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Pulsar kicks via spin-1 color superconductivity
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We propose a new neutrino propulsion mechanism for neutron stars which can lead to strong
velocity kicks, needed to explain the observed bimodal velocity distribution of pulsars. The spatial
asymmetry in the neutrino emission is naturally provided by a stellar core containing spin-1 color-
superconducting quark matter in the A phase. The neutrino propulsion mechanism switches on when
the stellar core temperature drops below the transition temperature of this phase.

Introduction.—The first pulsar was discovered more
than 37 years ago [1]. Since then, pulsars remain among
the most interesting celestial objects in our Galaxy. Their
observation allows to test experimentally the existence of
the gravitational radiation as predicted by general rela-
tivity [2]. The recent discovery of a double-pulsar system
[3] is likely to further strengthen the status of pulsars
as an astrophysical laboratory for testing general relativ-
ity. In this Letter, we suggest that the physics of pulsars
may also serve as the ultimate laboratory for testing the
theory of strong interactions, quantum chromodynamics
(QCD), in the regime of large baryon density.

Matter at large baryon density is expected to be de-
confined and color-superconducting (for reviews see, e.g.,
Ref. [4]). Color-superconducting quark matter could exist
inside neutron stars, whose central densities are highest
in Nature. Therefore, it is important to study the physi-
cal implications of such a possibility in detail. At present,
this is not easy because our current knowledge regarding
the ground state of neutral, β-equilibrated dense matter
is very limited [5, 6]. Many color superconducting phases
were proposed [7, 8, 9, 10, 11, 12], but it is not clear
which of them can be realized inside stars.

It has been known for a long time that typical spatial
velocities of pulsars are an order of magnitude larger than
those of their progenitors [13, 14]. Taking into account
the violent conditions at the pulsar birth, this may not be
so surprising. Even a small asymmetry in the supernova
explosion may result in a kick velocity of several hundred
km s−1 [15]. However, the bimodal velocity distribution
of pulsars [16, 17], which is unlikely to result from a sin-
gle physical mechanism, might be more surprising. If one
associates the low-velocity component (. 100 km s−1)
with asymmetric supernova explosions, then what is the
origin of the high-velocity component (& 500 km s−1)?
Several mechanisms were proposed [18, 19, 20], but the
issue does not seem to be settled. For short reviews see,
for example, Ref. [21].

In this Letter, we propose a new neutrino propulsion
mechanism, resulting from a color superconductor in the
transverse A phase [22]. In this phase, quarks of the same
flavor form Cooper pairs with total spin one. The neu-

trino emission from this phase, dominated by direct Urca-
type processes, is not symmetric in space. This emission,
as we shall see, provides a natural mechanism to power
strong, e.g., of order 1000 km s−1, velocity kicks for neu-
tron stars, which could explain the high-velocity com-
ponent in the pulsar distribution [16, 17]. Unlike most
other mechanisms, this one turns on not immediately af-
ter the supernova explosion, but after the temperature of
the stellar core drops below the critical temperature of
the A phase. A distinctive prediction of this mechanism
is the alignment of the kick velocity direction with the
rotational axis.
Neutrino emission.—Let us start by outlining the main

steps in the derivation of a general expression for the neu-
trino emissivity in spin-1 color superconducting phases.
We use the Kadanoff-Baym formalism [23, 24] to de-
rive the following differential expression for the emissivity
[25]:

dǫν
dpνdΩν

=
G2

F

8(2π)6

∫

pedpe

∫

dΩep
2
ν nB(pν − pe + µe)

× nF (pe − µe)Lλσ(Pe, Pν) ImΠλσ
R (δPe − Pν),

(1)

where GF is the Fermi coupling constant, µe is the elec-
tron chemical potential, and δPλ

e ≡ Pλ
e − δλ0µe. Here,

particle four-momenta are denoted by capital Latin let-
ters, while the absolute values of the three-momenta are
denoted by lowercase letters. The metric tensor is gλσ =
diag(1,−1,−1,−1). The Bose and the Fermi distribution
functions are denoted by nB(ω) ≡ [exp(ω/T )− 1]−1 and
nF (ω) ≡ [exp(ω/T ) + 1]−1, respectively. The lepton ten-
sor Lλσ(Pe, Pν) is defined as follows:

Lλσ(Pe, Pν) = Tr
[

P κ
e γκγσ(1− γ5)P ρ

ν γργλ(1− γ5)
]

.
(2)

Finally, the last factor in the integrand on the right hand
side of Eq. (1) is the imaginary part of the retarded po-
larization tensor of the W -boson,

Πλσ(Q) =
T

2

∑

n

∫

d3k

(2π)3
Tr

[

Γλ
−S(K)Γσ

+S(K +Q)
]

,

(3)
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with the trace running over flavor, color, Dirac and
Nambu-Gorkov indices. The quark propagator S(K) is
diagonal in flavor space, and its components have the
following Nambu-Gorkov structure:

Sf =

(

G+
f (K) Ξ−

f (K)

Ξ+
f (K) G−

f (K)

)

, for f = u, d. (4)

We consider the ultrarelativistic limit. The explicit color
and Dirac structure of G±

f and Ξ±
f can be found in

Ref. [22]. Here, we note only that the poles of the quark
propagators appear at k0 = k + µf (antiquarks) and at

k0 = ǫk,r,f ≡
√

(k − µf )2 + λk,r|φf |2, r = 1, 2, 3, (5)

where φf is the gap parameter, and the functions λk,r

are specified by the choice of the phase.

The order parameter of the A phase has a special direc-
tion in color space: quarks of one color do not pair. Also,
it has a special direction in momentum space, say, the
z-direction. If θk denotes the angle between the three-
momentum of a quasiparticle and the z-axis, the three
low-energy quasiparticle modes in the transverse A phase
are defined by λk,1 = (1+| cos θk|)

2, λk,2 = (1−| cos θk|)
2,

and λk,3 = 0. Here, “transverse” refers to the fact that
quarks of opposite chirality form Cooper pairs.

The explicit expressions of the vertices in Eq. (3) read

Γλ
± =

(

γλ(1− γ5)τ± 0
0 −γλ(1 + γ5)τ∓

)

, (6)

where the flavor matrix τ± ≡ (τ1 ± iτ2)/2 is constructed
from Pauli matrices.

By substituting the quark propagators (4) and the ver-
tices (6) into Eq. (3), we calculate the imaginary part of
the retarded polarization tensor. Then, by making use of
the result, we derive an expression for the emissivity in
the following approximate form [25]:

ǫtot ≈ 2
(

ǫ(11)ν + ǫ(22)ν + ǫ(33)ν

)

≈
457

630

[

2

3
G

(

φu

T
,
φd

T

)

+
1

3

]

αsG
2
FµeµuµdT

6,(7)

where ǫ
(rr)
ν is the partial contribution involving the rth

type quasiparticle modes, see Eq. (5). The factor 2 comes
from taking into account both the neutrino and the anti-
neutrino emissivities. In the final result, the contribution

of the ungapped modes ǫ
(33)
ν is, up to a factor 1/3, the

same as in the normal phase of quark matter [26, 27].
The contribution of the other two modes is suppressed
by the following function:

G (ϕu, ϕd) ≈
2520

457π6

∫ ∞

0

dvv3
∫ 1

−1

dξf(v, ξ), (8)

where

f(v, ξ) =
∑

e1,e2=±

∞
∫

0

∞
∫

0

(

ev+e1 ǫ̃u−e2 ǫ̃d + 1
)−1

dxudxd

(e−e1 ǫ̃u + 1) (ee2 ǫ̃d + 1)
,

(9)

and ǫ̃f =
√

x2
f + (1 + ξ)2ϕ2

f with f = u, d. Note that

0 ≤ G (ϕu, ϕd) ≤ 1 and G(0, 0) = 1.
In passing, we note that the pair breaking processes

[28] do not play any significant role in the case of spin-1
color-superconducting quark matter under consideration.
The corresponding contribution to the emissivity [29] is
parametrically suppressed by factor T/µe ∼ 10−3.
From Eq. (7), we see that the (anti-)neutrino emissivity

in the A phase differs only by a factor of order 1 from the
corresponding result in the normal phase of quark matter
[26, 27]. Therefore, the A phase should have qualitatively
the same effect on cooling of stars as the normal phase.
Nevertheless, the neutrino emission from the A phase

is very unusual. It is not symmetric with respect to re-
versing the direction of the z-axis. To quantify the asym-
metry, we calculate the value of the z-component of the
momentum carried away by neutrinos per unit volume
of quark matter, per unit time. This is obtained by re-
placing one power of pν on the right hand side of Eq. (1)
by pν cos θpν

. Taking into account that the neutrino and
the antineutrino emissions give the same contributions,
we arrive at the final result [25]

dP
(tot)
z

dV dt
≈

2

3
H

(

φu

T
,
φd

T

)

457

630
αsG

2
FµeµuµdT

6, (10)

where

H (ϕu, ϕd) ≈ −
840

457π6

∫ ∞

0

dvv3
∫ 1

−1

dξξf(v, ξ). (11)

Note that H(0, 0) = 0 which is consistent with the fact
that the momentum kick is vanishing in the normal phase
of quark matter. The numerical result for the function H
at equal values of its two arguments is well approximated
by the following expression:

H(ϕ, ϕ) ≈
5

∑

n=1

hn

[1 + (r0ϕ)2]
n/2

, (12)

with h1 = 0.3068, h2 = −0.1977, h3 = −0.7838, h4 =
1.0286, h5 = −0.3539, and r0 = eγ+ζ̄/π ≈ 0.8125 is
the ratio of the critical temperature to the value of the
gap at T = 0 in the A phase, i.e., r0 = Tc/φ0 which
is expressed in terms of the Euler constant γ ≈ 0.577
and ζ̄ = ln 2 − 1/3 [22]. Note that

∑5
n=1 hn = 0. The

representation in Eq. (12) is particularly convenient when
the following simplified temperature dependence for the
gap parameter is used: φ(T ) = φ0

√

1− (T/Tc)2. In this
case, the function H(T ) becomes a polynomial: H(T ) =
∑5

n=1 hn(T/Tc)
n for T < Tc, and H(T ) = 0 for T > Tc.
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The physical reason for the breakdown of the reflection
symmetry lies in the pairing pattern of the transverse A
phase. Quasiquarks of the first branch, r = 1, have helic-
ity +1 if the projection of their momentum onto the z-
axis is negative, cos θk < 0, and helicity −1 if cos θk > 0.
Quasiquarks of the second branch, r = 2, have oppo-
site helicities. Only left-handed quarks (in the ultrarel-
ativistic limit, quarks with negative helicity) participate
in the Urca processes. Thus, the quasiquarks of the first
(second) branch contribute only if their momenta are in
the upper (lower) half-space. Taking this into account,
the effective branch relevant for the emission has gap
φeff ∼ 1+cos θk, which discriminates between +z and −z
directions, see Fig. 1. Since neutrinos are emitted prefer-
ably in the direction opposite to the quark momenta, this
asymmetry manifests itself in the neutrino emission.

Calculation of the velocity kick.—In order to make a
simple estimate of the velocity kick due to the neutrino
emission from a color-superconducting quark matter core
in the A phase, we use the following model time de-
pendence of the core temperature (see, e.g., Ref. [27]):
T (t) = T0(t0/t)

1/4. This has the power dependence which
is characteristic for bulk matter cooling by neutrino emis-
sion with ǫν ∼ T 6, see Eq. (7), provided the specific heat
of matter is cV ∼ T . Here, we assume that Tc < T0, i.e.,
the system is too hot for spin-1 pairing initially, and then
it cools through the transition point.

The velocity kick for a star of mass 1.4M⊙ with the
quark core of radius Rc is given by the expression:

δv ≡
∆P

(tot)
z

1.4M⊙

=
457αs

945
G2

Fµeµuµd
4π

3

R3
c

1.4M⊙

T 4
0 T

2
c t0

× θ(t− tc)

5
∑

n=1

4hn

2 + n

[

1−

(

tc
t

)(2+n)/4
]

, (13)

where we used the approximate expression in Eq. (12),
as well as a simplified temperature dependence of the
gap parameters, φu(T ) = φd(T ) = φ0

√

1− (T/Tc)2. The
notation tc ≡ t0(T0/Tc)

4 stands for the time when the
temperature of the quark core drops below the critical
value.

z

+1

−1 +1

−1 −1
−1

FIG. 1: Gap functions for the first (left) and the second (mid-
dle) excitation branch with specified helicities of quasiparti-
cles in the upper and the lower half-spaces. The “effective”
gap relevant for the neutrino emission is shown on the right.

From Eq. (13), we can also derive the expression for
the maximum velocity kick (t = ∞):

δvmax ≈ 0.033αsG
2
Fµeµuµd

4π

3

R3
c

1.4M⊙

T 4
0 T

2
c t0. (14)

The results for the maximum velocity kicks are pre-
sented graphically in Fig. 2. To make the plot, we take
αs = 1, and use the initial condition: T0 = 100 keV at
t0 = 100 yr. Also, we use the following values of the
chemical potentials: µu = 400 MeV, µd = 500 MeV,
µe = 100 MeV.
When the stellar age t is finite, all curves in Fig. 2 shift

to the right. Numerically, the value of the shift is 10 keV
at t = 106 yr and about 30 keV at t = 104 yr. This is easy
to understand: at t < ∞, the step function in Eq. (13)
cuts out a range of low values of critical temperatures,
Tc < T0(t0/t)

1/4, which are not yet accessible at time t.
Other than this shift, the shape of the curves remains
similar even at t as low as 103 yr.
Discussion.—The main observation of this Letter

is that the neutrino emission from the spin-1 color-
superconducting transverse A phase (unlike from other
spin-1 color-superconducting phases [25]) is not symmet-
ric with respect to reversing one spatial direction.
Therefore, we propose a hypothesis according to which

the inner cores of some (hybrid) neutron stars are made
of the A phase. The neutrino emission from such stars
could generate strong velocity kicks, needed to explain
the observed bimodal velocity distribution of pulsars
[16, 17]. Its bimodal structure results from an overlap
of two distributions: one describing “normal” neutron
stars, and the other describing hybrid stars with color-
superconducting quark cores in the A phase.
The above hypothesis has several specific (and, thus,

falsifiable) predictions, which are directly related to the
nature of the A phase. Let us start by discussing the
direction of the kick velocity. As should be clear from our
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FIG. 2: The dependence of the maximum velocity kick of a
neutron star versus the value of the critical temperature of
the spin-1 color superconducting phase transition. Results for
several values of the quark core radius are shown.
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analysis, this is aligned with the direction spontaneously
picked by the spin-1 condensate. In the case of an infinite
isotropic medium, this direction can be arbitrary. Inside
a rotating and magnetized star, however, the degeneracy
with respect to the orientation is likely to be removed
because of a nonvanishing interaction with the angular
momentum and/or with the magnetic field. Therefore,
the kick velocity averaged over time should be parallel
to the rotational axis. The observational data seems to
favor this possibility [30].

The proposed neutrino propulsion mechanism also pre-
dicts a correlation between the velocity distribution and
the age of young neutron stars. This has not been seen
in the observational data yet [16]. Most likely, however,
this correlation is hard to detect because it takes typi-
cally less than 104 yr for a star to accumulate almost all
of the maximum velocity kick. The future high statistics
studies of young neutron stars may resolve the issue.

Along with the advantages of the proposed mechanism,
it might be also appropriate to mention several potential
difficulties. One of them is a rigorous justification that
the spin-1 color-superconducting A phase is the ground
state of dense quark matter inside a star. In the case
of an infinite isotropic medium, it has been shown that
the color-spin locked phase is the favored spin-1 phase at
asymptotically large density [11, 22]. We could only spec-
ulate that this may change when the density is realistic,
and the rotation and the magnetic field are accounted
for. The other potential difficulty is related to fast cool-
ing of the A phase by direct Urca processes, which might
not be compatible with the observational data [31].

The mechanism, proposed here, may well have other
important implications that we did not discuss in this
Letter. We hope, however, that they will be addressed in
the future studies, providing much stronger tests for the
hypothesis of the hybrid stars accelerated by the asym-
metric neutrino emission from the A phase. If it passes
the tests, the observational data from pulsars could shed
light on some details of the QCD phase diagram. Thus,
the pulsars should be viewed not only as a unique labora-
tory for testing the theory of general relativity, but also
the ultimate laboratory for testing the theory of QCD.
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Erratum: Pulsar kicks via spin-1 color superconductivity
[Phys. Rev. Lett. 94, 211101 (2005)]

Andreas Schmitt, Igor A. Shovkovy, and Qun Wang
(Received 15 August 2005; Published 6 October 2005)

The model time dependence of the temperature,

T (t) = T0

(

t0
t

)1/4

, (1)

which was used in our calculation, is unphysical. As a result, the estimate of the kick velocities due to spin-one color
superconductivity was wrong.
The correct time dependence is approximately given by

T (t) = T0
τ1/4

(t− t0 + τ)
1/4

, (2)

which is the same as for normal quark matter. This time dependence is obtained by integrating the energy balance
equation, ǫν = −cV dT/dt, in which an approximate analytical expression for the specific heat of quark matter,
cV = (µ2

u + µ2
d)T (see, for example, Ref. [1]) and Iwamoto’s analytical expression for the neutrino emissivity ǫν [2]

were used. This is justified for the long-term stellar cooling after the thermal relaxation epoch is completed (t & 102 yr)
and before the surface cooling by photons starts to dominate (t . 105 yr), e.g., see Ref. [3]. In the above expression,
τ is defined by

τ ≡
315

914

µ2
u + µ2

d

αs G2
F µe µu µd

1

T 4
0

≈ 10−5 yr. (3)

Taking this into account, Eqs. (13) and (14) in our Letter should be replaced by

δv ≡
∆P

(tot)
z

1.4M⊙

=
457αs

945
G2

Fµeµuµd
4π

3

R3
c

1.4M⊙

T 4
0 T 2

c τ θ(t− tc)

5
∑

n=1

4hn

2 + n

[

1−

(

tc − t0 + τ

t− t0 + τ

)(2+n)/4
]

, (4)

and

δvmax ≈ 0.033αsG
2
Fµeµuµd

4π

3

R3
c

1.4M⊙

T 4
0 T 2

c τ, (5)

respectively. Here tc ≡ τ(T 4
0 /T

4
c − 1) + t0 is the time when the temperature is equal to the critical value.

The revised expression for δvmax differs by a factor τ/t0 ≈ 10−7 from the old one. Consequently, the predicted kick
velocities become extremely small. For example, instead of velocities of the order of δvmax ∼ 1000 km/s, one gets
δvmax ∼ 10−4 km/s.
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