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New physis upper bound on the branhing ratio of Bs → l+l−
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We onsider the most general new physis e�etive Lagrangian for b → sl+l−.

We derive the upper limit on the branhing ratio for the proesses Bs → l+l− where

l = e, µ, subjet to the urrent experimental bounds on related proesses, B → Kl+l−

and B → K∗l+l−. If the new physis interations are of vetor/axial-vetor form,

the present measured rates for B → (K,K∗)l+l− onstrain B(Bs → l+l−) to be of

the same order of magnitude as their respetive Standard Model preditions. On the

other hand, if the new physis interations are of salar/pseudo-salar form, B →

(K,K∗)l+l− rates do not impose any onstraint on Bs → l+l− and the branhing

ratios of these deays an be as large as present experimental upper bounds. If future

experiments measure B(Bs → l+l−) to be ≥ 10−8
then the new physis giving rise

to these deays has to be of the salar/pseudo-salar form.

The rare deays of B mesons involving �avour hanging neutral interation (FCNI) b → s

has been a topi of great interest for long. Not only will it subjet the standard model (SM)

to aurate tests but will also put strong onstraints on several models beyond the SM. In

the SM, FCNI our only via one or more loops. Thus the rare deays of B mesons will

provide useful information about the higher-order e�ets of the SM. Reently, the very high

statistis experiments at B-fatories have measured non-zero values for the branhing ratios

for the FCNI proesses B → (K,K∗)l+l− [1, 2℄,

Br(B → Kl+l−) = (4.8+1.0
−0.9 ± 0.3± 0.1)× 10−7,

Br(B → K∗l+l−) = (11.5+2.6
−2.4 ± 0.8± 0.2)× 10−7. (1)

These branhing ratios are lose to the values predited by the SM [3℄. However, the SM

preditions for them ontain about ∼ 15% unertainty oming from the hadroni form

fators. Still, it is worth onsidering what onstraints these measurements impose on other

related proesses.

http://arxiv.org/abs/hep-ph/0502120v2
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The e�etive Lagrangian for the four fermion proess b → sl+l− gives rise to the exlusive

semi-leptoni deays suh as B → Kl+l− and B → K∗l+l− and also to purely leptoni

deays Bs → l+l−, where l = e, µ. (From here onwards, the symbol l represents either

e or µ.) Relation between semi-leptoni and purely leptoni B-deays, arising from FCNI

generated by heavy Z ′
boson exhange, was brie�y onsidered in [4, 5℄. The SM preditions

for the branhing ratios for the deays Bs → e+e− and Bs → µ+µ−
are (7.58± 3.5)× 10−14

and (3.2 ± 1.5) × 10−9
respetively [6℄. The large unertainy in the SM predition for

these branhing ratios arises due to the 12% unertainty in the Bs deay onstant and 10%

unertainty in the measurement of Vts. These branhing ratios have been alulated in

various new physis models. In models with Z ′
-mediated FCNI, one has B(Bs → µ+µ−) <

5.8× 10−8
[7℄ whih is about 20 times larger than the SM predition. Due to the inreased

preision in the measurement of B(B → (K,K∗)l+l−), this bound an be improved and the

present alulation attempts to do so. B(Bs → l+l−) are also alulated in multi Higgs

doublet models. These models are lassi�ed into two types. In the �rst type, there is

natural �avour onservation (NFC) and there are no FCNI at tree level. In suh models,

there is an additional loop ontribution to FCNI, where a harged Higgs boson exhange

replaes the SM W-exhange. In a two Higgs doublet model with NFC, branhing ratio

for Bs → µ+µ− ≥ 10−8
is possible [8℄. In the seond type, �avour hanging proesses

do our at tree level, mediated by �avour hanging neutral salars (FCNS's). In suh

models also a branhing ratio of about 10−8
for Bs → µ+µ−

an be ahieved [7℄. From the

experimental side, at present, there exist only upper bounds B(Bs → e+e−) < 5.4 × 10−5

[9℄ and B(Bs → µ+µ−) < 5.0× 10−7
[10℄.

In this paper, we onsider the most general four fermion e�etive Lagrangian for b → sl+l−

transition due to new physis. We derive upper bounds on the branhing ratios for Bs →
e+e− and Bs → µ+µ−

by demanding that the preditions of this new physis Lagrangian for

B → K∗l+l− and B → Kl+l− should be onsistent with the urrent experimental values.

The most general e�etive Lagrangian for b → sl+l− transitions due to new physis an

be written as,

Leff (b → sl+l−) = LV A + LSP + LT (2)

where, LV A ontains vetor and axial-vetor ouplings, LSP ontains salar and psuedo-

salar ouplings and LT ontains tensor ouplings. LT does not ontribute to Bs → l+l−

beause 〈0|s̄σµνb|Bs(pB)〉 = 0. Hene we will drop it from further onsideration.
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First we will assume that the new physis Lagrangian ontains only vetor and axial-

vetor ouplings. We parametrize it as

LV A (b → sl+l−) =
GF√
2

(

α

4πs2W

)

s̄(gV + gAγ5)γµ l̄(g
′

V + g
′

Aγ5)γ
µl. (3)

Here the onstants g and g′ are the e�etive ouplings whih hareterise the new physis.

From the above equation, we get Bs → l+l− matrix element to be

M (Bs → l+l−) = (gAg
′

A)
GF√
2

(

α

4πs2W

)

〈0 |sγ5γµb|Bs〉〈l+l−
∣

∣

∣lγ5γ
µl
∣

∣

∣ 0〉. (4)

Only the axial vetor parts ontribute for both the hadroni and leptoni parts of the matrix

element. Substituting 〈0 |sγ5γµb|Bs〉 = −ifBs
pBµ, in Eq. (4) we get

M (Bs → l+l−) = −i2mlfBs
(gAg

′

A)
GF√
2

(

α

4πs2W

)

ū(pl)γ5v(pl̄). (5)

As we are onsidering only vetor and axial vetor urrents, heliity suppression is still

operative for the Bs → l+l− deay amplitude. The alulation of the deay rate gives

ΓNP (Bs → l+l−) =
G2

Ff
2
Bs

8π

(

α

4πs2W

)2

(gAg
′

A)
2mBs

m2

l . (6)

Thus the deay rate depends upon the value of (gAg
′

A)
2
. To estimate the value of (gAg

′

A)
2
, we

onsider the related deays B → K∗l+l− and B → Kl+l−, whih also reeive ontributions

from the e�etive Lagrangian in Eq. (3). In deriving Eq. (6), we dropped terms proportional

to m2
l /m

2
B, as their ontribution is negligible. We will make the same approximation in

alulating the deay width of semi-leptoni modes also.

We �rst onsider the proess B → K∗l+l−. Here we will have to alulate the following

hadroni matrix elements [3℄:

〈K∗(pK∗) |sγµb|B(pB)〉 = iǫµϑλσǫ
ν(pK∗)(pB + pK∗)λ(pB − pK∗)σV (q2)

〈K∗(pK∗) |sγ5γµb|B(pB)〉 = ǫµ(pK∗)(m2

B −m2

K∗)A1(q
2)− (ǫ.q)(pB + pK∗)µA2(q

2) (7)

where q = pl+ + pl−. In the above equation, a term proportional to qµ is dropped beause

its ontribution to the deay rate is proportional to m2
l /m

2
B. It is assumed that the q2

dependene of these form fators is well desribed by a pole �t:

V (q2) =
V

(mB +mK∗)(1− q2/m2
B)

Ai(q
2) =

Ai

(mB +mK∗)(1− q2/m2
B)

.
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The deay rate is

ΓNP (B → K∗l+l−) =
1

2

(

G2
Fm

5
B

192π3

)(

α

4πs2W

)2

(g
′2

V + g
′2

A )IV A, (8)

where IV A is the integral over the dilepton invariant mass (z = q2/m2
B). Under the assump-

tion that A1 ≈ A2, IV A is given by

IV A = g2V V
2

∫ zmax

zmin

dz
z

1− z
C1(z) + g2AA

2

1

∫ zmax

zmin

dz
z

1 − z
C2(z), (9)

where,

C1(z) = 2
(

1 +
mK∗

mB

)

−2

Φ(z)

C2(z) =

[

3
(

1− mK∗

mB

)2

+
(

mB

2mK∗

)2 (

1 +
mK∗

mB

)

−2
(

z − 5m2
K∗

m2
B

)

Φ(z)

]

.

with Φ(z) = (1 − z)2 + 4z (mK∗/mB)
2
. The limits of integration for z are given by zmin =

(2ml/mB)
2
and zmax = (1 − mK∗/mB)

2
. From equation (8) we see that, the value of

(gAg
′

A)
2
an be determined from the measured rate of Γ(B → K∗l+l−), provided the value

of g2V (g
′2
V + g

′2
A ) is known. For this we onsider the deay of B → Kl+l−.

The matrix element neessary in this ase is [3℄

〈K(pK) |sγµb|B(pB)〉 = (pB + pK)µf
+

KB(q
2), (10)

where again a term proportional to qµ is dropped. The q2 dependene of the formfator,

again, is approximated by a single pole with mass ≈ mB,

f+(q2) =
f+(0)

1− q2/m2
B

. (11)

The deay rate is given by

ΓNP (B → Kl+l−) = g2V (g
′2

V + g
′2

A )

(

G2
Fm

5
B

192π3

)(

α

4πs2W

)2 (

f+(0)

2

)2

. (12)

We demand that the maximum value of this deay rate is the measured experimental value,

(i.e.)

Γexp = ΓNP . (13)

With this assumption we alulate the upper bound on the deay rate of Bs → l+l−, arising

due to LV A, given in Eq. (3). Using Eqs. (8), (12) and (13), we get

g2V (g
′2

V + g
′2

A ) =
BExp(B → Kl+l−)

3.45 [f+(0)]2
× 104 (14)
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and

g2A(g
′2

V + g
′2

A ) =
BExp(B → K∗l+l−)× 104 − 1.58V 2g2V (g

′2
V + g

′2
A )

8.94A2
1

. (15)

In our alulation, we take the formfators to be [11℄

f+(0) = 0.319+0.052
−0.041

V = 0.457+0.091
−0.058

A1 = 0.337+0.048
−0.043, (16)

and use experimental values of B → (K,K∗)l+l− given in [2℄. Adding all errors in quadra-

ture, we get

g2V (g
′2

V + g
′2

A ) = (1.36+0.53
−0.44)× 10−2

g2A(g
′2

V + g
′2

A ) = (6.76+4.04
−3.48)× 10−3. (17)

Thus the maximum value (gAg
′

A)
2
an have, is

(gAg
′

A)
2 = (6.76+4.04

−3.48)× 10−3
(18)

The branhing ratio for Bs → l+l−, due to LV A, to be

B(Bs → e+e−) = 1.06× 10−10 · f 2

Bs
(gAg

′

A)
2

B(Bs → µ+µ−) = 4.54× 10−6 · f 2

Bs
(gAg

′

A)
2. (19)

Substituting fBs
= 240± 30 MeV [12℄ and the maxmimum value for (gAg

′

A)
2
from Eq. (18),

we get

B(Bs → e+e−) = 4.06+2.65
−2.34 × 10−14

B(Bs → µ+µ−) = 1.74+1.13
−1.00 × 10−9

(20)

Therefore the upper bounds on the branhing ratios are,

B(Bs → e+e−) < 6.71× 10−14

B(Bs → µ+µ−) < 2.87× 10−9
(21)

at 1σ and

B(Bs → e+e−) < 1.20× 10−13

B(Bs → µ+µ−) < 5.13× 10−9
(22)



6

at 3σ.

These rates are lose to the SM preditions. The reason for this is quite simple. The

deay rate for an exlusive semi-leptoni proess an be written as

Γ = (c.c.)2(f.f.)2phase space, (23)

where c.c. is the oupling onstant and f.f. is the form fator. The measured rates for the

exlusive semi-leptoni deays are lose to the SM preditions. And we assumed that the

new physis preditions for these proesses are equal to their orresponding experimental

values. Also, the same set of form fators are used in both SM and new physis alulations.

Thus the assumption that new physis preditions for semi-leptoni branhing ratios are

equal to their experimental values (whih in turn are equal to their SM preditions) implies

that the ouplings of new physis are very lose to the ouplings of the SM. This is why

our new physis predition for the purely leptoni mode is also lose to the SM predition.

Therefore, new physis, whose e�etive Lagrangian for b → sl+l− onsists of only vetor and

axial vetor urrents, annot boost up the rate of Bs → l+l− due to the present experimental

onstraints oming from the deays B → Kl+l− and B → K∗l+l−.

For the reasons explained above, using a di�erent set of form fators, as for example those

given in [13℄, will not hange the upper bound on Bs → l+l− signi�antly. In fat, we �nd

that the hange is less than 10%.

We an obtain a more stringent upper bound on (gAg
′

A)
2
by the following proedure. We

equate the new physis ontribution for Γ(B → (K,K∗)l+l−) to the di�erene between the

experimental value and the SM ontribution. This, in turn, leads to a muh more stringent

upper bound on ontribution of LV A to Bs → l+l−. In fat, at 1σ, this bound is onsistent

with 0. At 3σ we get

B(Bs → e+e−) < 7.89× 10−14

B(Bs → µ+µ−) < 3.37× 10−9, (24)

whih are again omparable to the SM preditions. Comparing these results with the ones

obtained by previous assumption, we see that there is not muh di�erene in the branhing

ratios. This ours due to the relatively large errors in both the experimental measurements

and SM preditions for Γ(B → (K,K∗)l+l−). Thus we onlude that the presently measured

values of B → (K,K∗)l+l− do not allow any large boost in the ontribution of LV A to

Bs → l+l−.
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We now onsider the new physis e�etive Lagrangian to onsist of salar/pseudosalar

ouplings,

LSP (b → sl+l−) =
GF√
2

(

α

4πs2W

)

s̄(gS + gPγ5)b l̄(g
′

S + g
′

Pγ5)l. (25)

The matrix element for the deay Bs → l+l− is given by,

M (Bs → l+l−) =
GF√
2

(

α

4πs2W

)

gP 〈0 |sγ5b|Bs〉
[

g
′

Sū(pl)v(pl̄) + g
′

P ū(pl)γ5v(pl̄)
]

(26)

On substituting,

〈0 |sγ5b|Bs〉 = −i
fBs

m2
Bs

mb +ms

, (27)

we get,

M (Bs → l+l−) = −igP
GF√
2

(

α

4πs2W

)

fBs
m2

Bs

mb +ms

[

g
′

Sū(pl)v(pl̄) + g
′

P ū(pl)γ5v(pl̄)
]

, (28)

where mb and ms are the masses of bottom and strange quark respetively. Here we take

the quark masses from Partile Data Group obtained under MS sheme [14℄. We see that

in this ase there is no heliity supression i.e. the rates for the deays Bs → e+e− and

Bs → µ+µ−
will be the same provided g

′

P and g
′

S for both eletrons and muons are the

same. The alulation of the deay rate gives,

ΓNP (Bs → l+l−) = g2P (g
′2

S + g
′2

P )
G2

F

16π

(

α

4πs2W

)2
f 2
Bs
m5

Bs

(mb +ms)2
. (29)

The Branhing ratio is given by,

B(Bs → l+l−) = 0.17
f 2
Bs
g2P (g

′2
S + g

′2
P )

(mb +ms)2
. (30)

To estimate the value of g2P (g
′2
S + g

′2
P ), we again onsider the related deay B → K∗l+l−. Its

matrix element, due to LSP is given by,

M(B → K∗l+l−) =
GF√
2

(

α

4πs2W

)

gP 〈K∗ |sγ5b|B〉
[

g
′

Sū(pl)v(pl̄) + g
′

P ū(pl)γ5v(pl̄)
]

(31)

as 〈K∗ |sb|B〉 = 0. The pseudosalar hadroni matrix element is given by [15℄,

〈K∗ |sγ5b|B〉 = −i
(

2mK∗

mb −ms

)

A0(q
2)(q · ǫ) (32)

The q2 dependene of the formfator is desribed by a pole �t,

A0(q
2) =

A0(0)

(1− q2/m2
B)

. (33)
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The full alulation gives,

ΓNP (B → K∗l+l−) =

(

G2
Fm

5
B

256π3

)(

α

4πs2W

)2 (
2mK∗

mb −ms

)2

[A0(0)]
2 g2P (g

′2

S + g
′2

P )
(

mB

2mK∗

)2

ISP

(34)

where,

ISP =
∫ zmax

zmin

dz

[

z

(1− z)2

]





(

1 +
m2

K∗

m2
B

− z

)2

− 4m2
k∗

m2
B





3

2

. (35)

The limits of integration for the dilepton invariant mass (z = q2/m2
B) are one again given

by zmin = (2ml/mB)
2
and zmax = (1−mK∗/mB)

2
. Now we assume that the maximum value

of this deay rate is the measured experimental value. Thus from Eq. (34), we get

g2P (g
′2

S + g
′2

P ) =
(mb −ms)

2BExp(B → K∗l+l−)

2.16 [A0(0)]
2

× 103. (36)

Taking the value of A0(0) to be 0.471+0.127
−0.059 [11℄, we get

g2P (g
′2

S + g
′2

P ) = 4.02+2.41
−1.41 × 10−2

(37)

Substituting the value of g2P (g
′2
S + g

′2
P ) in Eq. (30) we get,

B(Bs → l+l−) = 2.10+1.38
−0.93 × 10−5. (38)

The upper bound on B(Bs → µ+µ−) from the above equation is muh higher than the

present experimental upper bound [10℄. Thus we see that the measured values of B(B →
(K,K∗)l+l−) do not provide any useful onstraint on LSP ontribution to B(Bs → µ+µ−).

The signi�ane of this result is that if a future experiment, suh as LHC-b [16℄ observes

B(B → µ+µ−) ≥ 10−8
, one an on�dently assert that the new physis giving rise to

this large a branhing ratio must neessarily be of salar/psuedosalar type. Comparing the

expression in Eq. (30) to the experimental upper bound in [10℄, we obtain the bound

g2P (g
′2

S + g
′2

P ) ≤ 10−3
(39)

Conlusions : We onsidered the most general e�etive Lagrangian for the �avour hang-

ing neutral proess b → sl+l−, arising due to new physis. We showed that the present

experimental values of B(B → (K,K∗)l+l−) set strong bounds on B(Bs → l+l−) if the

e�etive Lagrangian is produt of vetors/axial-vetors. Given that the above semi-leptoni

deay rates of B-mesons are omparable to their SM predited values, we showed that the
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rate for purely leptoni deays of Bs an't be muh above the their SM predited values. We

have also derived a 3σ upper bound on B(Bs → µ+µ−) < 5×10−9
arising from Z ′

-mediated

�avour hanging neutral urrents. If the e�etive Lagrangian for b → sl+l− is produt of

salars/psuedosalars then present experimental values of B(B → (K,K∗)l+l−) do not lead

any useful bound on B(Bs → l+l−). This leads us to the very important onlusion that, if

a future experiment observes Bs → l+l− with a branhing ratio greater than 10−8
, then the

new physis responsible for this deay must of be salar/psuedosalar type.
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