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We investigate the relation between the Eγ spectrum in B → Xsγ decay and the P+ spectrum in
semileptonic B → Xuℓν̄ decay (P+ is the hadronic energy minus the absolute value of the hadronic
three-momentum), which provides in principle the theoretically simplest determination of |Vub| from
any of the “shape function regions” of B → Xuℓν̄ spectra. We calculate analytically the P+ spectrum
to order α2

sβ0, and study its relation to the B → Xsγ photon spectrum to eliminate the leading
dependence on nonperturbative effects. We compare the result of fixed order perturbation theory
to the next-to-leading log renormalization group improved calculation, and argue that fixed order
perturbation theory is likely to be a more appropriate expansion. Implications for the perturbative
uncertainties in the determination of |Vub| from the P+ spectrum are discussed.

I. INTRODUCTION

The determination of the magnitude of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element Vub via in-
clusive decays is theoretically involved, because the ex-
perimental cuts required to suppress the B → Xcℓν̄ back-
ground tend to restrict the B → Xuℓν̄ phase space in a
way that gives rise to theoretical complications [1]. The
local operator product expansion (OPE) [2, 3] breaks
down in the regions Eℓ > (m2

B − m2
D)/(2mB) and

mX < mD [4, 5] (where Eℓ is the charged lepton energy
and mX the hadronic invariant mass), because numeri-
cally m2

c ∼ ΛQCDmb. In these regions an expansion in
ΛQCD/mb in terms of nonlocal matrix elements is still
possible [6], and the leading term can be measured in
B → Xsγ decay [7]. (The local OPE is valid in the
q2 > (mB −mD)2 region [8], q2 being the lepton invari-
ant mass, but there are other issues for that cut [1].) The
kinematic region, in which the final hadronic state has
high energy ∼ mb but low invariant mass ∼

√
ΛQCDmb,

is typically known as the “shape function region.”

It was pointed out [9] (see also [10, 11]) that sep-
arating b → u from b → c using another variable,
P+ ≡ EX − |~pX |, where EX and ~pX are the energy
and three-momenta of the hadronic final state, may pro-
vide advantages compared to Eℓ or mX . At lowest
order in ΛQCD/mb dΓB→Xuℓν̄/dP+ is proportional to
dΓB→Xsγ/dEγ evaluated at Eγ = (mB − P+)/2 (since
P+ in B → Xsγ equals mB − 2Eγ). Thus, to predict the
B → Xuℓν̄ rate in the P+ < m2

D/mB region that is free
from the charm background, we only need to know the
B → Xsγ photon spectrum for Eγ > (m2

B−m2
D)/(2mB);

i.e., a 330MeV region near the endpoint, which is already
precisely measured [12–14]. This is also what is needed
to predict the Eℓ endpoint spectrum, but it is signifi-

cantly smaller than what is required to determine the
mX spectrum [15, 16].
A convenient way to express the relation between the

P+ spectrum in semileptonic b→ u decay and the photon
energy spectrum in B → Xsγ decay is to relate weighted
integrals of the two spectra [17] (see also [10]). One can
write
∫ ∆

0

dP+
dΓu

dP+
∝ |Vub|2

|VtbV ∗

ts|2
∫ ∆

0

dPγ W (∆, Pγ)
dΓs

dPγ
, (1)

where we have defined Pγ ≡ mB − 2Eγ , and at lead-
ing order in ΛQCD/mb the weight function W (∆, Pγ) is
calculable in perturbation theory.
In the shape function region, ∆ ∼ ΛQCD, the pertur-

bative expansion of W contains logarithms of the ratio
of scales

√
mbΛQCD/mb. For mb ≫ ΛQCD, these loga-

rithms are large and can spoil the convergence of per-
turbation theory, so must be resummed using renormal-
ization group techniques. This can be done using tra-
ditional perturbative QCD methods [17–20] or by using
the Soft-Collinear Effective Theory (SCET) [21]. Cur-
rentlyW can be extracted from known results to leading
log (LL) and next-to-leading log (NLL) accuracy. How-
ever, for the true value

√
mbΛQCD/mb ∼ 1/3, it is not

clear that the leading log expansion is appropriate, and
a fixed order calculation in αs may give a better approx-
imation to W .1

In this paper we address this issue by calculating the
order α2

sβ0 corrections to the P+ spectrum, where β0 =

1 This is reminiscent of the resummation of logs of mc/mb ∼ 1/3
in exclusive B → D∗ℓν̄ decay at zero recoil, in which the leading
log calculation is a poor approximation to the one- or two-loop
results [22, 23].
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11− 2nf/3 is the first coefficient of the QCD β-function
(we shall refer to this order as BLM [24]), from which we
determine the corresponding corrections to the weighting
function W . Since β0 ∼ 9 is a large number, such terms
dominate the two-loop corrections to many processes [24,
25]. We find that a considerable part of the two-loop
expression arises from terms which in the renormalization
group improved perturbation theory only occur at next-
to-next-to leading log (NNLL) order, and we argue that
fixed order perturbation theory is a more appropriate
expansion. We discuss the implications of this for the
uncertainty in the determination of |Vub|.

II. THE SPECTRA AT ORDER α2
sβ0

We first present analytical results for the parton level
spectra in B → Xuℓν̄ and B → Xsγ to order α2

sβ0.
Our results for the P+ spectrum are new, whereas those
for the photon spectrum are collected from the existing

literature for completeness.
At the parton level, the appropriate variables are

p̂+ ≡ (v − q/mb) · n , x̄ ≡ 1− 2Eγ/mb , (2)

for B → Xuℓν̄ and for B → Xsγ decay respectively,
where n is a light-like four-vector in the direction of −~q,
v is the four-velocity of the B meson. These variables are
simply related to the experimentally observed hadronic
variables by

P+ ≡ EX − |~pX | = (mBv − q) · n = mbp̂+ + Λ ,

Pγ ≡ mB − 2Eγ = mbx̄+ Λ , (3)

where Λ ≡ mB −mb.

A. The p̂+ spectrum in B → Xuℓν̄

The p̂+ spectrum to order αs is given by [9]

1

Γ0

dΓu

dp̂+
= δ(p̂+) − αs(mb)CF

4π

[
4

(
ln p̂+
p̂+

)

∗

+
26

3

(
1

p̂+

)

∗

+

(
13

36
+ 2π2

)
δ(p̂+)

+ 4p̂2+(3− 2p̂+) ln
2 p̂+ +

2

3
(2 − 23p̂+ − 9p̂2+ + 8p̂3+) ln p̂+

− 316 + 407p̂+ − 1101p̂2+ + 708p̂3+ − 200p̂4+ + 33p̂5+ − 7p̂6+
18

]
+O(α2

s) , (4)

where Γ0 = G2
F |Vub|2m5

b/(192π
3), CF = 4/3, and mb is the b quark pole mass. The ∗ distributions (for n ≥ 0 integers)

are defined by
∫ z

0

dx f(x)

(
lnn x

x

)

∗

= f(0)
lnn+1 z

n+ 1
+

∫ z

0

dx [f(x) − f(0)]
lnn x

x
. (5)

Integrating Eq. (4) over 0 < p̂+ < 1 reproduces the total rate 1− (αsCF /(4π))(2π
2 − 25/2).

The BLM part of the two-loop result may be obtained from the one-loop calculation with an arbitrary gluon
mass using the method of Ref. [26]. We calculated the spectrum for p̂+ 6= 0, for which only bremsstrahlung graphs
contribute, and then determined the coefficient of δ(p̂+) by comparing with the total rate [27]. The result is

1

Γ0

dΓ
(BLM)
u

dp̂+
=
α2
s(mb)

π2
β0

{
1

2

(
ln2 p̂+
p̂+

)

∗

+
1

2

(
ln p̂+
p̂+

)

∗

+

(
π2

18
− 113

72

)(
1

p̂+

)

∗

−
(
4

3
ζ3 +

41

72
π2 − 1333

1728

)
δ(p̂+)

− 2p̂2+(3− 2p̂+)

3

[
Li3(p̂+) + Li3(p̂+(2− p̂+))− 2Li3(1/(2− p̂+)) +

1

4
Li3((1 − p̂+)

2)

− Li2(p̂+) ln(p̂+(2− p̂+)
2)− π2

6
ln(p̂+(2− p̂+)) +

1

2
ln(1 − p̂+) ln

2 p̂+ − 5

6
ln3 p̂+ +

1

3
ln3(2− p̂+)

]

+
6 + 11p̂+ − 32p̂2+ + 18p̂3+ − 4p̂4+

18p̂+
Li2((1− p̂+)

2)− π2

18p̂+
+ (1− p̂+) Li2(p̂+ − 1)

+
53

216(1− p̂+)
− 674− 1333p̂+ + 606p̂2+

216(1− p̂+)3
ln(p̂+(2 − p̂+)) +

6− 69p̂+ − 123p̂2+ + 100p̂3+
36

ln2 p̂+

+
605 + 184p̂+ − 237p̂2+ − 106p̂3+

108
ln p̂+ +

2374 + 6219p̂+ − 15589p̂2+ + 9890p̂3+ − 2352p̂4+ + 417p̂5+ − 87p̂6+
864

+
530 + 137p̂+ − 1341p̂2+ + 840p̂3+ − 200p̂4+ + 33p̂5+ − 7p̂6+

216
ln

2− p̂+
p̂2+

}
, (6)
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where Li2(z) = −
∫ z

0 dt ln(1− t)/t is the dilogarithm, and

Li3(z) =
∫ z

0
dtLi2(t)/t.

B. The x̄ spectrum in B → Xsγ

We concentrate on the part of the spectrum that arises
from the operator O7 = (e/16π2)mb s̄L σ

µνFµν bR. This
gives rise to the dominant part of the photon spectrum,
and while other operators also influence the spectrum,

the photon spectrum is only known analytically to order
α2
sβ0 for this piece (and for O8, but not for the terms

involving the four-quark operators). To study the con-
vergence of the perturbative expansions and assess the
theoretical uncertainties in the P+ spectrum, it is suffi-
cient to consider O7. However, ultimately, for the actual
determination of |Vub| the other contributions should also
be included.

The photon spectrum to order αs is given by [28, 29]

1

Γγ

dΓ77

dx̄
= δ(x̄)− αs(mb)CF

4π

[
4

(
ln x̄

x̄

)

∗

+ 7

(
1

x̄

)

∗

+

(
5 +

4

3
π2

)
δ(x̄)− 6− 3x̄+ 2x̄2 + 2(2− x̄) ln x̄

]
+O(α2

s), (7)

where Γγ = G2
F |VtbV ∗

ts|2 αemm
3
b [mb(mb)C

eff
7 (mb)]

2/(32π4), and we have set µ = mb for convenience. The BLM
correction to the photon spectrum due to O7 may be obtained by combining results given in [30] and [31]; again,
setting µ = mb it reads

1

Γγ

dΓ
(BLM)
77

dx̄
=
α2
s(mb)

π2
β0

[
1

2

(
ln2 x̄

x̄

)

∗

+
13

36

(
ln x̄

x̄

)

∗

+

(
π2

18
− 85

72

)(
1

x̄

)

∗

−
(
1

3
ζ3 +

91

216
π2 +

631

432

)
δ(x̄) (8)

+
(6 + 6x̄− 3x̄2)Li2(1 − x̄)− π2

18x̄
+

2− x̄

4
ln2 x̄− 38− 33x̄+ 7x̄2 + 6x̄3

36(1− x̄)
ln x̄+

66 + 21x̄− 38x̄2

72

]
.

III. RELATION BETWEEN THE SPECTRA

One can define a weighting function, W , that relates,
in the shape function regions, weighted integrals of the
photon energy spectrum in B → Xsγ to integrals of the
P+ spectrum in B → Xulν:

∫ ∆

0

dP+
dΓu

dP+
=

|Vub|2
|VtbV ∗

ts|2
π

6αemCeff
7 (mb)2

m2
B

mb(mb)2

×
∫ ∆

0

dPγ W (∆, Pγ)
dΓ77

dPγ
. (9)

The weighting function W can be computed perturba-
tively at leading order in ΛQCD/mb, because the shape
function contribution that captures the leading nonper-
turbative physics at scales of order ΛQCD is identical in
the two spectra. The corresponding perturbation series
depends on the scales mb and

√
mbΛQCD. The function

W is also free of logarithms of the form αn
s lnm(m2

b/µ
2),

m = n+1, . . . , 2n, which are universal in the two spectra
and cancel from the relation in Eq. (9).
The origin of the m2

B/m
2
b factor in the definition of

W deserves comment. At leading order in ΛQCD/mb, the
effects of the shape function f(ω) may be simply included
by making the replacement

mb → m∗

b = mb + ω , (10)

in the tree level partonic rate, and then convoluting the

differential rate with the shape function f(ω) [7],

dΓ =

∫
dΓparton

∣∣
mb→m∗

b

f(ω) dω. (11)

This prescription also generalizes to higher orders in
ΛQCD/mb, provided that the replacement (10) is only ap-
plied to factors of mb which arise from kinematics, and
not from coefficients of operators in the Hamiltonian [16]
and correctly reproduces the class of “kinematic” sub-
leading effects (proportional to the leading order shape
function) which do not arise from the expansion of the
heavy quark fields.

Applying this procedure to the tree level spectra, we
have

dΓu

dP+
∝

∫
(mb + ω)5 δ(P+ − Λ + ω) f(ω) dω

=

∫
(mB − ω̃)5 δ(P+ − ω̃) f(Λ− ω̃) dω̃ (12)

for semileptonic decays (where ω̃ ≡ Λ − ω), and

dΓ77

dPγ
∝ mb(mb)

2

∫
(mB − ω̃)3 δ(Pγ − ω̃) f(Λ− ω̃) dω̃

(13)
for radiative decays, where two powers of mb(mb) origi-
nate from C7 in the effective Hamiltonian to which the
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replacement (10) does not apply. This gives

∫ ∆

0

dΓu

dP+
dP+ ∝

∫ ∆

0

(mB − Pγ)
2

mb(mb)2
dΓ77

dPγ
dPγ (14)

=
m2

B

mb(mb)2

∫ ∆

0

(
1− 2Pγ

mB
+ . . .

)
dΓ77

dPγ
dPγ .

Thus, it is natural to pull the leading factor of
m2

B/mb(mb)
2 out of the definition ofW . As we will show,

factoring out this term rather than leaving the “partonic”
factor m2

b/mb(mb)
2 in the definition of W dramatically

reduces the absolute size of the perturbative corrections
to W .

To calculateW , we first expand both parton level spec-
tra in powers of p̂+ and x̄ respectively, since in the shape
function region both are O(ΛQCD/mb). At leading or-
der in ΛQCD/mb, this simply corresponds to keeping the
first four terms in Eqs. (6) and (8). At leading order in
the ΛQCD/mb expansion relevant for the shape function
regime, the Feynman diagrams which give the coefficient
of the shape function give the partonic result with the

substitution p̂+ → p̂+ + k̂+ and x̄ → x̄ + k̂+, where k̂+
is the light-cone component of the residual momentum
of the heavy quark, which is of the same order. (The

dimensionless variables k̂+ and ω̂ have support between
−∞ and Λ/mb.) Thus, we have

1

Γ0

dΓ
(BLM)
u

dp̂+
=
α2
s(mb)

π2
β0 δ(ω̂ − k̂+)

[
1

2

(
ln2(p̂+ + ω̂)

p̂+ + ω̂

)

∗

+
1

2

(
ln(p̂+ + ω̂)

p̂+ + ω̂

)

∗

+

(
π2

18
− 113

72

)(
1

p̂+ + ω̂

)

∗

−
(
4

3
ζ3 +

41

72
π2 − 1333

1728

)
δ(p̂+ + ω̂) + . . .

]
, (15)

and similarly for dΓ77/dx̄. This gives, for each spectrum, the matching conditions onto the leading nonlocal operator
O0(ω) = b̄ δ(ω− iD+) b in the OPE. The B meson matrix element of O0(ω) gives the leading order b quark light-cone
distribution function, or shape function. In principle, to determine the coefficient of O0(ω) we must include the
radiative corrections to the parton level matrix element of O0(ω); however, since these terms are common to both
spectra and therefore drop out of W , we do not need to worry about them here.
Including the full one-loop corrections and the BLM two-loop contributions, and setting the scale µ = mb for

simplicity, the function W is given by

W (∆, Pγ) = 1 +
CFαs(mb)

4π

(
5

3
ln

mb

∆− Pγ
− 2π2

3
+

167

36

)

+
CFα

2
s(mb)

(4π)2
β0

(
5

6
ln2

mb

∆− Pγ
+

14

3
ln

mb

∆− Pγ
− 16π2

9
+

3857

144
− 12ζ3

)
+ . . . (16)

where the ellipses denote non-BLM two-loop terms, higher orders in perturbation theory and nonperturbative correc-
tions suppressed by powers of ΛQCD/mb. Eq. (16) is the main result of this paper.
It is instructive to compare Eq. (16) with the next-to-leading log result in SCET. Using the results of Refs. [10, 32]

(see also [33]), we find

WNLL(∆, Pγ) = T (a)

{
1 +

CFαs(mb)

4π
H(a) +

CFαs(µi)

4π

[
4f2(a) ln

mb(∆− Pγ)

µ2
i

− 3f2(a) + 2f3(a)

]}
, (17)

where

T (a) =
2(6− a)

(4− a)(3− a)
, H(a) = −4(486− 389a+ 103a2 − 9a3)

(6 − a)(4− a)2(3 − a)2
− 4ψ′(3− a)− c f2(a) ,

f2(a) = − 30− 12a+ a2

(6 − a)(4− a)(3− a)
, f3(a) =

2(138− 90a+ 18a2 − a3)

(6 − a)(4− a)2(3− a)2
, (18)

ψ′ is the derivative of the digamma function, ψ(z) = Γ′(z)/Γ(z), and

a =
Γ0

β0
ln
αs(µi)

αs(mb)
, c =

4

β0

(
Γ1

Γ0
− β1
β0

)(
αs(µi)

αs(mb)
− 1

)
. (19)

Here Γ0 = 4CF and Γ1 = 8CF (67/6− π2/2 − 5nf/9) are the first two coefficients of the cusp anomalous dimension,
and β1 = 102− 38nf/3. Setting µi ∼ ΛQCDmb sums all leading and subleading logarithms of the form αn

s lnn(µi/mb)
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and αn
s lnn−1(µi/mb). Expanding Eq. (17) to order α2

s(mb), we find

WNLL(∆, Pγ) = 1 +
CFαs(mb)

4π

(
5

3
ln
m2

b

µ2
i

)
+
CFα

2
s(mb)

(4π)2

(
5β0
6

+
92

27

)
ln2

m2
b

µ2
i

+
CFαs(mb)

4π

(
5

3
ln

µ2
i

mb(∆− Pγ)
− 2π2

3
+

167

36

)
(20)

+
CFα

2
s(mb)

(4π)2

[(
5β0
3

+
184

27

)
ln

µ2
i

mb(∆− Pγ)
+

14β0
3

+
64

3
ψ′′(3)− 85π2

27
+

1234

81

]
ln
m2

b

µ2
i

+ . . . ,

where the first line is the leading log result, and the second and third lines are subleading logs. Note that the
renormalization group equations sum logs of m2

b/µ
2
i , not mb(∆ − Pγ)/µ

2
i , since for µ2

i ∼ ΛQCDmb only the first are
parametrically enhanced. The result is formally independent of µi, as can be seen by re-expanding the logs in Eq. (20),

WNLL(∆, Pγ) = 1 +
CFαs(mb)

4π

(
5

3
ln

mb

∆− Pγ
− 2π2

3
+

167

36

)
+
CFα

2
s(mb)

(4π)2

[(
5β0
6

+
92

27

)
ln2

mb

∆− Pγ

+

(
14β0
3

+
64

3
ψ′′(3)− 85π2

27
+

1234

81

)
ln

mb

∆− Pγ
+ . . .

]
+ . . . , (21)

where we have dropped terms of order α2
s ln

n[mb(∆ − Pγ)/µ
2
i ], which are next-to-next-to-leading order. This result

agrees with the corresponding one-loop and two-loop BLM terms in Eq. (16).
Equations (16) and (21) both provide approximations to the full expression for W at two-loops, so it is instructive

to compare them. Numerically, the O(α2
s) terms are

W (α2
s
) =

CFα
2
s(mb)

(4π)2

[
(0.83β0 + 3.41) ln2

mb

∆− Pγ
+ (4.67β0 − 19.1) ln

mb

∆− Pγ
− (5.19β0 + c0)

]

=
CFα

2
s(mb)

(4π)2

[
(6.94

β0
25/3

+ 3.41) ln2
mb

∆− Pγ
+ (38.9

β0
25/3

− 19.1) ln
mb

∆− Pγ
− (43.2

β0
25/3

+ c0)

]
, (22)

where a complete two-loop calculation is required to de-
termine c0.
For both the double and single log terms, the BLM-

enhanced term is about a factor of two larger than the
non-BLM term, which suggests that it may also dominate
the nonlogarithmic term to a similar degree. In contrast,
the leading log approximation is clearly poorly behaved
at this order: for µ2

i /m
2
b ∼ (∆ − Pγ)/mb = 1/9, the

double, single and non-logarithmic terms in Eq. (22) are
in the ratio

O(log2) : O(log) : O(log0) = 1 : 0.87 : (−0.86− 0.02c0) .
(23)

This reflects the fact that the logarithmic enhancement
is not sufficient for the double log to dominate over the
single or zero log terms, nor for the single log to dominate
over the BLM-enhanced piece of the zero log term. The
same conclusion is reached by comparing the size of the
LL and NLL terms in Eq. (20). This suggests that a fixed
order calculation, rather than a leading log calculation,
is more appropriate forW . We will discuss the numerical
significance of this for the extraction of |Vub|, along with
the poor convergence of both the leading log and fixed
order calculations, in the next section.
Another source of corrections to W comes from terms

suppressed by ΛQCD/mb. Some of these modify W with-
out introducing new unknown hadronic matrix elements,

while others involve nonperturbative matrix elements of
higher-dimension nonlocal operators [6], which cannot
presently be computed. The mismatch of the powers of
mb in the two spectra gives rise to the order ΛQCD/mb

correction toW contained in Eq. (14), −2Pγ/mB. At the
same order, there are also corrections that come from ex-
panding the b quark fields in powers of ΛQCD/mb. These
effects are sensitive the Dirac structure of the current, so
do not cancel fromW . We can extract the full ΛQCD/mb

correction from Ref. [34], and find

W (ΛQCD/m) = −8Pγ − 2Λ

3mB
+ . . . . (24)

The corrections that depend on subleading shape func-
tions are also given in [34] and involve five unknown non-
perturbative functions, whose effects we do not attempt
to model here. Some of the O(αs) corrections to Eq. (24)
can be obtained by expanding the results in Sec. II to
higher order in p̂+ and x̄. We find that these are small
compared to the perturbative uncertainties inW at lead-
ing order in ΛQCD/mb.

IV. IMPLICATIONS AND DISCUSSIONS

To eliminate the charm background kinematically from
semileptonic B → Xuℓν̄ decays, one has to impose a cut
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FIG. 1: W (∆, Pγ) as a function of Pγ . At tree level W = 1, and the curves include different orders in the expansion: (a) the
O(αs) result; (b) all known O(α2

s) terms, Eq. (22) with c0 = 0; (c) the LL RGE resummed result; (d) the NLL RGE resummed
result, Eq. (17); (e) the O(α2

sβ0) result, Eq. (16) and (f) the NLL expression expanded to O(α2
s), Eq. (20).

P+ < m2
D/mB ≃ 0.66GeV. Then measurements of the

P+ spectrum in B → Xuℓν̄ and the Pγ spectrum in B →
Xsγ, together with the theoretical input ofW (∆, Pγ) will
allow a determination of |Vub| using Eq. (9).
In Fig. 1 we plot W (∆, Pγ) for ∆ = 0.66GeV,

αs(mb) = 0.22 and mb = 4.8GeV in different approxi-
mations. At tree level, W (∆, Pγ) = 1. Curve (a) is the
order αs result, while the result with all known α2

s contri-
butions is shown in curve (b) [i.e., Eq. (22), the BLM re-
sult plus the non-BLM coefficient of the double and single
logs]. The dashed black curves show the RGE resummed
results for µi =

√
mb ∆ ≃ 1.78GeV. The straight line (c)

is the LL result, whereas the long dashed curve (d) is the
NLL result in Eq. (17). The LL and NLL results use 1-
and 2-loop running for αs, respectively. Finally, the dot-
dashed curve (e) contains just the BLM terms at order
α2
s, Eq. (16), while the short dashed curve (f) contains

NLL expression expanded to order α2
s, Eq. (20).

The difference between the dashed (d) and (f) curves
shows that the terms in the NLL sum beyond O(α2

s) are
not negligible. However, the logs that are summed do
not dominate over other contributions in the perturba-
tion series; e.g., the difference between Eqs. (20) and (21)
is NNLL, but it is comparable to the non-BLM LL and
NLL terms at O(α2

s). Therefore, we view the fixed order
result, curve (b), as our best estimate of the perturbation
theory prediction of W . The difference of these curves
provides an estimate of the uncertainty related to higher
order uncalculated terms. In addition, the µi-dependence
of the NLL resummed result is larger using two-loop than
one-loop running for αs, also indicating that renormal-
ization group improved perturbation theory may not lead
to an improved expansion.
To assess the significance of these results for the

determination of |Vub| using Eq. (9), we integrated
these various expansions of W (∆, Pγ) against a simple

TABLE I: Weighted integral
∫ ∆

0
dPγ W (∆, Pγ) (dΓs/dPγ),

normalized to
∫ ∆

0
dPγ (dΓs/dPγ) for ∆ = 0.66GeV, taking

the simple parametrization (25) of the experimental photon
energy spectrum.

Tree O(αs) O(α2
sβ0) LL NLL all known O(α2

s)

1 1.10 1.19 1.10 1.22 1.18

parametrization of the experimentally measured B →
Xsγ spectrum [13]. For the optimal cut, ∆ = 0.66GeV,
the integral on the right-hand side of Eq. (9) normalized
to that integral at tree level (corresponding to W = 1)
is shown in Table I at order αs, α

2
sβ0, using the LL and

NLL RGE resummations, and all known O(α2
s) terms.

The simple parametrization

dΓs

dPγ

∣∣∣∣
exp.

∝ x(a−1)e−ax, x ≡ Pγ

Λ̃
, (25)

with Λ̃ ∼ 0.9GeV and a ∼ 6.1 provides a crude but,
for our purposes, sufficient fit to the data,2 as the ratios
in Table I are quite insensitive to the precise shape of

the spectrum. (Using the parameters Λ̃ ∼ 0.66GeV and
a ∼ 3.3, which is the shape function fit rather than the
photon spectrum [35], and so corresponds to a rather

2 A parameterization of the physical B → Xsγ spectrum is not
available, only the raw spectrum or fits to shape function pa-
rameters [35]. However, the shape function fit includes O(αs)
corrections differently than how they enter W . Thus, the num-
bers in Table I should be taken only as indicative of the size of
the corrections.
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different shape, only changes the entries in Table I to
1, 1.08, 1.15, 1.10, 1.18, 1.14, respectively. However, it

changes
∫ ∆

0 dPγ (dΓs/dPγ) by about a factor of two.)
The convergence of the result in Table I going from tree

level to O(αs) to O(α2
sβ0) is poor, and that going from

tree level to LL to NLL resummation is worse. This poor
behavior of the perturbation series may be related to the
fact that in the nonlocal OPE there are O(ΛQCD/mb)
nonperturbative corrections to Eq. (9) arising both from
the explicit factor of Λ in Eq. (24) as well as the sub-
leading shape functions, and so there is a renormalon
ambiguity in the perturbation series for W at this order.
The subleading twist terms in Eq. (24) give a −0.19

correction to the numbers in Table 1. (The “trivial” part
of this correction, −2Pγ/mB, that is due to the mismatch
of the two powers ofmb smeared in the two spectra, gives
numerically the same result.) While this is a calcula-
ble effect and not an uncertainty, there are incalculable
subleading shape functions that enter at the same or-
der, which can only be modelled. Thus, the perturbative
and nonperturbative uncertainties in this determination
of |Vub| are probably comparable.
Because the experimental photon spectrum is peaked

around Pγ ∼ 0.8GeV, the weighted integral (9) is dom-
inated by small values of ∆ − Pγ , increasing the im-
portance of the logarithmically enhanced terms in (21).
However, this numerically large logarithm is not summed
by the RGE, since it is not logarithms of (∆ − Pγ)/mb

but rather of µi/mb which are summed.
Had we not factored out m2

B/m
2
b in the definition of

W in Eq. (9), there would be an additional perturbative
factor of m2

b/m
2
b in W which, when expanded out, would

modify the expressions in Eqs. (16), H(a) in (18), (20),
(21), (22), and (24). If we define a weighting function
W ′(∆, Pγ) in this way, then instead of Eq. (22) we obtain

W ′(α2
s
) =

CFα
2
s(mb)

(4π)2

[
(0.83β0 + 3.41) ln2

mb

∆− Pγ
(26)

+ (4.67β0 − 1.35) ln
mb

∆− Pγ
+ (32.3β0 + c′0)

]
,

and the non-logarithmic BLM term is considerably larger
than either of the logarithmic terms. In this case the
numerical results in Table I would read 1, 1.29, 1.51,
1.10, 1.43, 1.53, respectively, and we would have to
assign a much larger perturbative uncertainty to W ′

than to W . However, this is due to the bad perturba-
tive behavior of m2

b/m
2
b , and not of the spectra them-

selves. In this case the analog of Eq. (24), W ′(ΛQCD/m) =
−8(Pγ −Λ)/(3mB) + . . ., gives a −0.01 correction to the
figures in the previous sentence. It is interesting to check
the consistency of the results. Combining all known order
α2
s and ΛQCD/mb terms, we obtain

m2
B

∫ ∆

0
dPγ W (∆, Pγ) (dΓ77/dPγ)

∫∆

0
dPγ W ′(∆, Pγ) (dΓ77/dPγ)

≃ (4.27GeV)2 ,

(27)

quite consistently with the physical value of mb(mb). In
comparison, Eq. (27) with the NLL result for W and W ′

gives (4.50GeV)2. We learn that if we keep all two-loop
corrections, the physical result is quite independent of
whether we calculate it in terms of W or W ′, while the
same cannot be said about the NLL resummation result.

The measured B → Xsγ photon spectrum together
with W (∆, Pγ) given by the sum of Eqs. (22) and (24)

determines
∫∆

0
dPγ W (∆, Pγ) (dΓs/dPγ), which in turn

determines |Vub| from a measurement of the partially in-
tegrated P+ spectrum in B → Xuℓν̄ using Eq. (9). The
theoretical uncertainty of |Vub| from perturbation theory
alone using this method is half the error of the results
in Table I. However, because of the poor behavior of
the perturbation series, the full two-loop calculation of
W (∆, Pγ) would be desirable. Furthermore, the pertur-
bative series is likely to improve if the unknown matrix
elements at O(ΛQCD/mb) are expressed in terms of phys-
ical quantities, so that the leading renormalon ambiguity
in W is cancelled. In addition, and probably more im-
portantly, effects of operators other than O7 need to be
included, in particular that of O2 and O8 may be im-
portant. In the NLL resummed result, including these is
straightforward using Eq. (4) in [32]. However, for the
BLM result one needs to combine the analytically known
virtual contributions [30] with the bremsstrahlung con-
tributions [31], which are only known numerically for the
O2 operator. Work in this direction is in progress.

In summary, we calculated the order α2
sβ0 corrections

to the P+ spectrum in B → Xuℓν̄ decay and studied the
uncertainties in extracting |Vub| using a measurement of
the Pγ spectrum in B → Xsγ. We showed that the
factor of m2

b/m
2
b in W (∆, Pγ) at lowest order naturally

becomes m2
B/m

2
b when subleading effects are included,

and results in much reduced perturbative corrections. We
found that the NLL RGE resummation is of limited use,
because the logs that it sums do not dominate over the
non-logarithmic terms. This may have implications for
the phenomenological usefulness of other applications of
RGE resummations in inclusive heavy to light decays.
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