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We study the electromagnetic properties of a system that consists of an electron background and
a neutrino gas that may be moving or at rest, as a whole, relative to the background. The photon
self-energy for this system is characterized by the usual transverse and longitudinal polarization
functions, and two additional ones which are the focus of our calculations, that give rise to birefrin-
gence and anisotropic effects in the photon dispersion relations. Expressions for them are obtained,
which depend on the neutrino number densities and involve momentum integrals over the electron
distribution functions, and are valid for any value of the photon momentum and general conditions
of the electron gas. Those expressions are evaluated explicitly for several special cases and approxi-
mations which are generally useful in astrophysical and cosmological settings. Besides studying the
photon dispersion relations, we consider the macroscopic electrodynamic equations for this system,
which involve the standard dielectric and permeability constants plus two additional ones related to
the photon self-energy functions. As an illustration, the equations are used to discuss the evolution
of a magnetic field perturbation in such a medium. This particular phenomena has also been con-
sidered in a recent work by Semikoz and Sokoloff as a mechanism for the generation of large-scale
magnetic fields in the Early Universe as a consequence of the neutrino-plasma interactions, and
allows us to establish contact with a specific application in a well defined context, with a broader
scope and from a very different point of view.

I. INTRODUCTION AND SUMMARY

This work is concerned with the electromagnetic properties of a medium that consists of a matter background, such
as an electron plasma, and a neutrino gas that moves, as a whole, relative to the matter background. Technically,
the quantity of interest to us is the photon self-energy, from which the dispersion relations of the photon modes that
propagate in the medium can be obtained, and from which other macroscopic quantities of physical interest can be
determined.
Some aspects of this composite system were studied in Ref. [1] using the methods of real-time finite temperature

field theory (FTFT)[28] which, from a modern point of view, provides a natural setting for studying the problems
related to the propagation of photons in a medium. Largely stimulated by the work of Weldon[2, 3, 4], a convenient
technique employed in FTFT is to carry out the calculations in a manifestly covariant form. As is by now familiar, this
is implemented by introducing the velocity four-vector uµ of the medium, in terms of which the thermal propagators
are written in a covariant form. In this way, covariance is maintained, but quantities such as the photon self-energy
depend on the vector uµ in addition to the kinematic momentum variables of the problem. Generally, for practical
purposes the vector uµ is set to (1,~0) in the end, which is equivalent to having carried out the calculation in the rest
frame of the medium from the beginning, and this is usually the relevant physical situation.
However, as noted in Ref. [1], the system we are considering provides an example for a novel application of FTFT.

A distinctive feature of this system is that the matter background on one hand, and the neutrino gas on the other,
each is characterized by its own velocity four-vector. Thus, if we denote by uµ the velocity four-vector of the matter
background, and by vµ the corresponding one for the neutrino gas, then we can take the matter background to be at
rest, so that

uµ = (1,~0) , (1.1)

but we must keep

vµ = (v0, ~V ) . (1.2)

Therefore, the physical quantities such as the photon self-energy depend on the momentum variables and uµ as usual,
and in addition on the vector vµ. This additional dependence can have physical effects that cannot be produced by
the stationary background alone.

http://arxiv.org/abs/hep-ph/0502227v1
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FIG. 1: A class of diagrams that contribute to the photon self-energy in the presence of a neutrino background. The filled
circle in diagram (a) represents the neutrino electromagnetic vertex that is induced by the interactions with the electron
background[8, 9, 10, 11, 12, 13], which can be determined by calculating the off-shell amplitude corresponding to diagrams (b)
and (c)[14].
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FIG. 2: A class of diagrams that contribute to the photon self-energy in the presence of a neutrino background. The double
electron line represents the thermal electron propagator, with the effects of the neutrino gas taken into account.

The focus of attention in Ref. [1] was the effect that the collective neutrino-plasma interactions could have on the
stability of such systems[5, 6], in analogy with the stream instabilities that are familiar in plasma physics research,
examples of which are discussed in many textbooks[7]. The calculation was focused on the contribution to the photon
self-energy from the set of diagrams represented in Fig. 1.
On the other hand, it was recognized some time ago[15, 16, 17, 18] that the presence of neutrinos induces birefrin-

gence effects in the medium, similar to those that exist in materials that exhibit natural optical activity[19]. These
effects are a consequence of a new term, denoted by πP in Ref. [15], that shows up in the photon self-energy, which is
proportional to the neutrino-antineutrino asymmetry and is odd under various discrete space-time symmetries. How-
ever, the previous calculations of these effects have taken into account only the neutrino background. In particular, for
the purpose of determining πP in Ref. [17], the background was taken to consist only of neutrinos and antineutrinos.
Therefore, for all the other particles the vacuum propagator was used in the calculation.
Here we note that, in the presence of neutrinos, there is an important contribution to the photon self-energy which

is proportional to both the neutrino asymmetry and the electron number density. It is best specified by referring
to the diagram depicted in Fig. 2. As indicated by the double line in this diagram, the electron propagator to be
used in the calculation is the dressed propagator with the correct electron self-energy in the medium. The electron
self-energy includes the effect of the neutrino gas, as represented by the diagrams shown in Fig. 3. As we show, this



3

(a)

e(p)νe(k)e(p)

W (p− k)

(b)

e(p)e(p)

Z

να(q)

FIG. 3: One-loop diagrams for the electron self-energy in a neutrino gas.

contribution to the photon self-energy is of no consequence for the instability issues, but it yields a novel contribution
to the optical activity of the system, that can lead to interesting and significant physical effects. In particular, we note
that the contribution to πP calculated in Ref. [17] is proportional to the photon momentum squared q2. In contrast,
the contribution that is determined here has no such term, and it is the only one that survives in the q → 0 limit.
This feature leads to effects that can manifest themselves at a macroscopic level, in the static and long wavelength
electromagnetic regime.
In this work we compute the contribution to the photon self-energy that is proportional to both the neutrino-

antineutrino asymmetry and the electron density, and consider the consequences for the propagation of photons and
for the electromagnetic properties of the medium. The calculation is based on the application of FTFT to calculate
the photon self-energy diagram shown in Fig. 2, using the electron propagator that includes the effect of the neutrino-
electron interactions. The implicit assumption is that, in its own rest frame, the neutrino gas has a momentum
distribution function that is parametrized in the usual way. The presence of the neutrinos gives rise to two additional
polarization functions besides the ordinary longitudinal and transverse polarization functions the photon self-energy,
that we denote by πP and π′

P . A non-zero value of πP by itself leads to optical activity effects, while π′
p induces

anisotropic effects. Aside from the implications for the photon dispersion relations, the results for the photon self-
energy can be interpreted in terms of the macroscopic electromagnetic properties of the system. In particular, the
effects due to πP and π′

P remain finite in the limit q → 0, and therefore they can manifest themselves in macroscopic
effects in the long wavelength and static regimes. As a specific application, we consider the evolution of a magnetic
field perturbation in the system, and we arrive at an equation for the dynamics of the magnetic field that has been
suggested by Semikoz and Sokoloff[20], in the context of a mechanism for the generation of large-scale magnetic
fields in the Early Universe as a consequence of the neutrino-plasma interactions. Thus, besides extending the earlier
calculations already mentioned, the present work makes contact and complements this recent work, which is based
on a treatment using the kinetic equations of the neutrino-plasma system. The results and formulas we present are
applicable in a variety of situations where the neutrino interactions with the other background particles are important,
and the method we employ could also be useful in the study of similar problems that may arise in other contexts.
A word about the strategy of our calculation is in order. In principle, the diagrams involved are numerous, and many

of them are shown in Ref. [17]. However our calculation is simplified for the following reason. Since we are interested
in the terms that contain both the neutrino and the electron distribution functions, the momentum integrations are
effectively cutoff. To order 1/M2

W , we can then replace the W,Z boson propagators by their local limit, so that the
neutrino-electron interactions can be approximated by the local Fermi interactions. In that limit, the set of diagrams
that are relevant to extract the contribution that we are seeking, to order 1/M2

W , collapses to the class of diagram
represented in Fig. 2, which we are considering in the manner we have indicated.
We begin, in Section II by writing down the expression for the electron propagator that will be used in the calculation

of the photon self-energy, which includes the thermal effects as well as the effects of the neutrino-electron interactions.
In Section III the self-energy tensor is calculated and in terms of the usual transverse and longitudinal components
and the two additional components that we have mentioned, and the integral formulas for the latter are obtained and
evaluated for some cases in Section IV. The photon dispersion relations for this system are considered in Section V,
the application to the study of the macroscopic electromagnetic properties of this system is in Section VI, and Section
VII contains our conclusions.
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II. ELECTRON PROPAGATOR

The electron self-energy function Σe(p) is determined by computing the diagrams depicted in Fig. 3. A straight-
forward calculation, using the thermal propagator for the internal neutrino lines, yields to order 1/M2

W

Σe = v/(λV + λAγ5) , (2.1)

where

λV =
√
2GF

[

a(Z)
e

∑

α=e,µ,τ

(nνα − nν̄α) + nνe − nν̄e

]

,

λA =
√
2GF

[

b(Z)
e

∑

α=e,µ,τ

(nνα − nν̄α)− (nνe − nν̄e)

]

. (2.2)

Here the coefficients a
(Z)
e , b

(Z)
e are the vector and axial vector neutral-current couplings of the electron,

a(Z)
e = −1

2
+ 2 sin2 θW

b(Z)
e =

1

2
, (2.3)

and the nνα , nν̄α denote respectively the total number density of each neutrino or antineutrino specie in the medium.
The electron propagator to be used in our calculation of the photon self-energy is given by

Se(p) = SF (p)−
[

SF (p)− S̄F (p)
]

ηe(p · u) , (2.4)

where S̄F = γ0S†
F γ

0, and

ηe(p) = θ(p · u)fe(p · u) + θ(−p · u)fē(−p · u) , (2.5)

with

fe(x) =
1

eβ(x−µe) + 1

fē(x) =
1

eβe(x+µe) + 1
. (2.6)

Here βe is the inverse temperature and µe the chemical potential of the electron gas. In addition, SF is the electron
propagator in the presence of the neutrino gas, which is given by

S−1
F (p) = S−1

0 − Σe(p) , (2.7)

where S0 is the free propagator in the vacuum

S0 =
p/ +me

p2 −m2
e + iǫ

, (2.8)

and Σe has been given in Eq. (2.1). Therefore, to leading oder in 1/M2
W ,

SF (p) = S0(p) + S0(p)Σe(p)S0(p) . (2.9)

Substituting this in Eq. (2.4), we obtain the electron thermal propagator to be used in our computation

Se = S0 + ST + S′ + S′
T , (2.10)

where S0 is given in Eq. (2.8), ST is the usual thermal part of the electron propagator

ST (p) = 2πiδ(p2 −m2
e)ηe(p · u)(p/ +me) , (2.11)

while

S′(p) =
(p/ +me)Σe(p)(p/ +me)

(p2 −m2
e + iǫ)2

, (2.12)
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and

S′
T (p) = −2πiδ′(p2 −m2

e)ηe(p · u)(p/ +me)Σe(p)(p/ +me) . (2.13)

In Eq. (2.13), δ′ denotes the derivative of the delta function with respect to its argument.
In some respects, the present calculation resembles the calculation of the photon self-energy in an electron back-

ground in the presence of a magnetic field[21, 22]. In that case, the calculation involves the use of the thermal
generalization of the Schwinger propagator, which takes into account the B field and the thermal effects of the elec-
tron background. In the present case, the neutrino current acts as the external field, playing the role of the B field in
the former case.

III. PHOTON SELF-ENERGY

We decompose the photon self-energy into various parts according to whether or not they depend on the neutrino
densities. Therefore, discarding the term that is independent of the particle densities, we write

πµν = π(e)
µν + π(ν)

µν + π(eν)
µν , (3.1)

where π
(e)
µν is the purely electronic contribution, while π

(ν)
µν , which depends on the neutrino distributions but not on

the electron distribution, corresponds to the contribution to the photon self-energy that was computed in Ref. [17].

Although the results for π
(ν)
µν , and of course π

(e)
µν are known, we state them below in the form that will be useful for later

reference. On the other hand, π
(eν)
µν contains the terms that depend on both the neutrino and electron distributions,

and is the focus of the present paper. To determine it, we start from the expression corresponding to the diagram of
Fig. 2,

iπ′
µν ≡ −(−ie)2

∫

d4p

(2π)4
Tr [γµiSe(p+ q)γνiSe(p)] , (3.2)

where Se(p) is given by Eq. (2.4), with SF determined from Eq. (2.7). Substituting Eq. (2.10) into Eq. (3.2) and
singling out the terms that contain the electron distributions as well as the neutrino densities we obtain,

iπ(eν)
µν = e2

∫

d4p

(2π)4
{Tr γµiS0(p

′)γν iS
′
T (p) + Tr γµiS

′
T (p

′)γνiS0(p)

+ Tr γµiS
′(p′)γν iST (p) + Tr γµiST (p

′)γν iS
′(p)} , (3.3)

where

p′ = p+ q . (3.4)

A. π
(e)
µν

The pure electron term is given by

iπ(e)
µν = e2

∫

d4p

(2π)4
{Tr γµiS0(p

′)γνiST (p) + Tr γµiST (p
′)γν iS0(p)} . (3.5)

Computing the traces and carrying out the p0 integration, π
(e)
µν can be written in the form

π(e)
µν = −4e2

∫

d3p

(2π)32E
(fe + fē)

{

Lµν

q2 + 2p · q + (q → −q)

}

, (3.6)

where

Lµν = 2pµpν + pµqν + qµpν − p · qgµν . (3.7)

The fact that π
(e)
µν is symmetric and satisfies qµπ

(e)
µν = qνπ

(e)
µν = 0 implies that it is of the form

π(e)
µν = π

(e)
T Rµν + π

(e)
L Qµν , (3.8)
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where

Rµν = g̃µν −Qµν ,

Qµν =
ũµũν

ũ2
, (3.9)

with

ũµ ≡ g̃µνu
ν , (3.10)

and

g̃µν = gµν − qµqν
q2

. (3.11)

In general π
(e)
T,L are functions of the scalar variables

ω = q · u
Q =

√

ω2 − q2 , (3.12)

which have the interpretation of being the photon energy and momentum, in the rest frame of the electron gas. The

functions π
(e)
T,L are determined by projecting Eq. (3.6) with the tensors Rµν and Qµν . This procedure then leads to

π
(e)
T = −2e2

(

Ae +
q2

Q2
Be

)

,

π
(e)
L = 4e2

q2

Q2
Be (3.13)

where

Ae =

∫

d3p

(2π)32E
(fe + fē)

[

2m2
e − 2p · q

q2 + 2p · q + (q → −q)

]

,

Be =

∫

d3p

(2π)32E
(fe + fē)

[

2(p · u)2 + 2(p · u)(q · u)− p · q
q2 + 2p · q + (q → −q)

]

. (3.14)

While these formulas can be used to evaluate the electronic contribution to the photon self-energy in various situations,
we need not proceed any further in that direction since, as we have already mentioned, the results are well known
and we can simply quote the relevant ones when we need them.

B. π
(ν)
µν

In addition to the tensors Rµν and Qµν that are defined in Eq. (3.9), we introduce

Pµν =
i

Q
ǫµναβq

αuβ ,

P ′
µν =

i

Q
ǫµναβq

αv′ β , (3.15)

with

v′µ = vµ − uµ(u · v) . (3.16)

Then the results of Ref. [17] can be expressed in the form

π(ν)
µν = π

(ν)
P (P ′

µν + u · vPµν ) , (3.17)

where

π
(ν)
P =

e2GF√
2π2

(

q2

m2
e

)

Q(nνe − nν̄e)J(q
2) . (3.18)

J(q2) is given explicitly in that reference, but its precise value will not be relevant here. We only wish to note the
presence of the kinematic factor of q2 in Eq. (3.18). For the purpose of determining the dispersion relations, this
factor can be set equal to the plasma frequency squared ω2

p, since in the lowest order q2 ∼ ω2
p. However, in other

applications, such the one as we will consider in Section VIB, the appropriate kinematic regime corresponds to taking

q → 0, and in those cases π
(ν)
P is not relevant.
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C. Evaluation of π
(eν)
µν

Computing the traces and carrying out the p0 integration in Eq. (3.3), π
(eν)
µν can be expressed in the form

π(eν)
µν = (−4e2)(λV T

(V )
µν + λAT

(A)
µν ) , (3.19)

where

T (V )
µν =

∫

d4p

(2π)3
ηe(p · u)

{

−L
(1)
µν δ′(p2 −m2

e)

d
+

L
(2)
µν δ(p2 −m2

e)

d2
+ (q → −q)

}

T (A)
µν = iǫµναβ

∫

d4p

(2π)3
ηe(p · u)

{−K(1)αβδ′(p2 −m2
e)

d
+

K(2)αβδ(p2 −m2
e)

d2
− (q → −q)

}

,

(3.20)

with

L(1)
µν = (m2

e − p2)
[

p′µvν − gµνp
′ · v + vµp

′
ν

]

+ (2p · v)m2
egµν + 2p · v

[

p′µpν + pµp
′
ν − p · p′gµν

]

L(2)
µν = (m2

e − p′ 2) [pµvν − gµνp · v + vµpν ] + (2p′ · v)m2
egµν + 2p′ · v

[

p′µpν + pµp
′
ν − p · p′gµν

]

K
(1)
αβ = (p2 −m2

e)pαvβ + (p2 +m2
e)qαvβ − 2p · v qαpβ ,

K
(2)
αβ = (m2

e − p′ 2)pαvβ + 2m2
e qαvβ − 2p′ · v qαpβ , (3.21)

and

d = (p+ q)2 −m2
e . (3.22)

1. Evaluation of T
(V )
µν

The integral expression for T
(V )
µν can be simplified as follows. Defining

Cµν = pµvν + vµpν − p · vgµν ,
Dµν = (m2

e − p · p′)gµν + pµp
′
ν + p′µpν , (3.23)

L
(1,2)
µν can be expressed in the form

L(1)
µν = (m2

e − p2)
[

vλ∂λDµν − Cµν

]

+ 2p · vDµν ,

L(2)
µν = −dCµν + 2p′ · vDµν , (3.24)

where d is given in Eq. (3.22), ∂µ ≡ ∂/∂pµ, and we have used the following relation,

p′µvν + vµp
′
ν − p′ · vgµν = vλ∂λDµν − Cµν , (3.25)

which can be verified by explicit computation. Using the relations

(p2 −m2
e)δ

′(p2 −m2
e) = −δ(p2 −m2

e) ,

vµ∂µδ(p
2 −m2

e) = 2p · vδ′(p2 −m2
e) , (3.26)

it then follows that

L(1)
µν δ

′(p2 −m2
e) = vλ∂λ

[

Dµνδ(p
2 −m2

e)
]

− Cµνδ(p
2 −m2

e) , (3.27)

and similarly

L
(2)
µν

d2
= −Dµνv

λ∂λ

(

1

d

)

− Cµν

d
, (3.28)
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where we have used

vλ∂λ

(

1

d

)

= −2p′ · v 1

d2
. (3.29)

Therefore, from Eq. (3.20), with the help of Eqs. (3.27) and (3.28),

T (V )
µν =

∫

d4p

(2π)3
ηe(p · u)

{

−vλ∂λ

[

Dµνδ(p
2 −m2

e)

d

]

+ (q → −q)

}

, (3.30)

which, after a partial integration and then carrying out the integration over p0 using the delta function, yields

T (V )
µν = v · u

∫

d3p

(2π)32E

∂(fe − fē)

∂E

{

Lµν

q2 + 2p · q + (q → −q)

}

, (3.31)

with Lµν given in Eq. (3.7). This has the same structure as the normal electron background contribution, given in

Eq. (3.6). Therefore, the same arguments used in Section IIIA can be applied here to conclude that T
(V )
µν can be

expressed in the form

T (V )
µν =

1

2

(

A′
e +

q2

Q2
B′

e

)

Rµν +

(−q2

Q2

)

B′
eQµν , (3.32)

where

A′
e = u · v

∫

d3p

(2π)32E

∂(fe + fē)

∂E

[

2m2
e − 2p · q

q2 + 2p · q + (q → −q)

]

,

B′
e = u · v

∫

d3p

(2π)32E

∂(fe + fē)

∂E

[

2(p · u)2 + 2(p · u)(q · u)− p · q
q2 + 2p · q + (q → −q)

]

. (3.33)

2. Evaluation of T
(A)
µν

From Eq. (3.21), using Eq. (3.26) we can write

−K
(1)
αβ δ

′(p2 −m2
e)

d
+

K
(2)
αβ δ(p

2 −m2
e)

d2
= 2m2

eqαvβ

[

δ(p2 −m2
e)

d2
− δ′(p2 −m2

e)

d

]

+ vλ∂λ

(

qαpβδ(p
2 −m2

e)

d

)

. (3.34)

Therefore,

T (A)
µν = iǫµναβq

α
[

Iβ1 + I2v
β
]

, (3.35)

where

Iβ1 =

∫

d4p

(2π)3)
ηe(p · u)

{

vλ∂λ

[

pβδ(p2 −m2
e)

d

]}

+ (q → −q) ,

I2 = 2m2
e

∫

d4p

(2π)3)
ηe(p · u)

{

δ(p2 −m2
e)

d2
− δ′(p2 −m2

e)

d

}

+ (q → −q) . (3.36)

For Iβ1 , by partial integration we obtain

Iβ1 = −v · u
∫

d3p

(2π)32E

∂(fe + fē)

∂E
pβ

[

1

q2 + 2p · q + (q → −q)

]

. (3.37)

Since the integral is a function only of the vectors qµ and uµ, it must be of the form

Iβ1 = I1u
β + I ′1q

β . (3.38)

Substituting it in Eq. (3.35),

T (A)
µν = iǫµναβq

α
[

I1u
β + I2v

β
]

, (3.39)
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and therefore I ′1 is not relevant. On the other hand, I1 can be determined by using the projection relation

ũβI
β
1 = ũ2I1 , (3.40)

which, from Eq. (3.37), yields the formula

I1 =
v · u
Q2

∫

d3p

(2π)32E

∂(fe + fē)

∂E

[

q2(p · u)− (q · u)(p · q)
q2 + 2p · q

]

+ (q → −q) . (3.41)

To carry out the integration over p0 in Eq. (3.36) we write

δ′(p2 −m2
e) =

1

2p0
∂

∂p0
δ(p2 −m2

e) , (3.42)

and using the usual rule for the integration over the derivative of the delta function after some algebra we obtain

I2 = 2m2
e

∫

d3p

(2π)32E

∂

∂E

[

1

2E

(

fe + fē
q2 + 2p · q

)]

+ (q → −q) . (3.43)

D. Summary

From the results we have obtained, it follows that the photon self-energy can be expressed in the form

πµν = πTRµν + πLQµν + πPPµν + π′
PP

′
µν , (3.44)

where Pµν and P ′
µν have been defined in Eq. (3.15). Using Eqs. (3.8) and (3.19), together with the results for T

(V,A)
µν

given in Eqs. (3.32) and (3.39), the coefficients in Eq. (3.44) are then given by

πT = π
(e)
T − 2e2λV

(

A′
e +

q2

Q2
B′

e

)

,

πL = π
(e)
L + 4e2λV

(

q2

Q2

)

B′
e ,

πP = (u · v)π(ν)
P + π

(eν)
P

π′
P = π

(ν)
P + π

′(eν)
P

(3.45)

where

π
(eν)
P = −4e2λAQ[I1 + (u · v)I2] ,

π
′(eν)
P = −4e2λAQI2 , (3.46)

with I1,2 given by Eqs. (3.41) and (3.43), respectively.
The terms proportional to λV give only small correction to the pure electronic terms. For example, consider the

case of a classical electron distribution, for which we can use

∂fe,ē
∂E

≈ −βfe,ē . (3.47)

Then from Eq. (3.33),

A′
e = −βAe ,

B′
e = −βBe , (3.48)

and remembering Eq. (3.13), it follows that the neutrino-dependent contribution to πT,L is smaller than the electron
term by a factor of βλV . Assuming, for illustrative purposes, that the neutrino gas can also be treated classically,
so that nν ∼ T 3, then βλV ∼ GFT

2, which is negligible in most situations of interest. Therefore, for all practical
purposes of interest to us, we will neglect that contribution in Eq. (3.45) and use

πT = π
(e)
T ,

πL = π
(e)
L (3.49)

in what follows.
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IV. EVALUATION OF π
(eν)
P AND π

′(eν)
P

Useful formulas for π
(eν)
P and π

′(eν)
P can be obtained by evaluating the integrals I1,2 defined in Eqs. (3.41) and

(3.43) in the long wavelength limit. The expressions for I1,2 in that limit can be obtained by applying the auxiliary
formula[23, 24]

∫

d3p

(2π)3
F(p, q)

[q2 + 2p · q]n =

∫

d3p

(2π)3

(

F − ~Q
2 · dF

d~p − nω
2EF

)

[2Eω − 2~p · ~Q]n
, (4.1)

and they are valid for

ω,Q ≪ 〈E〉 , (4.2)

where 〈E〉 denotes a typical average energy of the electrons in the background. In Eq. (4.1) the symbol d
d~p stands for

the total momentum derivative,

d

d~p
=

∂

∂~p
+

~p

E

∂

∂E
. (4.3)

Let us consider I2 first. We rewrite Eq. (3.43) in the form

I2 =
m2

e

2

∫

d3p

(2π)3

{

f ′

q2 + 2q · p − 2ωf

[q2 + 2q · p]2
}

+ (q → −q) , (4.4)

where, to simplify the notation, we have defined

f =
fe + fē
E2

,

f ′ =
1

E

∂

∂E

(

fe + fē
E

)

. (4.5)

Then by direct application of Eq. (4.1) we obtain

I2 =
m2

e

4

∫

d3p

(2π)3
ω

E[ωE − ~p · ~Q]2

[

~p · ~Q ∂f

∂E
+ 2ωf

]

− m2
e

4

∫

d3p

(2π)3
1

E[ωE − ~p · ~Q]

[

~p · ~Q∂f ′

∂E
+ ωf ′

]

. (4.6)

Furthermore, denoting by v̄ the average velocity of the particles in the background, the following approximate formulas
are useful for practical applications,

I2 =











m2

e

4

∫

d3p
(2π)3

1
E

∂
∂E

[

1
E

∂
∂E

(

fe+fē
E

)]

(ω ≪ v̄Q)

−m2

e

4

∫

d3p
(2π)3

1
E

∂
∂E

(

fe+fē
E3

)

(ω ≫ v̄Q) ,

(4.7)

which are obtained from Eq. (4.6) by taking the static limit ω = 0, or the ~Q = 0 limit, respectively. The remaining
integration can be carried out simply for particular cases of the distribution functions, and we consider some of them
below.
Regarding I1, it can be written in the form

I1 =
u · v
2Q2

∫

d3p

(2π)3
F1

q2 + 2p · q + (q → −q) , (4.8)

where

F1 ≡ ∂(fe + fē)

∂E

[

−Q2 +
ω~p · ~Q
E

]

, (4.9)
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and applying Eq. (4.1),

I1 = −u · v
4Q2

∫

d3p

(2π)3

(

~Q · dF1

d~p
+

ω

E
F1

)

1

Eω − ~p · ~Q
. (4.10)

To compute the momentum derivative we use

∂F1

∂E
= −Q2∂

2(fe + fē)

∂E2
+ ω~p · ~Q ∂

∂E

[

1

E

∂(fe + fē)

∂E

]

(4.11)

which, using ~p · ~Q = Eω − (Eω − ~p · ~Q), we write as

∂F1

∂E
= −Q2 ∂

2(fe + fē)

∂E2
+ ω2E

∂

∂E

[

1

E

∂(fe + fē)

∂E

]

− ω(Eω − ~p · ~Q)
∂

∂E

[

1

E

∂(fe + fē)

∂E

]

. (4.12)

In addition

∂F1

∂~p
=

ω

E

∂(fe + fē)

∂E
~Q , (4.13)

and therefore, remembering Eq. (4.3),

ω

E
F1 + ~Q · dF1

d~p
= q2

~p · ~Q
E

∂2(fe + fē)

∂E2
− ω

~p · ~Q
E

(Eω − ~p · ~Q)
∂

∂E

[

1

E

∂(fe + fē)

∂E

]

. (4.14)

When this is substituted in Eq. (4.10), the second term gives zero by symmetric integration, and we obtain

I1(ω,Q) = −u · v
4

q2

Q2

∫

d3p

(2π)3
1

E

∂2(fe + fē)

∂E2

~p · ~Q
Eω − ~p ·Q . (4.15)

To evaluate I1 in the ~Q → 0 limit, we first expand the denominator in the integrand,

1

Eω − ~p · ~Q
=

1

Eω

[

1 +
~p · ~Q
Eω

]

. (4.16)

The term proportional to a single power of ~p · ~Q integrates to zero, while in the quadratic term we can put (~p · ~Q)2 →
1
3p

2Q2. In this way, in analogy with Eq. (4.7), we obtain the approximate formulas

I1 =











−u·v
4

∫

d3p
(2π)3

1
E

∂2(fe+fē)
∂E2 (ω ≪ v̄Q)

−u·v
4

∫ d3p
(2π)3

p2

3E3

∂2(fe+fē)
∂E2 (ω ≫ v̄Q) .

(4.17)

In what follows we give explicit results for several useful cases.

A. Non-relativistic, non-degenerate gas

For a classical and non-relativistic gas, using Eq. (3.47) and fē ≃ 0, Eqs. (4.7) and (4.17) yield

I1 = −u · v I2 , (4.18)

with

I2 = ne ×











β2

8me
(ω ≪ v̄Q)

β
8m2

e
(ω ≫ v̄Q) ,

(4.19)

where ne is the total number density of electrons.
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B. Relativistic, non-degenerate gas

In this case we also assume for simplicity that fē ≃ fe. Then, for I1, we use Eq. (3.47) twice, and in the limit
me → 0

I1 = −u · v
4π2

×







1 (ω ≪ v̄Q)

1
3 (ω ≫ v̄Q) .

(4.20)

For I2 we have to be careful because the integral is not defined for me = 0. As we show below, the result is

I2 =
1

4π2
, (4.21)

independently of whether ω ≪ v̄Q or ω ≫ v̄Q. To illustrate how we have proceeded let us consider the ω ≫ v̄Q case
in some detail. By carrying out the angular integration, followed by an integration by parts, from Eq. (4.7) we obtain
the formula

I2 =
m2

e

8π2

∫ ∞

0

dp
(fe + fē)

E3
. (4.22)

By making the change of variable p = me tan θ,
∫

dp
fe + fē
E3

=
1

m2
e

∫

dθ (fe + fē) cos θ

=
2

m2
e

∫

dθ e−βm sec θ cos θ , (4.23)

which we evaluate by using the Taylor expansion of the exponential. In this way we obtain
∫ ∞

0

dp
fe + fē
E3

=
2

m2
e

[1 +O(me)] , (4.24)

and substituting it in Eq. (4.22) we arrive at Eq. (4.21). In similar fashion, for ω ≪ v̄Q,

I2 = −m2
e

8π2

∫

dp
1

E

∂

∂E

(

fe + fē
E

)

. (4.25)

Using Eq. (3.47) and then making the change of variables as above, we obtain
∫

dp
1

E

∂

∂E

(

fe + fē
E

)

= − 2

m2
e

[1 +O(me)] , (4.26)

which leads to Eq. (4.21).

C. Degenerate gas

For a degenerate gas, whether it is relativistic or not,

fe = θ(EF − E) ,

fē ≃ 0 , (4.27)

where EF =
√

p2F +m2
e is the Fermi energy, with

pF = (3π2ne)
1/3 (4.28)

being the Fermi momentum. Then we obtain in this case

I1 = −
(u · v
8π2

)

×











EF

pF
(ω ≪ v̄Q)

pF

EF

[

1− 2p2

F

3E2

F

]

(ω ≫ v̄Q) ,

I2 =

(

1

8π2

)

×







EF

pF
(ω ≪ v̄Q)

pF

EF
(ω ≫ v̄Q) .

(4.29)
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Furthermore, in the non-relativistic (NR) or the extremely relativistic (ER) case, this yields

I
(NR)
1 = −u · vI(NR)

2 = −
(u · v
8π2

)

×







me

pF
(ω ≪ v̄Q)

pF

me
(ω ≫ v̄Q) ,

(4.30)

I
(ER)
1 = −

(u · v
8π2

)







1 (ω ≪ v̄Q)

1
3 (ω ≫ v̄Q) ,

(4.31)

and

I
(ER)
2 =

1

8π2
(4.32)

independently of whether ω ≪ v̄Q or ω ≫ v̄Q.

D. Explicit formulas for π
(eν)
P and π

′(eν)
P

The formulas that we have obtained for I1,2 allow us to evaluate π
(eν)
P and π

′(eν)
P for typical situations of interest

in physical applications. We specifically consider the regime

ω ≫ v̄Q , (4.33)

which will be of special interest to us in Section VIB. Thus, for example, if the electron gas is degenerate,

π
(eν)
P = −

(

e2

3π2

)

λAp
3
F

E3
F

Qu · v ,

π
′(eν)
P = −

(

e2

2π2

)

λApF
EF

Q . (4.34)

These expressions hold whether the electrons are relativistic or not. On the other hand, for a classical and relativistic
electron gas,

π
(eν)
P = −

(

2e2

3π2

)

λAQu · v ,

π
′(eν)
P = −

(

e2

π2

)

λAQ . (4.35)

Regarding the value of λA, from Eq. (2.2),

λA =
GF√
2

[

(nντ − nν̄τ ) + (nνµ − nν̄µ)− (nνe − nν̄e)
]

. (4.36)

Denoting by µνx the chemical potential of the neutrino of flavor x = e, µ, τ , the approximate formulas

λA =
GF

6
√
2
T 3

(

ξντ + ξνµ − ξνe
)

(µνx ≪ T ) (4.37)

or

λA =
GF

6
√
2π2

(

µ3
ντ + µ3

νµ − µ3
νe

)

(µνx ≫ T ) , (4.38)

can be useful.
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E. Discussion

It should be noted that the contributions π
(eν)
P and π

′(eν)
P that we have calculated in this work, have a very different

kinematic dependence on the photon momentum qµ if we compare them with the term π
(ν)
P that was calculated in

Ref. [17] and the analogous quantity calculated in Ref. [18]. In particular, π
(ν)
P , which does not depend explicitly on

the electron distribution, is proportional to q2, as we have indicated in Eq. (3.18). For the purpose of determining

the photon dispersion relations, since q2 is of the order of the plasma frequency squared, the value of π
(ν)
P turns out

to be proportional to the electron density and in fact comparable to the values of π
(eν)
P and π

′(eν)
P . In the absence of

the electrons, π
(eν)
P and π

′(eν)
P are of course zero and, since q2 ≃ 0, π

(ν)
P is negligible. Thus, in a pure neutrino gas

the term calculated in Ref. [18], although it is of higher order in 1/M2
W , is the dominant one. On the other hand,

in applications such as the one that we consider in Section VIB, in which the relevant kinematic limit is q → 0,

corresponding to the long wavelength and static regime, π
(ν)
P does not contribute and π

(eν)
P and π

′(eν)
P are the only

relevant ones.

V. DISPERSION RELATIONS

In the presence of an external current j
(ext)
µ , the electromagnetic potential in the medium is determined from the

field equation, which in momentum space is
[

−q2g̃µν + πµν

]

Aν = j(ext)µ . (5.1)

The photon dispersion relations are determined by finding the solutions of the homogeneous equation, i.e., with

j
(ext)
µ = 0. To specify the various modes it is convenient to introduce the basis vectors ǫµ1,2,3, which we defined as
follows.
For a given photon momentum ~Q, we define the unit vectors êi (i = 1, 2, 3) by writing

~Q ≡ Qê3 , (5.2)

with ê1,2 chosen such that

ê1 · ê3 = e1 · ê3 = 0 ,

ê2 = ê3 × ê1 . (5.3)

For the problem that we are considering, without loss of generality, we can choose the vectors ê1,2 such that ~V lies in
the 1, 3 plane. Thus, the unit vector

V̂ =
~V

V
, (5.4)

has the decomposition

V̂ = cos θ ê3 + sin θ ê1 . (5.5)

where

cos θ = Q̂ · V̂ . (5.6)

The vectors ǫµ1,2,3 are then defined by

ǫµ1 = (0, ê1) ,

ǫµ2 = (0, ê2) ,

ǫµ3 =
1

√

q2
(Q,ωê3) , (5.7)

which form a basis of vectors orthogonal to qµ. They satisfy the relations

Rµνǫ
ν
3 = Pµνǫ

ν
3 = Qµνǫ

ν
1,2 = 0 ,

Rµνǫ
ν
i = ǫiµ , (i = 1, 2) ,

Qµνǫ
ν
3 = ǫ3ν ,

Pµνǫ
ν
1 = iǫ2µ ,

Pµνǫ
ν
2 = −iǫ1µ , (5.8)



15

from which we can immediately read off the matrix elements of the tensors R,Q, P between any pair of the basis
vectors ǫµ1,2,3. In addition, the only non-zero matrix elements of the tensor P ′ are given by

ǫµ2 ǫ
ν
3P

′
µν = −ǫµ3 ǫ

ν
2P

′
µν = − i

√

q2

Q
V sin θ ,

ǫµ1 ǫ
ν
2P

′
µν = −ǫµ2 ǫ

ν
1P

′
µν = − iω

Q
V cos θ . (5.9)

To find the propagating modes, we express the polarization vectors in the form

ξµ =

3
∑

i=1

αiǫ
µ
i , (5.10)

where the coefficients αi and the corresponding dispersion relations are to be found by solving the equation

[

−q2g̃µν + πµν

]

ξν = 0 . (5.11)

With the help of the relations given in Eqs. (5.8) and (5.9), this equation can be written in matrix notation

(q2 −Π)α = 0 , (5.12)

where

α =





α1

α2

α3



 , (5.13)

and

Π =









πT −iπP + i ωQV π′
P cos θ 0

iπP − i ωQV π′
P cos θ πT i

√
q2

Q V π′
P sin θ

0 −i

√
q2

Q V π′
P sin θ πL









. (5.14)

In what follows we consider some particular cases of this equation, whose solutions reveal the structure and the main
features of more general ones.

A. ~V = 0 case

In this case the π′
P term in Eq. (3.44) is absent, and consequently the dispersion relations have the same form as

those studied earlier in Ref. [15]. The longitudinal mode has the dispersion relation

ω2 −Q2 − πL = 0 , (5.15)

and corresponding polarization vector

ξµL = ǫµ3 . (5.16)

The polarization vectors of the transverse modes are then given by

ξµ± =
1√
2
(ǫµ1 ± iǫµ2 ) , (5.17)

with the corresponding dispersion relations given by

ω2 −Q2 − (πT ± πP ) = 0 , (5.18)

respectively.



16

B. ~V 6= 0 case

The presence of the π′
P term in Eq. (3.44) in general modifies the picture described above, and can give rise to

new effects. This is due to the fact that the existence of the velocity vector ~V of the neutrino gas breaks the three-
dimensional isotropy of the medium, for example not too differently from the way in which it would be broken by the
presence of an external magnetic field. We consider two special situations.

1. Propagation parallel to ~V

In this case sin θ = 0, and

Π =





πT −iπP + i ωQV π′
P 0

iπP − i ωQV π′
P πT 0

0 0 πL



 . (5.19)

Therefore, the longitudinal mode is unaffected, while for the transverse modes the polarization vectors are the same
as in Eq. (5.17) but the dispersion relations are now given by

ω2 −Q2 −
(

πT + πP − ω

Q
V π′

P

)

= 0 ,

ω2 −Q2 −
(

πT − πP +
ω

Q
V π′

P

)

= 0 , (5.20)

for ξ±, respectively.

2. Propagation perpendicular to ~V

In this case, setting θ = π/2,

Π =









πT −iπP 0

iπP πT i

√
q2

Q V π′
P

0 −i

√
q2

Q V π′
P πL









. (5.21)

Therefore the modes are neither purely longitudinal nor transverse to ~Q. Finding the general solution in this case is
a cumbersome process. In some circumstances it may be appropriate to seek approximate formulas for the dispersion
relations and polarization vectors as a perturbative expansion in V π′

P , and that can be extended to other values of θ
as well.
Some applications of the optical activity effects induced by neutrinos were considered in Ref. [17]. As a rule, the

effects tend to be small. Our main intention in this section was to indicate how the photon dispersion relations
are modified by the anisotropic effects produced by a non-zero velocity of the neutrino gas relative to the electron
background. It can be of interest to carry this further to study the implications of these effects in the context of
the specific applications considered in Ref. [17], or similar ones. However, that is outside the scope and focus of the
applications that we have considered, to which we now turn our attention.

VI. MACROSCOPIC ELECTRODYNAMICS

Besides modifying the dispersion relations of the propagating modes, the presence of the neutrino gas influence the
electromagnetic properties of the system in the static and long wavelength regime. To study them, it is useful to
formulate the results or our calculations using the language of macroscopic electrodynamics.
In what follows we will assume that the neutrino gas is at rest with respect to the electron gas, that is

vµ = uµ , (6.1)
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since this case already brings out the essential consequences of the presence of the neutrino gas. In this case, P ′
µν = 0,

and the photon self-energy takes the form

πµν = π
(e)
T Rµν + π

(e)
L Qµν + πPPµν . (6.2)

As has been discussed previously[15, 16], this is indeed the most general of the photon self-energy in an isotropic

medium, which is the case if ~V = 0.

A. Dielectric function

Introducing the electromagnetic field

Fµν = −i(qµAν −Aµqν) , (6.3)

the equation of motion, Eq. (5.1), can be written in the form

− iqµFµν = j(ext)ν + j(ind)ν , (6.4)

where

j(ind)µ = −πµνA
ν . (6.5)

In fact, Eq. (6.4) is equivalent to the Maxwell equations, with j
(ind)
µ interpreted as the induced current. For example,

take the component of Eq. (6.4) corresponding to the index ν being a spatial index. With the usual definition of the
fields,

~E = iω ~A− i ~QA0 ,

~B = i ~Q× ~A , (6.6)

which are related by

~B =
1

ω
~Q× ~E , (6.7)

the equation is just

i ~Q× ~B + iω ~E = ~j(ext) +~j(ind) . (6.8)

Moreover, using Eq. (6.6) in Eq. (6.5), the induced current is given in terms of the fields by

~ (ind) = iω
[

(1− ǫl) ~El + (1− ǫt) ~Et + iǫpQ̂× ~E
]

, (6.9)

where

1− ǫt =
πT

ω2
,

1− ǫl =
πL

q2
,

ǫp =
πP

ω2
, (6.10)

and the longitudinal and transverse components of the electric field are defined by

~El = Q̂(Q̂ · ~E) ,

~Et = ~E − ~El . (6.11)

Eq. (6.9) is the most general form of the induced current, involving terms that are linear in the field, and subject
only to the assumption of isotropy. The quantities ǫt,l in Eq. (6.10) are transverse and longitudinal components of the
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dielectric constant of the medium. Alternatively, instead of ǫt,l, the dielectric and magnetic permeability functions
ǫ, µ are introduced by writing the induced current in the equivalent form

~(ind) = i

[

ω(1− ǫ) ~E +

(

1− 1

µ

)

~Q× ~B + i
ω2

Q
ǫp ~B

]

, (6.12)

where we have used Eq. (6.7). Comparing Eqs. (6.9) and (6.12), the relations

ǫ = ǫl ,

1

µ
= 1 +

ω2

Q2
(ǫl − ǫt) , (6.13)

then follow.
These equations can of course be used to discuss the dispersion relations of the propagating modes and related

effects. However we do not proceed any further in this direction since that would essentially reproduce what we have
already considered in Section V. Instead we turn our attention to another kind of effect that can arise due to the
presence of the neutrino gas, which can be described on the basis of these equations together with the results we have
obtained.

B. Evolution of magnetic fields

Here we consider the evolution of an initial magnetic perturbation in this medium. In the absence of any external
sources, the equation for the magnetic field, Eq. (6.8), is

i ~Q× ~B + iω ~E = ~j(ind) , (6.14)

which using Eq. (6.12) we can write in the form

ǫω ~E +
1

µ
~Q× ~B + iγ ~B = 0 , (6.15)

with

γ = −ω2

Q
ǫp = −πP

Q
. (6.16)

Since we are interested in following the evolution of ~B, we eliminate ~E from this equation by taking the cross product

with ~Q and then using Eq. (6.7), which yields

ǫω2 ~B − 1

µ
Q2 ~B + iγ ~Q× ~B = 0 . (6.17)

We obtain the corresponding equation in coordinate space by taking the long wavelength limit, ω ≫ v̄Q, and making
the quasi-static approximation, ω → 0. In this limit

ǫ → 1 +
iσ

ω
, (6.18)

where σ is the conductivity of the medium. Therefore the equation becomes

iωσ ~B − 1

µ
Q2 ~B + iγ ~Q× ~B = 0 , (6.19)

or, in coordinate space,

σ
∂ ~B

∂t
=

1

µ
∇2 ~B + γ~∇× ~B . (6.20)

Although we are using the same symbols µ and γ, in Eq. (6.20) they stand for the corresponding quantities evaluated

in the long wavelength and static limit, as indicated above. In this limit, π
(ν)
P does not contribute to γ in Eq. (6.16),
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as can be seen from Eq. (3.18). Then using the results for π
(eν)
P summarized in SectionIVD, we can readily determine

γ for some particular cases. For example, for the relativistic and non degenerate electron gas,

γ =
2e2λA

3π2
, (6.21)

while for a degenerate electron gas,

γ =
e2λA

3π2

(

pF
EF

)3

, (6.22)

with λA given in Eq. (4.36). For more general cases, γ can be computed from the formula

γ = −e2λA

[∫

d3p

(2π)3
p2

3E3

∂2(fe + fē)

∂E2
+m2

e

∫

d3p

(2π)3
1

E

∂

∂E

(

fe + fē
E3

)]

, (6.23)

which follows from the expression for π
(eν)
P given in Eq. (3.46), together with the formulas for I1,2 given in Eqs. (4.7)

and (4.17) for ω ≫ v̄Q.
An equation of the same form as Eq. (6.20) was obtained by Semikoz and Sokoloff[20] by very different means,

in their work suggesting a new mechanism for the generation of large-scale magnetic fields in the Early Universe
as a consequence of the neutrino-plasma interactions. As emphasized in that reference, the equation describes the
self-excitation of an almost constant magnetic perturbation.
Our approach is useful in two complementary ways. On one hand, it sheds light on the physical origin of this

mechanism. Within our formulation, it is a consequence of the optical activity induced by the interaction of neutrinos
with the other background particles. On the other hand, it puts this mechanism on a firm footing from a computational
point of view. The optical activity induced by the neutrinos can be characterized by the presence of the πP (and π′

P )
terms in the photon self-energy, which also has a definite interpretation in terms of the components of the dielectric
function that enter in the macroscopic (Maxwell) equations in the medium. Therefore, by focusing on these quantities,
we are able to give well defined formulas for the parameters that are relevant to this effect, in a way that are applicable
to a variety of astrophysical and cosmological situations in which the presence of neutrinos is influential. Our work also
paves the way to incorporate some corrections that can be important in specific applications, such as the anisotropic
effects that can arise if the neutrino gas has a non-zero velocity relative to the electron background. Further studies
along these lines are the subject of current work.

VII. CONCLUSIONS

We have studied the electromagnetic properties of an electron background, that contains a neutrino gas which is
either at rest or moving as a whole relative to the background. Apart from the well known longitudinal and transverse
polarization functions of the photon in a medium, the presence of the neutrinos gives rise to two additional polarization

functions, that we denote by πP and π′
P . We have computed that particular contribution to these two functions, π

(eν)
P

and π
′(eν)
P , that depends on the neutrino-antineutrino asymmetry in the medium as well as the momentum integral

of the electron (and positron) distribution function. The integrals were evaluated for various specific conditions of
the electron gas, and explicit formulas that are useful in many situations were given. One of the consequences of a
non-zero value of πP and π′

P is to give rise to birefringence and anisotropic effects in the propagation of a photon
through that medium. We analyzed various particular situations to indicate how the anisotropies due to the non-
zero velocity of the neutrino gas can affect the optical activity of the system. A non-zero value of πP and π′

P also
has consequences related to the electromagnetic properties of the system at a macroscopic level, and we considered
specifically the evolution of a macroscopic magnetic field in this system. We arrived at an equation for the dynamics
of the magnetic field, that had been suggested in Ref. [20] as a mechanism for the generation of large-scale magnetic
fields in the Early Universe as a consequence of the neutrino-plasma interactions. In this way we established contact
between our work and this particular kind of application, which has been of recent interest. The approach we followed,
which has been based on the application of Finite Temperature Field Theory, as well as the calculations and results
that are presented here, helps to put this subject on a firm footing and to set a basis for carrying out further studies
and applications along these lines using powerful calculational techniques.
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