present evidence that the color glass condensate can be described by an effective
conformal field theory or even by a string theory.

1. DIFFRACTION AND THE COLOR GLASS CONDENSATE

Hadronic scattering processes at high energies are called diffractive if there is a wide
angular region in the final state without hadronic activity. Such a rapidity gap can only
emerge if a colorless object, the Pomeron, is exchanged between the colliding particles.
Clearly, elastic scattering at high energy is a diffractive process. Hence the very same
object determines via the optical theorem also the total cross section at high energies.
Due to Regge or high energy factorization the elastic amplitude is a convolution of the
amplitude for Pomeron exchange with impact factors coupling it to the external particles,
and the actual energy dependence is encoded only in the Pomeron.

Although there is plenty of data for different scattering processes, we still have no con-
clusive picture of the Pomeron in terms of quarks and gluons, and to understand the
high energy limit of QCD remains one of the most challenging open problems in the
physics of the strong interaction. There are two key points which make the problem
complicated. Many scattering processes at high energies involve low momentum scales, in
general prohibiting a perturbative approach. Fortunately though, there are some scatter-
ing processes involving momentum scales sufficiently large for making perturbation theory
applicable, like for example the scattering of two highly virtual photons which split into
quark-antiquark pairs and then scatter off each other. But even if one concentrates on
these latter processes there is still a second problem, namely the occurrence of high parton
densities. At high energies there is a large phase space for the emission of soft partons
off the incoming hadrons. Eventually, the usual picture breaks down in which different
parton cascades in the hadron are viewed as being independent of each other. At this
point the partons in the hadron start to overlap and recombination effects have to be
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taken into account. As a consequence, the evolution of the system with energy becomes
nonlinear, asking for new theoretical methods to describe it. An advantage of high parton
densities, on the other hand, is that multiple scattering in a dense medium can induce
hard scales, possibly extending the applicability of perturbation theory to a larger number
of scattering processes.

The dense system of partons in colliding hadrons at high energies consists mainly of
gluons, because these are the particles of highest spin and largest color charge. Since
gluons carry a color charge and are bosons, one calls this dense parton system the color
glass condensate (CGC). The ‘glass’ refers to the fact that the quantum evolution of the
system, that is the emissions and recombinations of gluons, takes place on much longer
time scales than the interaction in the collision process. In other words, the hadron evolves
for a long time before the actual collision takes place.

2. THEORETICAL DESCRIPTION OF THE COLORED GLASS

The color glass condensate has been studied in a number of different approaches in
perturbative QCD. The approach on which we will concentrate in the present talk is based
on the concept of resummation of large logarithms of the energy

√
s which can compensate

the smallness of the coupling constant. In the leading logarithmic approximation (LLA)
[1,2] one collects all terms of the form (αs log s)n in the perturbative series. The resulting
linear evolution equation, the BFKL equation, describes the Pomeron as an exchange of
two interacting reggeized gluons in the t-channel. At higher energies it becomes necessary
to go beyond the LLA by taking into account nonlinearities, as we will describe below.
Among the other theoretical approaches to the color glass condensate are the dipole
picture [3], the operator expansion of Wilson lines [4], and the ‘color glass condensate
approach’3, for a review see [5]. In all these approaches one finds identical or at least
similar results for the main properties of the color glass condensate. One of them is the
fact that the main dynamics takes place in the two-dimensional transverse space of the
scattering process. In the approximation of low parton densities, in which nonlinear terms
can be neglected, all the approaches reproduce the BFKL Pomeron. We are convinced
that a more detailed understanding of the relations between the different approaches will
be crucial for future developments in the theory of the CGC.

In the resummation approach one can include high density effects and go beyond the
LLA by taking into account exchanges with more than two gluons in the t-channel. Here
one collects the maximally possible number of logarithms for a given number of exchanged
gluons, giving rise to the generalized leading logarithmic approximation (GLLA). This can
be done either by keeping the number of gluons fixed during the t-channel evolution [6,7,8],
or, more interestingly, in the extended form of that approximation (EGLLA) in which the
number of t-channel gluons is allowed to fluctuate [9,10]. In the EGLLA, amplitudes
for the production of n gluons in the t-channel are described by a hierarchy of coupled
integral equations. It is important to note that in the EGLLA it is not necessary to take
the large-Nc limit at any stage.

The analysis [11,12,10] of the amplitudes in the EGLLA has shown that they can
be cast into the form of an effective field theory of reggeized gluons. In this effective

3Somewhat confusingly, that approach has been given the same name as the object it describes.
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theory only states with (fixed) even numbers of gluons occur which are coupled to each
other by effective vertices V2→2l. So far the two-to-four [12] and the two-to-six gluon
vertex [10] have been calculated explicitly. The emerging structure is that of a two-
dimensional field theory in transverse space, with rapidity Y ∼ log s as an additional
time-like parameter. Due to lack of space we mention only in passing here that the field
theory structure emerges because of the reggeization of the gluon at high energies [13,14].
In short, reggeization reflects the fact that at high energies the correct degrees of freedom
are collective excitations of the Yang-Mills field rather than elementary gluons.

A very important property of the effective transition vertices is their conformal invari-
ance in two-dimensional impact parameter space [15,16], a property which they share
with the kernel of the BFKL equation [17]. This observation makes it appear likely that
the effective field theory of the color glass condensate in the EGLLA is in fact a confor-
mal field theory (CFT). There is some hope that the known effective vertices are already
sufficient to identify the underlying CFT. It would clearly be a significant step towards
understanding the color glass condensate if one could apply the powerful methods of CFT
to this problem. It could also help to establish a relation of high energy QCD to string
theory via the AdS/CFT correspondence.

A slightly less ambitious but still very interesting goal would be to look for an effective
field theory of interacting Pomerons for the color glass condensate. Clearly, it is an
additional approximation to restrict oneself to color singlet states of two gluons, and
depending on the process under investigation it is not even necessarily a good one. For
hard scattering processes on large nuclei it should be a valid approach though, since
the coupling of the Pomerons to different nucleons makes these exchanges the leading
ones in an expansion in 1/Nc. In a first approximation one takes into account only
the splitting of a Pomeron into two Pomerons, that is the three-Pomeron vertex, as the
first nonlinear term in the evolution. In the limit of large Nc this gives rise to the BK
equation [4,18,19,20] which is obtained in all the approaches to the CGC mentioned above
in suitable approximations, and which is now widely used in the phenomenological study
of high energy scattering processes. One clearly expects that with increasing parton
densities also higher nonlinear terms and in general also Nc-suppressed terms become
relevant. Obviously, it is very important for understanding the high energy limit of QCD
to know whether higher Pomeron vertices exist, how they look like, and whether an
effective field theory of interacting Pomerons can be formulated. In the following sections
we will present new results [21] which bring us closer to an answer to these questions.
Again, the conformal invariance plays a key role here.

3. CONFORMAL BOOTSTRAP FOR POMERON VERTICES

Due to the conformal invariance of the BFKL equation in impact parameter space the
resulting Pomeron states can be classified according to their behavior under SL(2,C)
transformations. The representations of this symmetry group are characterized by the
conformal weight h = (1 + n)/2 + iν with n ∈ Z and ν ∈ R. Consequently, the Pomeron
vertices depend on the quantum numbers hi of the Pomerons and on their coordinates
ρi in impact parameter space (understood as a complex plane). For simplicity we will
restrict ourselves to Pomeron states with vanishing conformal spin ni = 0 in the following.
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In the resummation approach the three-Pomeron vertex V3P is obtained from the ef-
fective two-to-four gluon vertex V2→4 by projecting the four outgoing gluons onto a pair
of BFKL Pomerons [22,23]. The four-Pomeron vertex V4P has been calculated from the
two-to-six gluon vertex V2→6 in a similar way in [24]. Note that a four-Pomeron vertex
has also been obtained in the approach based on the expansion of Wilson lines in [25],
but its relation to the vertex V4P has not yet been studied.

The three-Pomeron vertex computed from the EGLLA consists of two terms which
come with different powers of Nc,

V3P(ρi, hi) = g4C1

[

V (0)(ρi, hi) +
C2

N2
c

V (1)(ρi, hi)

]

(1)

where C1,2 do not depend on the positions ρi. The corresponding four-Pomeron vertex
has been obtained in [24] as a sum of different terms which are all of the same order in Nc.
These terms can be expressed in terms of three different functions Φ(ρj , hj), Θ(ρj , hj),
and Π(ρj , hj) for which explicit integral representations exist. Interestingly, the vertex
functions in V3P and V4P are all completely symmetric in the Pomerons, despite the fact
that they have been calculated from effective vertices which are not symmetric under
the exchange of the two incoming and the four (resp. six) outgoing gluons. So far, the
two vertices V3P and V4P are the only Pomeron vertices which have been derived in the
EGLLA, and a calculation of higher Pomeron vertices appears prohibitively complicated
if the same techniques were to be used. As we will see, the properties of the two known
vertices make it already possible to predict many properties of all higher vertices.

A first important observation is that these two Pomeron vertices depend on the Pomeron
coordinates in the particular form required by conformal symmetry, that is they are
conformal three- and four-point functions, respectively. We emphasize that this is a
nontrivial outcome of the EGLLA and has not been put in. Further, an interpretation
of these vertices in the framework of an effective CFT of interacting Pomerons would
require that the four-point function is related to the three-point function in the form of
a conformal bootstrap relation. Remarkably, relations of exactly this type can be found
[21]. They express the functions Φ, Θ and Π appearing in the four-Pomeron vertex as
products of those appearing in the three-Pomeron vertex, V (0) and V (1). For example,
the function Φ(ρj , hj) (j = a, b, c, d) appearing in the four-Pomeron vertex V4P can be
expressed as

Φ =
+∞
∑

nk=−∞

∫ +∞

−∞
dνk f(hk)

∫

d2ρk V
(1)(ρ∗a, ρ

∗
b , ρk, h

∗
a, h

∗
b , hk) V (1)(ρ∗k, ρ

∗
c , ρd, h

∗
k, h

∗
c , hd) (2)

with a weight factor f(hk) = |hk − 1/2|2/π4. This result is derived with the help of a
completeness relation and it is therefore crucial to sum over a full set of intermediate
Pomeron states with label k. Similarly, one can express the other two functions Θ and Π
in the four-Pomeron vertex as products of the two functions V (0) and V (1), where for Π this
product has to be taken with crossed arguments. The product of V (0) with itself does not
occur. A closer inspection shows that it cannot be obtained in the four-Pomeron vertex
V4P derived in the EGLLA because the Feynman diagrams required for it are not part of
that approximation. The latter observation might help in identifying possible important
contributions beyond the EGLLA, and to compare them for example with those of [26].
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These bootstrap relations between the three-Pomeron vertex and the four-Pomeron
vertex strongly suggest that there exists in fact an effective CFT of interacting Pomerons.
Assuming that they are not simply accidental, one can use them to formulate conjectures
about higher n-Pomeron vertices for arbitrary n. Our analysis of the two known Pomeron
vertices makes it hence possible to predict – up to normalization factors – all higher
Pomeron vertices as they would be obtained in the EGLLA. Explicit formulae will be
given in [21].

4. STRING AMPLITUDES FOR POMERON VERTICES

It has long been conjectured that QCD at high energies is a string theory or can at
least be related to one. In fact high energy hadron scattering is even the origin of string
theory. It is therefore interesting to see whether the known interactions of Pomerons
resemble string amplitudes. A relation of this kind was discussed in the context of a
conjecture for higher Pomeron vertices in the dipole picture in [26]. We have found that
the Pomeron vertices obtained in the EGLLA do not coincide with those conjectured
there. Nevertheless, it turns out that the Pomeron vertices in the EGLLA can be related
to string amplitudes in a way similar to that proposed in [26].

Specifically, we find that both V3P and V4P can be expressed as integrands of Virasoro-
Shapiro amplitudes of a closed bosonic string theory [21]. Writing for example V (1) as a
conformal three-point function (again assuming vanishing conformal spins ni),

V (1) = Λ(νa, νb, νc)
∏

i<j

i,j∈{a,b,c}

|ρij |−2∆ij (3)

with ∆ab = ha + hb − hc and ρij = ρi − ρj, it can be shown that

A6(pa, pb, pc, pδ, p1, p2) =
∫

d2ρδ

∣

∣

∣

∣

∣

ρca
ρcδρδa

∣

∣

∣

∣

∣

2

Λ(νa, νb, νc) (4)

is a Virasoro-Shapiro amplitude for the scattering of six closed string tachyon states af-
ter suitable identification of the string momenta with the scaling dimensions νi of the
Pomerons. More precisely, we have to identify the scalar products of the string momenta
in the target space with combinations of the scaling dimensions. Similar relations have
been found for the four-Pomeron vertex, and one can also find them for the higher Pomeron
vertices which follow from our conjecture in the previous section. Intriguingly, that cor-
respondence to string amplitudes holds also for vertices of Pomerons with nonvanishing
conformal spins which can be related to amplitudes of excited string states.

At present, there are still many open questions concerning the relation of Pomeron
vertices to string amplitudes. It turns out, for example, that the string amplitude for a
given n-Pomeron vertex is not unique. Instead, there is only a minimal number of strings
required for each given n. Due to that it is possible that the number of strings matches
the number of gluons, but an identification of closed strings with Pomerons seems to
be excluded. Other key problems are to interpret the Pomeron quantum numbers via
string momenta in a suitable Minkowskian target space, and to find the meaning of the
critical dimension of closed string theory in the context of Pomeron vertices. Finding an
effective string theory for interacting Pomerons would open many interesting possibilities,
including the computation of phenomenologically relevant Pomeron loop amplitudes.
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5. SUMMARY

We have studied the color glass condensate in the approach based on the perturbative
resummation of logarithms of the energy. The Pomeron vertices obtained in this approach
exhibit bootstrap relations and hint at an underlying effective conformal field theory of
interacting Pomerons. We find some evidence for the exciting possibility that the color
glass condensate can even be described by an effective string theory.
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