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The hot non-perturbative gluon plasma is an almost ideal colored liquid
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We study properties of a gluon plasma above the critical temperature Tc in a generalized quasi-
particle approach with a Lorentz spectral function. The model parameters are determined by a
fit of the entropy s to lattice QCD data. The effective degrees of freedom are found to be rather
heavy and of a sizeable width. With the spectral width being closely related to the interaction rate,
we find a large effective cross section, which is comparable to the typical distance squared of the
quasiparticles. This suggests that the system should be viewed as a liquid as also indicated by an
estimate of the plasma parameter Γ. Furthermore, within the quasiparticle approach we find a very
low viscosity to entropy ratio, η/s ∼ 0.2 for T > 1.05Tc, supporting the recent conjecture of an
almost ideal quark-gluon liquid seen at RHIC.

PACS numbers: 12.38Mh, 25.75.-q

The formation of a quark-gluon plasma (QGP) and its
transition to interacting hadronic matter – as occurred
in the early universe – has motivated a large community
for more than two decades (cf. [1] and Refs. therein).
However, the complexity of the dynamics in ultrarela-
tivistic nucleus-nucleus collisions – producing high den-
sity matter for short time scales – has not been fully un-
ravelled and many properties of the new phase are still
under debate [2]. In central Au+Au collisions energy
densities are reached at the Relativistic Heavy Ion col-
lider (RHIC) that are far above the critical energy den-
sity ec ∼ 1GeV/fm3 for a phase transition to a QGP as
expected from lattice QCD calculations [3]. A strong ra-
dial expansion and elliptic flow of hadrons, furthermore,
point towards an early generation of pressure and a high
interaction rate in the ‘new phase’ [4].

The latter observables are severely underestimated in
conventional string/hadron transport models [5–7], how-
ever hydrodynamical approaches do quite well in describ-
ing (at midrapidity) the collective properties of the sys-
tem for low and moderate transverse momenta [8]. The
picture thus emerges that the medium created in ultra-
relativistic nucleus-nucleus collisions for a couple of fm/c
interacts more strongly than hadron/string matter, and
it exhibits collective properties that resemble those of a
liquid of low shear viscosity η [9]. In fact, viscous hy-
drodynamical calculations indicate a very low viscosity
to entropy ratio, η/s ≈ 0.1...0.2 [10]. This picture is
substantially different from the expectation of a weakly
coupled colored plasma. There is a variety of models that
address the properties of this ‘new matter’. It might be
some kind of i) ‘epoxy’ [11], i.e. a system of resonant or
bound gluonic states with large scattering length, ii) a
system of chirally restored mesons, instanton molecules
or equivalently giant collective modes [12], iii) a system
of colored bound states of quarks q and gluons g, i.e. gq,
qq, gg etc. [13].

In this letter we will provide quantitative arguments
that strongly interacting matter in a certain tempera-
ture range above Tc is in a liquid phase. Our arguments
are based on a generalized quasiparticle description of

the system taking into account the spectral width γ [14]
in addition to the quasiparticle mass [15–19]. The model
parameters are adjusted to non-perturbative results of
lattice calculations. Since the width is closely related to
the interaction rate we can then estimate relevant trans-
port properties, such as the effective cross section and
the shear viscosity, for temperatures near Tc. Since lat-
tice ‘data’ are more precise for quenched QCD we focus
here on pure gluonic systems. We expect, however, simi-
lar results for full QCD as argued below. The quantities
we address are dominated by ‘hard’ momenta of the or-
der of the temperature T . Accordingly, the quasiparticle
properties we are interested in are related to the gluon
propagator at hard momentum scales. In this line we
take into account dg = 2(N2

c −1) = 16 transverse gluons,
and neglect Landau-damping contributions as well as the
collective longitudinal modes whose spectral strength is
suppressed for larger momenta [15, 16].
In order to adjust the quasiparticle properties we

first consider thermodynamic bulk properties within the
Φ-derivable formalism [20], which yields consistent re-
summed approximations [21]. To leading-loop order,
which is expedient for large coupling as argued in [14],
the entropy follows directly from the quasiparticle prop-
agator, cf. Ref. [15],

sdqp = −dg

∫

dω

2π

d3p

(2π)3
∂n

∂T

(

Im ln(−∆−1) + ImΠRe∆
)

,

(1)
where n(ω) = (exp(ω/T )− 1)−1 denotes the Bose distri-
bution function. We note that in the context of Fermi
liquid theory a corresponding approximation is called the
dynamical quasiparticle (dqp) entropy [22]. In principle,
the resummed propagator ∆ = (ω2 − p

2 −Π)−1 is to be
calculated from a 1-loop Schwinger-Dyson equation. To
proceed at this point, however, we use a physically mo-
tivated Ansatz, assuming a Lorentzian spectral function,

ρ(ω) =
γ

E

(

1

(ω − E)2 + γ2
−

1

(ω + E)2 + γ2

)

. (2)

With the convention E2(p) = p
2 +M2 − γ2, the param-
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eters M2 and γ are directly related to the real and imag-
inary parts of the corresponding (retarded) self-energy,
Π = M2 − 2iγω. At this point we emphasize that the
entropy functional (1) is not restricted to ‘strict’ quasi-
particles, i.e., γ need not to be small compared to the
typical energy. Following the models [18] we parame-
terize the quasiparticle mass in the gauge invariant and
momentum independent asymptotic form

M2 =
Nc

6
g2T 2 , (3)

with Nc = 3 and the running coupling

g2(T ) =
48π2

11Nc ln(λ(T − Ts)/Tc)2
, (4)

which permits an enhancement near Tc [18, 23]. Likewise,
we parameterize the width in the form γ ∼ g2T ln g−1 [24]
or, equivalently, in terms of M [14],

γ =
3

4π

M2

T 2
T ln

c

(M/T )2
, (5)

where c is related to the magnetic sector of QCD. We
note that M and γ, as parameterizations of the complex-
valued self-energy Π at the relevant large momenta near
the ‘mass shell’, are not related by a dispersion relation.
In the upper part of Fig. 1 we compare the lattice

results [25] to the quasiparticle entropy; the fitted pa-
rameters are λ = 2.42, Ts = 0.46 and c = 14.4. We
also display the interaction measure e− 3p (the pressure
p and the energy density e are evaluated by thermody-
namic relations, cf. [18]), which is particularly sensitive
to interaction effects. We emphasize that the remarkable
agreement with the lattice data is non-trivial because the
functional relation between γ and M is fixed, cf. (5).
The adjusted quasiparticle mass and width are dis-

played in the lower part of Fig. 1. The quasiparticles
are rather heavy in line with direct lattice calculations
[26]. For T ∼> 1.05Tc the width is sizeable, reaching more
than 50% of the mass in a large temperature range. The
picture of the strongly interacting plasma is, thus, a sys-
tem of massive excitations with a large collisional width
or short mean-free path – opposite to the original concept
of narrow quasiparticles. Near Tc, however, the width is
close to zero. Although we have parameterized γ in the
‘perturbative’ form (5) we expect that the inferred tem-
perature dependence is generic: near Tc the width has to
be small due to the small entropy at T ≈ Tc [14]. This
is in line with a critical slowing down near a phase tran-
sition. Away from Tc one has to expect a large width
due to the strong coupling and increasing reaction rates.
The physical processes contributing to the width are then
gg ↔ gg scatterings as well as splitting and fusion reac-
tions gg ↔ g or gg ↔ ggg etc. Summing up the elastic
and inelastic channel (and neglecting Bose-enhancement
for the final states) we end up with the total binary re-
action rate

dNcoll

dV dt
= T̃rP1

T̃rP2
2
√

λ(s, P 2
1 , P

2
2 ) σtot(P1, P2)
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FIG. 1: The entropy s and the interaction measure w = e−3p,
in units of the Stefan-Boltzmann limits s0 and p0, from our
quasiparticle model in comparison to lattice calculations [25].
The lower part shows the adjusted mass M and width γ.

= 〈σ〉 T̃rP1
T̃rP2

2
√

λ(s, P 2
1 , P

2
2 ) =: 〈σ〉 I2, (6)

where λ(x, y, z) = (x− y− z)2 − 4yz and s = (P1 +P2)
2.

In (6) we have introduced the shorthand notation

T̃rP · · · = dg

∫

dω

2π

d3p

(2π)3
2ω ρ(ω)Θ(ω)Θ(P 2)n(ω) · · ·

(7)
for the thermally weighted trace over the quasiparticle
degrees of freedom. The Θ(P 2) function ensures that
only time-like reaction processes are taken into account
in Eq. (6). The interaction rate, on the other hand, is
also related to the imaginary part of the self-energy; with
a similar factorization as in Eq. (6), dNcoll/dV dt = γN+.

Here the particle density N+ = T̃r 1 is the time-like part
of the integrated distribution function. The resulting ef-
fective total cross section,

〈σ〉 = γN+/I2 , (8)

is displayed in the top part of Fig. 2 as a function of T (us-
ing Tc = 0.26GeV for quenched QCD). It rises from ≈ 0
at T = Tc to about 20mb at T ≈ 1.1Tc, and drops again
at higher temperatures. We note that similarly large val-
ues for parton cross sections have been used in the phe-
nomenological studies in Ref. [27]. These cross sections
are larger by an order of magnitude than typical pertur-
bative estimates for gg scattering (cf. the hatched band
in the top part of Fig. 2) where the Debye mass mDebye is
used as an infrared cutoff. However, for strongly coupled
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plasmas the Debye mass may not be the proper regulator
as pointed out by Thoma [28].
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FIG. 2: Upper part: The effective total cross section 〈σ〉,
Eq. (8), in comparison to the perturbative estimate σpQCD =
9πα2/2m2

Debye. 2nd part from top: The percolation measure
κ, Eq. (9); the critical value is κc = 1.18 [29]. 3rd part from
top: The plasma parameter Γ, Eq. (10). Bottom part: The
ratio of shear viscosity to entropy in our quasiparticle model
in comparison to the lattice calculation [36] as well as to the
next-to-leading log (nll) result [31]. Note that η/s ≈ 0.1 . . . 0.2
was estimated from hydrodynamical fits to RHIC data [10].

A question of particular interest is the phase structure
of the strongly interacting system, which in Refs. [9, 28]
was surmised a liquid. In our quasiparticle approach we
can address this question quantitatively by comparing
the effective cross section to the typical distance squared

of the quasiparticles to obtain information about critical
clustering (percolation) [29]. If

κ = 〈σ〉N
2/3
+ (9)

is lower than the critical percolation parameter κc ≈ 1.18
[29] the system is in the kinetic (dilute gas) regime while
for κ > κc percolation sets in and multi-particle interac-
tions take over as characteristic for a liquid or solid with
attractive interactions. As shown in the second part of
Fig. 2, κ is larger than κc for the temperature range
1.05 . . .4Tc. This suggests that the QCD plasma, up to
rather large energy densities, is in a liquid/solid phase.
In order to distinguish a liquid from, possibly, a solid

phase we consider the plasma parameter [28]. Assuming
equal (color) magnetic and electric energies we estimate

Γ = 2
Ncg

2

4πN−1/3

1

〈Tkin〉
, (10)

with N being the full particle density (including the
space-like contributions), and the average kinetic energy

〈Tkin〉 = N−1
+ T̃r

(

ω −
√

p2
)

. (11)

Empirically it is well established for various attractive
interactions that systems with 1 ∼< Γ ∼< 100 are in a liquid
phase [30]. Since the ‘critical’ values may slightly vary for
different systems we emphasize for the present case that
the criteria Γc = 1 for a gas-liquid phase transition and
κ = κc for percolation are met at the same temperature,
cf. Fig. 2. Thus our results suggest that the gluon plasma
is a liquid for temperatures between Tc and 4Tc .
An important property of this gluon liquid is its shear

viscosity η. For weak coupling, it has been calculated in a
transport approach from a Boltzmann equation to next-
to-leading log order [31], ηnll ∼ T 3/(g4 ln g−1). However,
for strongly coupled systems such an approach (assum-
ing narrow quasiparticles) might be questionable and the
Kubo formalism more appropriate instead [32]. Here the
viscosity is evaluated from the slope of the Fourier trans-
form of the spectral function 〈[Tij(x), Tij(y)]〉 for ω → 0,
where Tij denotes the traceless part of the spatial stress
tensor. At 1-loop order (and neglecting the longitudinal
contributions) this corresponds directly to our quasipar-
ticle picture which yields, cf. [33],

ηdqp = −
dg
60

∫

dω

2π

d3p

(2π)3
∂n

∂ω
ρ2(ω)

[

7ω4 − 10ω2
p
2 + 7p4

]

.

(12)
Note that in the perturbative limit Eq. (12) (∼ T 4/γ ∼
T 3/(g2 ln g−1)) does not approach ηnll ∼ T 3/(g4 ln g−1).
This comes about as follows: The shear viscosity η is in-
versely proportional to the transport cross section σtrans

in which the total scattering rate is weighted by (1−cos θ)
with θ denoting the scattering angle [34]. In the weak
coupling limit the gluon scattering is strongly forward
peaked with a low gain in transverse momentum. This
implies that many scatterings, corresponding to ladder



4

diagrams in the Kubo formalism, have to be resummed
in order to achieve a significant transverse momentum
deflection and transport cross section. However, in the
case of strong coupling the transport mean-free-path
λtrans ∼ 1/(σtransN+) is expected to become compa-
rable to the total mean-free-path λ ∼ 1/(σN+), as taken
into account by Eq. (12). Thus, while a resummation of
ladder diagrams is beyond the scope of the quasiparti-
cle model, it should yield a useful approximation near Tc

[35].
In the bottom part of Fig. 2 we display the ratio of

the shear viscosity to entropy. Although the lattice re-
sults [36] still have large uncertainties, they are distinctly
smaller than the (extrapolation of the) next-to-leading
log result [31]. For T ∼> 1.05Tc our quasiparticle result is
almost constant, ηdqp/s ≈ 0.2 – in good agreement with
the estimate η/s ≈ 0.1...0.2 from hydrodynamical fits to
RHIC data [10]. The fast increase near Tc, which is re-
lated to the characteristic temperature dependence of γ
and thus also of 〈σ〉, can be seen as a precursor of the
phase transition. We mention that the conjectured lower
limit [37], η/s ≥ 1/(4π), is approximately obtained for
T ≈ 1.1Tc when calculating η in a non-relativistic limit of
massive quasiparticles and assuming isotropic transport
cross sections [35]. Since σtrans ≤ σ this estimate should
give a lower bound for the viscosity. In conclusion, the
quasiparticle model gives the picture of an almost ideal

gluon liquid in the relevant temperature range.

The extension of the quasiparticle approach to the
physical case (full QCD) is straightforward; besides a
change of Tc, quarks and gluons have the same quasiparti-
cle properties up to group factors [38]. The consequences
for ultra-relativistic heavy-ion collisions at RHIC become
immediately clear: The large cross sections imply a rapid
thermalization of the initial configuration once the initial
hard scatterings have produced a high density of mini-
jets. The latter ‘pre-equilibrium’ processes happen on a
scale of tpre = 2RA/γ ≤ 0.14 fm/c for top RHIC energies
such that the equilibration time is essentially governed by
the gg ↔ g, gg ↔ gg, gg ↔ ggg and gg ↔ gggg processes
as also suggested in [39]. After approximate thermaliza-
tion – of order 0.5 to 1 fm/c – the system behaves like an
almost ideal massive colored parton liquid and exhibits a
large pressure. This early pressure is responsible for the
transverse flow of hadrons, and the large cross sections
result in an almost complete suppression of far-side jets
in central collisions.
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