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Abstract

It is shown that the hadronic matter formed at high temperatures, according

to the prescription of the statistical bootstrap principle, develops a critical point

at nonzero baryon chemical potential, associated with the end point of a first-

order, quark-hadron phase-transition line. The location of the critical point is

evaluated as a function of the MIT bag constant.
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1 Introduction

Quantum Chromodynamics is unquestionably the microscopic theory of strong

interactions and offers an accurate description of quark-gluon matter. The formation

of hadronic matter is still an open problem in the context of QCD. This theory predicts

however the existence of a critical point at non zero baryon chemical potential, which

is the end point of a quark-hadron critical line of first order [1]. This singularity

is associated with the formation of hadronic matter at high temperatures and its

location in the QCD phase diagram is of primary importance.

On the other hand the hadronic side of matter can be treated as a thermally and

chemically equilibrated gas. The inclusion of interactions among hadrons is crucial

in order to reveal the possibility of a phase transition. A model that allows for

the thermodynamical description of interacting hadrons is the Statistical Bootstrap

Model (SBM), which was first developed by Hagedorn [2-5]. In what follows we

investigate the possibility of the formation of a critical point within the framework of

the statistical bootstrap hypothesis.

2 The hadronic matter

The SBM is based on the hypothesis that the strong interactions can be simulated

by the presence of hadronic clusters. In the context of SBM the strongly interact-

ing hadron gas is replaced by a non-interacting infinite-component cluster gas. The

hadronic states of clusters are listed in a mass spectrum ρ̃, so that ρ̃dm represents

the number of hadronic states in the mass interval {m,m+dm}. The mass spectrum

can be evaluated if the clusters, as well as, their constituents are treated on the same

footing by introducing an integral bootstrap equation (BE). In the bootstrap logic

clusters are composed of clusters described by the same mass spectrum. This scheme

proceeds until clusters are reached that their constituents cannot be divided further.

These constituents are the input hadrons and the known hadronic particles belong to
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this category. The BE leads to the adoption of an asymptotic mass spectrum of the

form [7]

ρ̃(m2, {λ}) m→∞−→ 2C({λ})m−α exp[mβ∗({λ})] . (1)

The underlying feature of SBM is that the mass spectrum rises exponentially, as m

tends to infinity. β∗ is the inverse maximum temperature allowed for hadronic matter

and depends on the existing fugacities {λ}. α is an exponent which can be adjusted

to different values allowing for different versions of the model.

The manipulation of the bootstrap equation can be significantly simplified through

suitable Laplace transformations. The Laplace transformed mass spectrum leads to

the introduction of the quantity G(β, {λ}). The same transformation can be carried

out to the input term of SBM, leading to the quantity ϕ(β, {λ}). Then the BE can

be expressed as

ϕ(β, {λ}) = 2G(β, {λ})− exp[G(β, {λ})] + 1 . (2)

The above BE exhibits a singularity at

ϕ(β, {λ}) = ln 4− 1 . (3)

The last equation imposes a constraint among the thermodynamic variables which

represent the boundaries of the hadronic phase. Hadronic matter can exist in all

states represented by variables that lead to a real solution of the BE or equivalently

in all states for which temperatures and fugacities lead to

ϕ(β, {λ}) ≤ ln 4− 1 . (4)

In the general form of SBM the following four improvements can be made which

allow for a better description of hadronic matter:

1) The inclusion of all the known hadrons with masses up to 2400 MeV in the input

term of the BE and also inclusion of strange hadrons. This leads to the introduction

of the strangeness fugacity λs in the set of fugacities [6,7]. Another fugacity which
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is useful for the analysis of the experimental data in heavy ion collisions is γs. This

fugacity allows for partial strangeness equilibrium and can also be included in the set

of fugacities of SBM [8].

2) Different fugacities can be introduced for u and d quarks. In this way the ther-

modynamic description of systems which are not isospin symmetric becomes possible.

Such systems can emerge from the collision of nuclei with different number of protons

and neutrons [9].

3) The choice of the exponent α in (1) has important consequences, since every

choice leads to a different physical behaviour of the system. The usual SBM choice was

α = 2, but more advantageous is the choice α = 4. With this choice a better physical

behaviour is achieved as the system approaches the hadronic boundaries. Quantities

like pressure, baryon density and energy density, even for point-like particles, no

longer tend to infinity as the system tends to the bootstrap singularity. It also

allows for the bootstrap singularity to be reached in the thermodynamic limit [10],

a necessity imposed by the Lee-Yang theory. Another point in favour of the choice

α = 4 comes from the extension of SBM to include strangeness [6,7]. The strange

chemical potential equals zero in the quark-gluon phase. With this particular choice

of α, µs acquires smaller positive values as the hadronic boundaries are approached.

After choosing α = 4 the partition function can be written down and for point-like

particles it assumes the form

lnZp SBM(V, β, {λ}) = 4BV

β3

∫ ∞

β
x3G(x, {λ})dx ≡ V fSBM(β, {λ}) , (5)

where B is the energy density of the vacuum (bag constant) and it is the only free

parameter of SBM which is left after fixing α = 4 [6,7].

4) The contributions due to the finite size of hadrons, accounting for the repulsive

interaction among hadrons, can be introduced via a Van der Waals treatment of the

volume. The negative contributions to the volume can be avoided if the following
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grand canonical pressure partition function is used

π(ξ, β, {λ}) = 1

ξ − f(β + ξ/4B, {λ}) , (6)

where ξ is the Laplace conjugate variable of the volume. All values of ξ are allowed if

Gaussian regularization is performed [11]. The value ξ = 0 corresponds to a system

without external forces [10,11] and it will be used throughout our calculations. With

the use of (6) and the SBM point particle partition function (5) one obtains

νHG(ξ, β, {λ}) = λ
∂f(β+ξ/4B,{λ})

∂λ

1−
1
4B

∂f(β+ξ/4B,{λ})
∂β

, (7)

where λ is the fugacity corresponding to the particular density, and

PHG(ξ, β, {λ}) =
1

β

f(β+ξ/4B,{λ})−
ξ
4B

∂f(β+ξ/4B,{λ})
∂β

1−
1
4B

∂f(β+ξ/4B,{λ})
∂β

. (8)

The dependence of the pressure on the volume can be recovered if for a given

set of parameters ξ, β, {λ} the density νb of the conserved baryon number < b > is

calculated. Then the volume would be retrieved through the relation

< V >=
< b >

νb
. (9)

By using the SBM with all the above improvements the possibility of a phase tran-

sition of hadronic matter can be traced. The study of the pressure-volume isotherm

curve is then necessary. When this curve is calculated one important feature of SBM

is revealed. This curve has a part (near the boundaries of the hadronic domain)

where pressure decreases while volume decreases also (see Fig.1). This behaviour is

due to the formation of bigger and bigger clusters as the system tends to its bound-

aries. Such a behaviour is a signal of a first order phase transition which in turn is

connected with the need of a Maxwell construction.

If on the contrary the interaction included in SBM is not used then no such

behaviour is exhibited. This can be verified if the Ideal Hadron Gas model is used.

4



Then for this model the equation that corresponds to Eq. (5) is

fp IHG(β, {λ}) ≡
lnZp IHG(V, β, {λ})

V
=

1

2π2β

∑

a

[λa({λ})+λa({λ})−1]
∑

i

gaimaiK2(βmai) ,

(10)

where gai are degeneracy factors due to spin and isospin and a runs to all hadronic

families. This function can be used in eq. (6) to calculate the Ideal Hadron Gas (IHG)

pressure partition function in order to include Van der Waals volume corrections. The

result is that the pressure is always found to increase as volume decreases, for constant

temperature, allowing for no possibility of a phase transition.

The comparison of SBM with the IHG (with volume corrections) is displayed in

Figure 1, where ν0 is the normal nuclear density ν0 = 0.14 fm−3. In both cases

(SBM or IHG) the constraints < S >= 0 (zero strangeness) and < b >= 2 < Q >

(isospin symmetric system, i.e. the net number of u and d quarks are equal) have

been imposed. Also strangeness is fully equilibrated which accounts to setting γs = 1.

3 The quark-gluon matter

We may now proceed to the thermodynamical description of the quark-gluon

phase. The grand canonical partition function of a system containing only u and d

massless quarks and gluons is [13]

lnZQGP (V, β, λq) =
gV

6π2
β−3

[(

1− 2as
π

)(

1

4
ln4 λq +

π2

2
ln2 λq

)

+
(

1− 50as
21π

)
7π4

60

]

︸ ︷︷ ︸

quark term

+ V
8π2

45
β−3

(

1− 15as
4π

)

︸ ︷︷ ︸

gluon term

− βBV
︸ ︷︷ ︸

vacuum term

. (11)

This partition function is calculated to first order in the QCD running coupling con-

stant as. The fugacity λq is related to both u and d quarks. B is again the MIT bag

constant and g equals to the product of spin states, colours and flavours available in
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the system, g = NsNcNf = 12. Using this partition function the QGP baryon density

and pressure can be calculated through the relations

νb QGP (β, λq) =
2

π2
β−3

(

1− 2as
π

)(

1

3
ln3 λq +

π2

3
lnλq

)

(12)

PQGP (β, λq) =
2

π2
β−4

[(

1− 2as
π

)(

1

4
ln4 λq +

π2

2
ln2 λq

)

+
(

1− 50as
21π

)
7π4

60

]

+
8π2

45
β−4

(

1− 15as
4π

)

− B . (13)

If the strange quarks are also included, the quarks assume their current masses

and as = 0, then the following partition function can be used.

lnZQGP (V, β, λu, λd) =
NsNcV

6π2
β
∑

i

∫ ∞

0

p4
√

p2 +m2
i

1

eβ
√

p2+m2

iλ−1
i + 1

dp

︸ ︷︷ ︸

quark term

+ V
8π2

45
β−3

︸ ︷︷ ︸

gluon term

− βBV
︸ ︷︷ ︸

vacuum term

. (14)

The index i runs to all quarks and antiquarks. The current masses are taken mu = 5.6

MeV, md = 9.9 MeV and ms = 199 MeV [14]. The fugacities are λū = λ−1
u , λd̄ = λ−1

d

and λs̄ = λ−1
s = 1 (since strangeness is set to zero). The baryon density is then

νb QGP (β, λu, λd) =
NsNc

2π2

∑

i

Ni

∫ ∞

0

p2

eβ
√

p2+m2

iλ−1
i + 1

dp , (15)

where i includes only u, ū, d and d̄ quarks and Ni = 1 for u and d quarks and Ni = −1

for ū and d̄ quarks. The pressure is

PQGP (β, λu, λd) =
1

β

lnZQGP (V, β, λu, λd)

V
. (16)

In order to study the effect of the inclusion of strange quarks we can use the

partition function (11) and add the part of the quark term of (14) which corresponds

to the strange quarks.
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4 Matching the two phases

After completing a thermodynamic description for the hadronic and for the quark-

gluon phase we can trace whether a phase transition can occur between the two

phases. Similar situations have been studied in [10,12,13], but here, apart from the

use of the SBM incorporating all four improvements, we shall focus our calculations

to the location of the critical point. So no value of B or as will be selected a-priori.

If as and ξ are fixed, then the only free parameter left would be the MIT bag

constant B. If a value of B is chosen, also, the pressure-volume isotherms of Hadron

Gas and QGP can be calculated for a specific temperature. Then at the point where

the two isotherms meet would correspond equal volumes and equal pressures for the

two phases. But assuming that the baryon number is a conserved quantity to both

phases, the equality of volumes would lead to the equality of baryon densities.

When performing calculations about the location of the point where the two phases

meet, with fixed MIT bag constant, what is found is that at a low temperature the

QGP and SBM pressure-volume isotherms meet at a point where the Hadron Gas

pressure is decreasing while volume decreases. This is reminiscent of the need of a

Maxwell construction. So at that point the phase transition between Hadron Gas and

QGP must be of first order. As the temperature rises, a certain temperature is found

for which the QGP isotherm meets the SBM isotherm at a point which corresponds to

the maximum Hadron Gas pressure for this temperature. So no Maxwell construction

is needed. It is important to notice that this point is located at finite volume or

finite baryon density and it can be associated with the QCD critical point. Then, as

temperature continues to rise, the QGP isotherms meet the SBM isotherms at points

with even greater volume. Again no Maxwell construction is needed and this region

belongs to the crossover area.

These situations can be depicted in Figure 2, where all curves have been calculated

for B1/4 = 210 MeV. The dotted curved lines correspond to SBM, while the almost

straight dotted lines correspond to QGP. For the calculations three quark flavours
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have been used with their corresponding current masses and as = 0. The thick

lines are the resulting pressure-volume curves for the Hadron Gas-QGP system. A

Maxwell construction is needed for the low temperature isotherm. This is depicted

by the horizontal line which is drawn so that the two shaded surfaces are equal

and represents the final pressure-volume curve after the completion of the Maxwell

construction. In the same figure the isotherm that leads the pressure curves of the

two phases to meet at the maximum hadron gas pressure, forming a critical point,

is drawn, also. Finally for higher temperatures the two curves meet at a point so

that the resulting pressure curve is always increasing as volume decreases, without

the need of a Maxwell construction (crossover area).

A more detailed figure of the previous one is Figure 3, where more curves that need

Maxwell construction can be displayed. The coexistence region of the two phases are

represented by the horizontal Maxwell constructed curves. The slashed line represents

the boundaries of the Maxwell construction and so the boundaries of the coexistence

region.

5 Locating the Critical Point

To locate the critical point with the choice (14) for the QGP partition function,

for a given B, one has to determine the parameters (β, λu, λd, λs, λ
′
u, λ

′
d), which solve

the following set of equations.

νb SBM(β, λu, λd, λs) = νb QGP (β, λ
′
u, λ

′
d) (17a)

PSBM (β, λu, λd, λs) = PQGP (β, λ
′
u, λ

′
d) (17b)

∂PSBM (β, λu, λd, λs)

∂λu
= 0 (17c)

〈 S(β, λu, λd, λs) 〉SBM = 0 (17d)

〈 b(β, λu, λd, λs) 〉SBM − 2 〈 Q(β, λu, λd, λs) 〉SBM = 0 (17e)
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〈 b(β, λ′
u, λ

′
d) 〉QGP − 2 〈 Q(β, λ′

u, λ
′
d) 〉QGP = 0 (17f)

Eq. (17c) is equivalent to PSBM = PSBM max, when all the rest of the equations are

valid. Eq. (17d) imposes zero strangeness to HG phase. Eqs. (17e) and (17f) account

for isospin symmetry in the HG and QGP phase, respectively. Also we have set γs = 1

assuming full strangeness equilibrium.

With the choice (11) for the QGP partition function only the equations (17a)-

(17e) have to be solved, since only one fugacity λq = λ′
u = λ′

d is available in the QGP

phase.

The calculations for the position of the critical point for different values of B are

presented in Figures 4-6. The range of values of B1/4 = (145 − 235) MeV [14,15]

has been used for these calculations. In Figure 4 we depict the critical temperature

as a function of the critical baryon density. The dotted curves correspond to the

QGP partition function with massless u and d quarks, without strange quarks and

for different values of as. The thick solid curve corresponds to the QGP partition

function with massive u, d and s quarks and as = 0. The slashed curve corresponds

to the QGP partition function with massless u, d, massive s quarks and as = 0.1.

Figure 5 presents the connection of the MIT bag constant with the baryon density

of the critical point, divided by the normal nuclear density.

In Figure 6 the critical temperature is plotted versus the critical baryon chemical

potential. The code of lines are as in Figure 4. In this graph the lines representing

the bootstrap singularity, that is the boundaries of the maximum space allowed to

the hadronic phase, for the maximum and minimum values of B, are also depicted

(slashed-dotted curves). The filled circles represent positions of critical point for the

different choices of the QGP partition functions for these maximum and minimum

values of B. As it can be seen the critical point is placed within the hadronic phase,

close to the bootstrap singularity. Every modification made to external parameters

drives the critical point in parallel to the bootstrap singularity line.

Typical values for the position of the critical point are listed in Table 1.
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6 Concluding Remarks

From our study we may conclude that, as B increases, the critical point moves

to higher baryon density, smaller baryon chemical potential and higher temperature

until a certain value of B is reached. If B is increased further, then the critical

point moves quickly to zero baryon density and zero baryon chemical potential, while

temperature keeps increasing slowly.

The inclusion of strange quarks always moves the critical point to higher baryon

density and higher baryon chemical potential (for fixed values of B and as).

As as is increased (at the same QGP partition function), the critical point moves

to smaller baryon density, smaller baryon chemical potential and higher temperature,

while the move of the critical point towards zero chemical potential takes place at

smaller values of B.

From the last two remarks we can infer that the calculation with massive quarks

and as = 0 represents the higher baryon density, higher baryon chemical potential

and smaller temperature (for a given B) that the critical point can acquire. So this

particular QGP partition function can give us an upper limit for the position of the

critical point in baryon density or baryon chemical potential.

From Figure 6 it is evident that the critical point is positioned near the bootstrap

singularity curve. So this curve can represent, to a good approximation, the first-order

transition line between hadron and quark-gluon phase.

From Table 1 we observe that in the minimal, two flavour version of the quark-

gluon description (as = 0) and in the chiral limit (mu = md = 0), where the critical

point becomes tricritical, the location of the singularity may come close to the freeze-

out area of the SPS experiments (typically: Tc ≈ 171 MeV, µc ≈ 300 MeV). On the

contrary, the Lattice QCD solution [16] with unphysically large values of the quark

masses mu, md drives the critical baryon chemical potential to higher values (Tc ≈ 160

MeV, µc ≈ 725 MeV). In order to bridge this discrepancy one needs an improvement

in both approaches. In the bootstrap approach a realistic partition function of the
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quark-gluon matter is needed, based not on perturbation theory but on the knowledge

of the quark-gluon pressure on the lattice for nonzero chemical potential. At present,

there exist lattice results for the pressure only for µ = 0 [17]. In the lattice search for

the critical point on the other hand the solution for small quark masses (chiral limit)

is needed before any quantitative comparison, both with the bootstrap solution and

the location of the freeze-out area in heavy-ion collisions, could be made.
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Figure Captions

Figure 1 Isotherm pressure-volume curve for SBM and IHG (both with Van der

Waals volume corrections using the pressure ensemble). B is constant.

Figure 2 Three isotherm pressure-volume curves for Hadron Gas (using SBM) and

QGP phase (using partition function including u, d and s quarks at their current

masses and as = 0). The low temperature isotherm needs Maxwell construction, the

middle temperature isotherm corresponds to critical point and the high temperature

isotherm corresponds to crossover. B is constant.

Figure 3 A similar case as in Figure 2. The boundaries of Maxwell construction are

displayed with the slashed line.

Figure 4 The baryon density at the critical point versus the critical temperature for

different values of B and for different types of the QGP partition function.

Figure 5 The critical temperature as a function of the MIT bag constant for different

types of the QGP partition function.
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Figure 6 Critical temperature versus critical baryon chemical potential for different

values of B and for different types of QGP partition functions. The bootstrap sin-

gularity lines for maximum and minimum values of B, as well as, the critical points

corresponding to these values (filled circles) are also displayed.

B1/4 (MeV) νb cr.p. (fm
−3) Tc (MeV) µc (MeV)

as = 0, mu = md = 0, s-quarks not included

235 0.2158 171.2 299.4

180 0.1361 127.9 544.5

145 0.0690 102.6 623.4

as = 0, mu = 5.6 MeV, md = 9.9 MeV, ms = 199 MeV

235 0.3110 159.1 451.1

180 0.1489 121.2 598.6

145 0.0721 98.4 651.9

Table 1.

Table Caption

Table 1 Some values for the position of the critical point for different values of B

and different QGP partition functions.
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