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ABSTRACT

In this talk, I first discuss b → d, b → s and s → d transitions including time-
dependent CP asymmetries in Bd → φKs and Re (ǫ

′

/ǫK). Then I show that the
decay Bs → µ+µ− is useful to distinguish various SUSY breaking mechanisms.
I will also describe some possible connections between B physics and cosmology:
(i) B physics and electroweak baryogenesis within SUSY models, and (ii) the
correlation between the neutralino dark matter scattering and B(Bs → µ+µ−).
In particular, we point out that the current upper bound on B(Bs → µ+µ−)
form CDF and D0 collaborations can constrain the spin-independent neutralino
scattering cross section more strongly than the CDMS bound.

1. Introduction

In the Standard Model (SM), flavor mixing and CP violation in the quark sector have
the common origin, namely the CKM mixing matrix. This is dictated by local gauge

invariance and renormalizability of the SM with 3 families. This paradigm is well tested

by many different observables in K and B meson systems. All the data (except for possible
anomalies in the time dependent CP asymmetries in Bd → φKs and Bd → η

′

Ks decays,

and the baryon number asymmetry in the universe) can be accommodated by the CKM
picture, and we have consistent understanding of flavor mixing and CP violation within

the SM. Despite this great success of SM, there are many reasons why we consider the
SM merely as a low energy effective theory of some fundamental theory. In particular,

quadratic divergence in the SM Higgs mass seems to call for new physics beyond the
SM around ∼ O(1) TeV. SUSY models with R−parity conservation are well motivated

new physics scenarios due to gauge coupling unification and the presence of dark matter
candidates. In SUSY models, the flavor and CP structures of the soft SUSY breaking

terms have rich structures, and there could be large deviations in some processes involving
B and K mesons, without any conflict with the current status of CKM phenomenology.

In this talk, I will give a few such examples, in which we can have large deviations from
the SM predictions, even if the CKM triangle in the SUSY models has the same shape

as in the SM. More specifically, we will discuss the branching ratio of B → Xdγ and CP

asymmetry therein, CP asymmetries in B → Xsγ and Bd → φKs, Bs − Bs mixing (both
the modulus and the phase), and Bs → µ+µ− as well as ǫ

′

/ǫK . The future experiments at

B factories should study these processes in greater detail, thus testing the CKM paradigm
within the SM and exploring the flavor and CP structures of SUSY models.

In phenomenological study of SUSY models, it is crucial to include the soft SUSY
breaking terms. However, we do not understand the nature of SUSY breaking in our

world, and thus we do not know the flavor and CP structures of soft SUSY breaking
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terms. This makes it difficult to study flavor physics and CP violation within SUSY
models, and most results are admittedly model dependent. In the following, we take

two different approaches: (i) we use the mass insertion approximation (MIA) assuming
gluino-squark loop contributions are dominant, or (ii) we work in specific SUSY breaking

scenarios which are theoretically well motivated. Even if our current strategies are not
perfect, our analysis method could be used in other cases, and we don’t expect that we lose

generic features by such strategies. Eventually we will want to measure all the soft SUSY

breaking parameters. It would not be easy to get informations on flavor and CP violating
soft terms from LHC/NLC alone, and the low energy processes involving K, B mesons

and µ, τ leptons will give invaluable informations on flavor and/or CP violating soft SUSY
breaking parameters, when combined with the informations on the SUSY particle mass

spectra and flavor diagonal couplings measured at LHC and NLC.
The plan of my talk is the following. In Section 2 and Section 3, I will discuss b → d

and b → s transitions within MIA, including B → Xdγ and CP asymmetry therein, CP
asymmetries in B → Xsγ and Bd → φKS, and Bs − Bs mixing. In Section 4, I discuss

some correlation between SφK and ǫ
′

/ǫK within the RR dominance scenario: namely the
sR → dL transition induced by the bR → sR transition. In Section 5, I’ll discuss the

Bs → µ+µ− as a useful probe of SUSY breaking mechanisms. In Section 6, I will discuss
possible interplay between B physics and cosmology with two examples: (i) B physics

and electroweak baryogenesis (EWBGEN) within SUSY models, and (ii) the correlation
between Bs → µ+µ− and the neutralino dark matter (DM) scattering cross section. Then

I conclude in Section 7.

2. b→ d transition: Bd −Bd mixing and CP asymmetry in B → Xdγ

In general SUSY models, squark mass matrices are not diagonal in the basis where

quark masses are diagonal. Therefore the g̃ − qi − q̃j vertex can change the (s)quark
flavor, leading to dangerous flavor changing neutral current (FCNC) processes at one

loop level with strong interaction strength. Various low energy data such as K0 − K0

and B0
d(s) − B0

d(s) mixings, Re (ǫ
′

/ǫK) and B → Xd(s)γ etc. will put strong constraints

on such flavor changing g̃ − qi − q̃j vertex. In the limit of degenerate squark masses,
FCNC amplitude vanishes. Therefore the almost degenrate squark masses may be the

good starting point to study gluino-mediated FCNC within general SUSY models, and

the so-called masss insertion approximation (MIA) is convenient in this case [1,2]. In this
section, we consider b→ d transition due to gluino mediation within MIA, relegating the

b→ s and s→ d transitions to the following sections.
Observations of large CP violation in B → J/ψKS at B factories [3]

sin 2βψK = (0.731± 0.056) (1)

confirm the SM prediction, and begin to put a strong constraint on new physics contri-

butions to B0 − B0 mixing and B → J/ψKS, when combined with

∆mBd
= (0.502± 0.007) ps−1, Br(B → Xdγ) < 1× 10−5.



(a) LL mixing (b) All (c) Ab→dγ
CP

Figure 1: (a) The allowed range in the LL insertion case for the parameters (Re(δd13)AB, Im(δd13)AB) for
different values of the KM angle γ with different color codes: dark (red) for 0◦ ≤ γ ≤ 90◦, light gray
(green) for 90◦ ≤ γ ≤ 180◦, very dark (blue) for 180◦ ≤ γ ≤ 270◦ and gray (magenta) for 270◦ ≤ γ ≤ 360◦.
The region leading to a too large branching ratio for Bd → Xdγ is colored lightly and covered by parallel
lines. (b) and (c) are the dilepton charge asymmetry All, and the direct CP asymmetry in B → Xdγ as
functions of γ. The SM predictions for γ = 55◦ are indicated by the black boxes.

Here the Bd → Xdγ branching ratio constraint was extracted from the recent experimental

upper limit on the B → ργ branching ratio [4] B(B → ργ) < 2.3× 10−6. Since the decay

B → J/ψKS is dominated by the tree level SM process b → cc̄s, we expect the new
physics contribution may affect significantly the B0 − B0 mixing only and not the decay

B → J/ψKS. However, in the presence of new physics contributions to B0 − B0 mixing,
the same new physics will generically affect the B → Xdγ process [5], which is also loop

suppressed in the SM [6]. In the following, we consider B0 − B0 mixing, B → J/ψKS

and Bd → Xdγ assuming that the main SUSY contribution is from gluino-squark loops

in addition to the usual SM contribution.
In Fig. 1 (a), we show the allowed parameter space in the (Re(δd13)LL, Im(δd13)LL) plane

for different values of the KM angle γ with different color codes. The region leading to
too large a branching ratio for Bd → Xdγ is covered by parallel lines. Note that B → Xdγ

plays an important role here. And the region where the dilepton charge asymmetry All
(see Ref. [5] for the definition) falls out of the data Aexp

ll = (0.2 ± 1.4) % [7] within 1σ

range is already excluded by the B → Xdγ branching ratio constraint [ Fig. 1 (b) ]. Note
that the KM angle γ should be in the range between ∼ −60◦ and ∼ +60◦, and All can

have the opposite sign compared to the SM prediction, even if the KM angle is the same
as its SM value γSM ≃ 55◦ due to the SUSY contributions to B0 − B0 mixing. In Fig. 1

(c), we show the direct CP asymmetry in Bd → Xdγ as a function of the KM angles γ for

the LL insertion case. The direct CP asymmetry is predicted to be between ∼ −15% and
∼ +20%. In the LL mixing case, the SM gives the dominant contribution to Bd → Xdγ,

but the KM angle can be different from the SM case, because SUSY contributions to the
B0 − B0 mixing can be significant so that the preferred value of γ can change from the

SM KM fitting. ( This is the same in the rare kaon decays and the results obtained in



Ref. [8,9] apply without modifications. ) Therefore, it is possible to have large deviations
in the Bd → Xdγ branching ratio and the direct CP violation thereof.

(a) LR mixing (b) All (c) Ab→dγ
CP

Figure 2: The LR mixing case. The captions are the same as Fig 1.

For the LR mixing, the B(Bd → Xdγ) puts an even stronger constraint compared to
the LL insertion case [ Fig. 2 (a) ], whereas the All does not put any new constraint [ Fig. 2

(b) ]. In particular, the KM angle γ can not be too much different from the SM value in

the LR mixing case, once the B(Bd → Xdγ) constraint is included. Only 30◦ . γ . 80◦

is compatible with all the data from the B system, even if we do not consider the ǫK
constraint. The resulting parameter space is significantly reduced compared to the LL
insertion case. In Fig. 2 (b), we show the predictions for All as a function of the KM angle

γ for the LR insertion only. Note that the B → Xdγ constraint rules out almost all the
parameter space region, and the resulting All is essentially the same as for the SM case.

In Fig. 2 (c), we find that there could be substantial deviation in the CP asymmetry in
Bd → Xdγ from the SM predictions, even if the ∆mB and sin 2β is the same as the SM

predictions as well as the data. For the LL insertion, such a large deviation is possible,
since the KM angle γ can be substantially different from the SM value. On the other

hand, for the LR mixing, the large deviation comes from the complex (δd13)LR even if
the KM angle is set to the same value as in the SM. The size of (δd13)LR is too small

to affect the B0 − B0 mixing, but is still large enough to affect B → Xdγ. Our model
independent study indicates that the current data on the ∆mB, sin 2β and All do still

allow a possibility for large deviations in B → Xdγ, both in the branching ratio and

the direct CP asymmetry thereof. These observables are indispensable to test the KM
paradigm for CP violation completely and get ideas on possible new physics with new

flavor/CP violation in b → d transition.
Summarizing this section, we considered the gluino-mediated SUSY contributions to

B0−B0 mixing, B → J/ψKS and B → Xdγ in the mass insertion approximation. We find
that the LL mixing parameter can be as large as |(δd13)LL| . 2×10−1, but the LR mixing is

strongly constrained by the B → Xdγ branching ratio: |(δd13)LR| . 10−2. The implications
for the direct CP asymmetry in B → Xdγ are also discussed, where substantial deviations



from the SM predictions are still possible both in the LL and LR insertion cases even if
γ ≃ γSM. Our analysis demonstrates that all the observables, All, the branching ratio of

B → Xdγ and the direct CP violation thereof are very important, since they could provide
informations on new flavor and CP violation from (δd13)LL,LR (or any other new physics

scenarios with new flavor/CP violations). These will provide strong constraints on SUSY
flavor models that attempt to solve hierarchies in the Yukawa couplings and SUSY flavor

problems using some flavor symmetry groups [10]. Also they are indispensable in order

that we can ultimately test the KM paradigm for CP violation in the SM, since one can
have very different branching ratio and CP asymmetry for B → Xdγ for the SM values

of the CKM matrix elements, if there is a new physics beyond the SM with new sources
of flavor and CP violations.

3. b→ s transition: Bd → φKS and Bs − Bs mixing

B → φK is a powerful testing ground for new physics. Because it is loop suppressed in

the standard model (SM), this decay is very sensitive to possible new physics contributions
to b → sss̄, a feature not shared by other charmless B decays. Within the SM, it

is dominated by the QCD penguin diagrams with a top quark in the loop. Therefore

the time dependent CP asymmetries are essentially the same as those in B → J/ψKS:
sin 2βφK ≃ sin 2βψK +O(λ2) [11].

Recently both BaBar and Belle reported the branching ratio and CP asymmetries in
the Bd → φKS decay:

AφK(t) ≡
Γ(B

0

phys(t) → φKS)− Γ(B0
phys(t) → φKS)

Γ(B
0

phys(t) → φKS) + Γ(B0
phys(t) → φKS)

= −CφK cos(∆mBt) + SφK sin(∆mBt), (2)

where CφK and SφK are given by

CφK =
1− |λφK |

2

1 + |λφK |2
, and SφK =

2 ImλφK
1 + |λφK |2

, (3)

with

λφK ≡ −e−2i(β+θd)
A(B

0
→ φKS)

A(B0 → φKS)
, (4)

and the angle θd represents any new physics contributions to the Bd − Bd mixing angle.
The current world average is [12]

sin 2βφK = SφK = (0.34± 0.20),

which is about 2 σ lower than the SM prediction: sin 2βJ/ψKS
= (0.731 ± 0.056). The

direct CP asymmetry in Bd → φKS is also measured, and is consistent with zero [13]:
CφKS

= (−0.04± 0.17).

In the following, we assume that the b̃A − s̃B (with A,B = L or R) mixing has a new
CP violating phase, and study its effects on SφK , B → Xsγ, the direct CP asymmetry



Figure 3: The allowed region in the plane of (a) the (Re δLL, Im δLL ), (b) SφK and Ab→sγ
CP

, (c) SφK

and sin 2βs for the case of a single LL insertion, with mg̃ = m̃ = 400GeV. The dotted boxes show the
current 1σ expermental bounds, and the hahsed regions correspond to B(Bd → φK0) > 1.6× 10−5.

therein and B0
s − B0

s mixing. Higgs-mediated b → sss̄ transition could be enhanced for
large tan β. However, once the existing CDF limit on B(Bs → µ+µ−) < 5.8 × 10−7 [14]

is imposed on the Higgs mediated b→ sss̄, it is found too small an effect on SφK [15,16].
(The discussions on chargino loop contributions can be found in Ref. [17].)

We calculate the Wilson coefficients of the operators for ∆B = 1 effective Hamiltonian
at the scale µ ∼ m̃ ∼ mW . Then we evolve the Wilson coefficients to µ ∼ mb using

the appropriate renormalization group (RG) equations, and calculate the amplitude for
B → φK using the BBNS approach [18] for estimating the hadronic matrix elements. The

details of the effective Hamiltonian and the Wilson coefficients can be found in Ref. [15,16].
In the numerical analysis presented here, we fix the SUSY parameters to be mg̃ =

m̃ = 400 GeV. In each of the mass insertion scenarios to be discussed, we vary the mass
insertions over the range

∣

∣δdAB
∣

∣ ≤ 1 to fully map the parameter space. We then impose

two important experimental constraints. First, we demand that the predicted branching

ratio for inclusive B → Xsγ fall within the range 2.0×10−4 < B(B → Xsγ) < 4.5×10−4,
which is rather generous in order to allow for various theoretical uncertainties. Second,

we impose the current lower limit on ∆Ms > 14.9 ps−1.
A new CP-violating phase in (δdAB)23 will also generate CP violation in B → Xsγ. The

current world average of the direct CP asymmetry Ab→sγ
CP is [13] Ab→sγ

CP = (0.5 ± 3.6)%,
which is now quite constraining (see also the discussion in Sec. 5.1 and Fig. 6). Within

the SM, the predicted CP asymmetry is less than ∼ 0.5%, and a larger asymmetry would
be a clear indication of new physics [19]. Where relevant, we will show our predictions

for Ab→sγ
CP .

We begin by considering the case of a single LLmass insertion: (δdLL)23. The results are

shown in Fig. 3 (a)–(c). We get similar results for a single RR insertion (see Ref.s [15,16]
for more details). Scanning over the parameter space consistent with B → Xsγ and ∆Ms

constraints (Fig. 3 (a)), we find that SφK > 0.5 for mg̃ = m̃ = 400GeV and for any value
of |(δdLL)23| ≤ 1, the lowest values being achieved only for very large ∆Ms (Fig. 3 (b) and

(c)). If we lower the gluino mass down to 250GeV, SφK can shift down to ∼ 0.05, but only

in a small corner of parameter space. Similar results hold for a single RR insertion. Thus
we conclude that the effects of the LL and RR insertions on B → Xsγ and B → φK are



Figure 4: The allowed region in the plane of (a) the (Re δLR, Im δLR ), (b) SφK and CφK , and (c) SφK

and Ab→sγ
CP

, for the case of a single LR insertion, with mg̃ = m̃ = 400GeV. The dotted boxes show the
current 1σ expermental bounds, and the hashed regions correspond to B(Bd → φK0) > 1.6× 10−5.

not very dramatic, although it can marginally accommodate the current world average of

SφK . Especially it is not likely to generate a negative SφK , unless gluino and squarks are

relatively light. Nonetheless, their effects on Bs−Bs mixing could be very large, providing
a clear signature for LL or RR mass insertions (Fig. 3 (c)).

Next we consider the case of a single LR insertion. Scanning over the parameter space
and imposing the constraints from B → Xsγ and ∆Ms, we find |(δdLR)23| . 10−2. This is,

however, large enough to significantly affect Bd → φKS, both its branching ratio and CP
asymmetries, through the contribution to the chromomagnetic dipole moment operator.

In Fig.s 4 (a) and (b), we show the allowed region in the complex (δd23)LR plane with the
contours of SφK , and the correlation between SφK and CφK . Since the LR insertion can

have a large effect on the CP-averaged branching ratio for B → φK we further impose
that B(B → φK) < 1.6×10−5 (which is twice the experimental value) in order to include

theoretical uncertainties in the BBNS approach related to hadronic physics. We can see
that the B → φK branching ratio constrains (δdLR)23 just as much as B → Xsγ. Also we

can get a large negative SφK , but only if CφK is also negative. The correlation between
SφK and the direct CP asymmetry in B → Xsγ (≡ Ab→sγ

CP ) is shown in Fig. 4 (c). We find

Ab→sγ
CP becomes positive for a negative SφK , while a negative A

b→sγ
CP implies that SφK > 0.6.

The present world average on Ab→sγ
CP gives additional constraint on the LR model, and

the resulting SφK is consistent with the data. Finally, the deviation of Bs − Bs mixing

from the SM prediction is very small for |(δ23)LR| . 10−2. Thus we conclude that a single
LR insertion can accommodate large deviation in SφK from the SM rather easily with

m̃ = mg̃ = 400 GeV. This scenario can be tested by measuring a positive direct CP
asymmetry in B → Xsγ and Bd-B̄d mixing consistent with the SM.

We also studied the RL dominance scenario, and the generic feature is similar to
the LR insertion case except that (i) the B → Xsγ branching ratio gives a different

constraint from the LR insertion case, since the SM contribution does not interfere with
the RL contribution, and (ii) direct CP asymmetry in B → Xsγ is zero unless there is

additional RR insertion. See Ref.s [15,16] for further detail.
Now let us provide possible motivation for values of (δdLR,RL)23 . 10−2 that could shift

SφK from the SM value rather easily. In particular, at large tan β it is possible to have



double mass insertions which give sizable contributions to (δdLR,RL). First a (δdLL)23 or
(δdRR)23 ∼ 10−2 is generated. The former can be obtained from renormalization group

running even if its initial value is negligible at the high scale. The latter may be implicit
in SUSY GUT models with large mixing in the neutrino sector [20]. Alternatively, in

models in which the SUSY flavor problem is resolved by an alignment mechanism using
spontaneously broken flavor symmetries, or by decoupling, the resulting LL orRRmixings

in the 23 sector could easily be of order λ2 [10,21]. However as discussed above, this size of

the LL and/or RR insertions can not explain the measured CP asymmetry in Bd → φKS

unless the squarks and gluinos are rather light. But at large tan β, the LL and RR

insertions can induce the RL and LR insertions needed for SφK through a double mass
insertion [8,9]:

(δdLR,RL)
ind
23 = (δdLL,RR)23 ×

mb(Ab − µ tanβ)

m̃2
.

One can achieve (δdLR,RL)
ind
23 ∼ 10−2 if µ tanβ ∼ 104GeV, which could be natural if tan β

is large (for which Ab becomes irrelevant). Note that in this scenario both the LL(RR)
and LR(RL) insertions would have the same CP violating phase, since the phase of µ here

is constrained by electron and down-quark electric dipole moments. Lastly, one can also
construct string-motivated D-brane scenarios in which LR or RL insertions are ∼ 10−2

[16].
Summarizing this section, we considered several classes of potentially important SUSY

contributions to B → φKS in order to see if a significant deviation in its time-dependent
CP asymmetry SφK could arise from SUSY effects. The Higgs-mediated FCNC effects are

small. The models based on the gluino-mediated LL and RR insertions give a rather small
deviation in SφK from the SM prediction, unless the squarks and gluinos are relatively

light. On the other hand, the gluino-mediated contribution with LR and/or RL insertions

can lead to sizable deviation in SφKS
, as long as |(δdLR,RL)23| ∼ 10−3−10−2. As a byproduct,

we found that nonleptonic B decays such as B → φK begin to constrain |(δdLR,RL)23| as

strongly as B → Xsγ. Besides producing no measurable deviation in B0 − B̄0 mixing,
the RL and LR operators generate definite correlations among SφK , CφK and Ab→sγ

CP , and

our prediction for SφK can be easily tested by measuring these other observables. Finally,
we also point out that the |(δdLR,RL)23| . 10−2 can be naturally obtained in SUSY flavor

models with double mass insertion at large tanβ, and in string-motivated models [16].

4. sR → dL transition induced by bR → sR transition : Re (ǫ
′

/ǫK) vs. SφK

Assuming that the current low value of SφK is a signal of new physics, we need a new

CP violating phase in b → s transition. An attractive possibility for such new physics
beyond the SM occurs in supersymmetric grand unified theories (SUSY GUT’s) scenarios

with seesaw mechanism for neutrino masses and mixings. In such scenarios, the large
atmospheric neutrino oscillation can be related with a large b → s transition through

down type squark and gluino loop effects. This flavor changing effect is parametrized
by a mixing parameter (δd23)RR with a CP phase ∼ O(1). For low tanβ, the single RR

insertion can lead to some deviation in SφK , if gluinos and squarks are relatively light.
For large tan β case, the double mass insertion can lead to effective RL insertion of 10−2,
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Figure 5: Feynman diagrams for (a) b → sg with double mass insertions, (b) strange quark CEDM with
triple mass insertions, and (c) s → dg with triple mass insertions, involving (δd23)RR as the dominant
source of new CP violating parameter contributing to SφK and Re (ǫ

′

/ǫK).

leading to a significant deviation in SφK from the SM prediction. In Fig. 5 (a), we show
the Feynman diagram for b→ sg involving a CP violating (δd23)RR.

The new CP violating phase in the RR insertion can affect the strange quark chromo-
electric dipole moment (CEDM) through triple mass insertions, if there is an LL insertion

between third and second generation down squarks. [ Fig. 5 (b) ] [22,23,24]. Since the LL
insertion is generically present in the minimal supergravity (mSUGRA) case, the strange

quark CEDM puts a strong constraint on the possible deviation of SφK from the SM
prediction. However, the substantial theoretical uncertainties occurring when one relates

the quark CEDM’s with the hadronic EDM’s suggest that it would be preferable to have

some other observable at disposal in addition to the strange quark CEDM in order to
constrain SφK .

In this section, we point out that the phase in the (δd23)RR mixing parameter that
would affect SφK can also contribute to direct CP violation within the neutral kaon sys-

tem, namely Re (ǫ
′

/ǫK) through triple mass insertion. The Feynman diagram for Re
(ǫ

′

/ǫK) with triple mass insertion [ Fig. 5 (c) ] is very similar to the Feynman diagram

for the strange quark CEDM [ Fig. 5 (b) ]. Needless to say, making use of the observ-
able Re (ǫ

′

/ǫK) to constrain some SUSY soft breaking parameters also entails theoretical

uncertainties mainly ascribed to our ignorance in the evaluation of the relevant hadronic
matrix elements. Our discussion shows that, even taking into account such a huge degree

of uncertainty, Re (ǫ
′

/ǫK) still constitutes a precious tool in constraining the interesting
flavor changing mass insertion parameter (δd32)RR and, in any case, it plays at least a

complementary role to the strange quark CEDM in performing such a task.
In this talk, I’ll illustrate the main point in a simple way, relegating the detailed

analysis including theoretical uncertaintiess to Ref. [25]. If the (δd23)RR mixing is the

dominant new physics contribution to Bd → φKS, we find the following from (5) and (9)
in the previous sections :

Re(ǫ
′

/ǫK) : C
SUSY
8g (∆S = 1) ∝ f1(x) (δ

d
13)LL(δ

d
33)LR(δ

d
32)RR, (5)

SφK : CSUSY
8g (∆B = 1) ∝ f2(x) (δ

d
32)RR + f3(x)

mg̃

mb

(δd33)RL(δ
d
23)RR, (6)

where fi=1,2,3(x) are the loop functions obtained in the previous sections. Now, if the



SUSY contribution saturates Re (ǫ
′

/ǫK), then it is well known that one has to satisfy

|(δd13)LL(δ
d
33)LR(δ

d
32)RR| . 10−5

with an O(1) phase [2]. Since the RG evolution generates (δd13)LL ∼ λ3 within mSUGRA

scenario, we can derive the following upper bound:

|(δd33)LR(δ
d
32)RR| . 10−2. (7)

Note that this combination enters the calculation of SφK andB → Xsγ throughC8g(7γ)(∆B =

1) along with (δd32)RR. For a small µ tanβ (corresponding to a small (δd33)RL), one can have
larger (δd32)RR, which is constrained by the lower bound on ∆Ms and the B → Xsγ branch-

ing ratio. For a large µ tanβ (corresponding to a large (δd33)RL), (δ
d
32)RR should be smaller

in order to satisfy (7), which would be less constrained by ∆Ms and the B(B → Xsγ). In

either case, we can expect that the deviation in SφK cannot be that large for such (δd32)RR
satisfying the Re (ǫ

′

/ǫK) constraint, (7).

In Figs. 6 (a) and (b), we show the plots for SφK and Re (ǫ
′

/ǫK) for µ tanβ = 1 and
5 TeV, respectively, with m̃ = mg̃ = 500 GeV. The thick vertical error bar shows the

current data on SφK , and the two dashed vertical lines delimit the experimental value of
Re (ǫ

′

/ǫK) [3],

Re (ǫ
′

/ǫK) = (16.7± 2.6)× 10−4. (8)

The full black box shows our estimation of SφK and Re (ǫ
′

/ǫK) within the SM. Its width

and height are the uncertainties in Re (ǫ
′

/ǫK) and SφK , respectively. Note that the Re
(ǫ

′

/ǫK) data gives a strong constraint on the possible value of SφK even if there are large

hadronic uncertainties. Note that the constraint from Re (ǫ
′

/ǫK) is comparable to that
from the strange quark CEDM. In particular the positive (negative) SφK is correlated

with the positive (negative) Re (ǫ
′

/ǫK) within minimal SUGRA boundary conditions.

In particular, the old Belle data with the negative SφK implies a negative Re (ǫ
′

/ǫK)
in the RR dominance scenario such as SUSY GUT models with right-handed neutrinos,

which is clearly excluded by the data Re (ǫ
′

/ǫK) = (16.7 ± 2.6) × 10−4. If the old
Belle data were still valid, then the RR dominace scenario should have been discarded.

Our results provide a meaningful correlation between SφK and Re (ǫ
′

/ǫK) despite of large
hadronic uncertainties in both quantities. This is independent of the strange quark CEDM

constraint, and probably has less theoretical uncertainties.
If we considered more general flavor structures in the scalar masses at M∗, then our

results will be changed accordingly. The Wilson coefficients for C8g’s for both ∆B(S) = 1
have to include other mass insertion parameters such as (δd23)LR, (δ

d
12)LL, (δ

d
23)LL, etc.,

which were neglected in Secs. II and III because they are small within the mSUGRA
scenarios. Still we should make it sure that the new flavor physics that affects SφK does

not contribute to Re(ǫ
′

/ǫK) too much, and this could make a strong constraint on new
sources of flavor and CP violation despite of theoretical uncertainties on Re(ǫ

′

/ǫK).

In summary, we showed that if the RR b → s transition is large with O(1) phase, it

can affect not only SφK through the double mass insertion and the strange quark CEDM
through triple mass insertion, it affects also the Re (ǫ

′

/ǫK). The correlation between the



(a) µ tanβ = 1 TeV (b) µ tanβ = 5 TeV

Figure 6: SφK vs. Re (ǫ
′

/ǫK) for (a) µ tanβ = 1 TeV and (b) µ tanβ = 5 TeV. with m̃ = mg̃ = 500

GeV. Experimental bounds on Re (ǫ
′

/ǫK) and SφK are depicted by the vertical dashed lines and the
thick vertical error bar, respectively. The SM predictions of them are marked by the black box, whose
extent indicates their uncertainties. The black curve does not include hadronic uncertainties, and the
gray region includes them. The respective uncertainties in Re (ǫ

′

/ǫ) and SφK are shown by the horizontal
and vertical error bars at some selected points.

two observables are strong despite large hadronic uncertainties in both observables within

mSUGRA boundary conditions with flavor universal scalar masses at M∗. The current
data on Re (ǫ

′

/ǫK) indicates that SφK should be in the range of 0.25–1.0, which is now in

accord with the present world average of SφK .

5. Bs → µ+µ− and SUSY breaking mechanisms

The Higgs sector of the MSSM is not Type II but Type III two-Higgs doublet model
due to the presence of the soft SUSY breaking terms. Therefore there are loop induced

nonholomorphic trilinear couplings, and this term can induce new FCNC involving neutral
Higgs bosons [26]. In the large tanβ region, this effect on the b − s−Higgs couplings

can be enhanced by tan2 β, and could dominate the Bs → µ+µ− process within SUSY

models in the large tan β region. Since its branching ratio within the SM is very small
((3.7 ± 1.2) × 10−9), this decay mode could be a sensitive probe of SUSY models in

the large tan β region. In Refs. [27], we studied the correlations between Bs → µ+µ−

branching ratio, the muon (g − 2), and other observables in the B system, imposing the

direct search limits on Higgs an SUSY particle masses, and B → Xsγ branching ratio
and assuming that (g − 2)SUSY

µ > 0 (namely µ > 0). In this section, I report the main

results of Refs. [27]. (The correlation between (g − 2)µ and Bs → µ+µ− was first noticed
in Ref. [28] within the minimal supergravity scenario.)

The soft SUSY breaking parameters at electroweak scale is determined by RG evolu-
tion with the initial condition at the messenger scaleMmess within a given SUSY breaking

scenario. The initial conditions depend on SUSY breaking mediation mechanisms: super-



gravity (including scenarios motivated by superstring theories, M−theories and D−brane
models), gauge mediation (GMSB), anomaly mediation (AMSB), gaugino mediation, to

name a few. Many of these scenarios predict flavor blind soft terms at the messenger
scale, and nontrivial flavor dependence in the soft terms are generated by RG evolution

from Mmess to electroweak scale µEW. Then the dominant contribution to b → s tran-
sition comes from the chargino-stop loop diagram. Therefore, in order to have a large

branching ratio for Bs → µ+µ−, we need large t̃L − t̃R mixing, light chargino and stops,

and large µ tanβ. If these conditions cannot be met, there would be no chance to observe
Bs → µ+µ− in the near future at the Tevatron.
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Figure 7: The contour plots for aSUSY
µ in unit of 10−10 (in the blue short dashed curves), the lightest

neutral Higgs mass (in the black dash-dotted curves) and the Br (Bs → µ+µ−) (in the red solid curves)
for the GMSB scenario in the (M1, tanβ) plane with (a) Nmess = 1 and Mmess = 1015 GeV, (b) Nmess = 5
and Mmess = 1015 GeV. In (c), we show the branching ratio for Bs → µ+µ− as a function of the messenger
scale Mmess in the GMSB with Nmess = 1 for various Λ’s with a fixed tanβ = 50. The dashed parts are
excluded by the direct search limits on the Higgs and SUSY particle masses.

As an example, let us consider GMSB scenarios, which are specified by the following

set of parameters: M , N , Λ, tanβ and sign(µ), where N is the number of messenger
superfields, M is the messenger scale, and the Λ is SUSY breaking scale, Λ ≈ 〈FX〉/〈X〉,

where X is a gauge singlet superfield X , the vacuum expectation value of which (both
in the scalar and the F components) will induce SUSY breaking in the messenger sector.

If the messenger scale (where the initial conditions for the renormalization group (RG)

running for soft parameters are given) is low such as 106 GeV, the flavor changing ampli-
tude involving the gluino-squark is negligible and only the chargino-upsquark contribution

is important in B → Xsγ. Also, in the GMSB scenario with low messenger scale, the
charged Higgs and stops are heavy and their effects on the B → Xsγ and Bs → µ+µ−

are small. Also At is small, since it can generated by only RG running. Therefore the
stop mixing angle becomes also small. These effects lead to very small branching ratio for

Bs → µ+µ− (. 10−8), making this decay unobservable at the Tevatron Run II. On the
other hand, the aSUSY

µ can be as large as 60 × 10−10. If we assume the messenger scale



be as high as the GUT scale, the RG effects become strong and the stops get lighter.
Also the At parameter becomes larger at the electroweak scale, and so is the stop mixing

angle. Therefore the chargino-stop loop contribution can overcompensate the SM and
charged Higgs - top contributions to B → Xsγ and this constraint becomes more impor-

tant compared to the lower messenger scale. Also the Bs → µ+µ− branching ratio can
be enhanced (upto 2 × 10−8 for tanβ = 50, for example), because stops become lighter

and larger t̃L − t̃R mixing is possible [ Fig. 7 (a) ]. If the number of messenger field is

increased from N = 1 to 5, for example, the scalar fermion masses become smaller at the
messenger scale, and stops get lighter in general. Therefore the chargino-stop effects in

B → Xsγ and Bs → µ+µ− get more important than the N = 1 case, and the Bs → µ+µ−

branching ratio can be enhanced upto 2×10−7 [ Fig. 7 (b) ]. In short, the overall features

in the GMSB scenarios with high messenger scale look alike the mSUGRA with A0 = 0.
Especially the branching ratio for the decay Bs → µ+µ− can be much more enhanced

for large tan β in the GMSB scenario with high messenger scale [ Fig. 7 (c) ]. Thus,
if aSUSY

µ > 0 and the decay Bs → µ+µ− is observed at the Tevatron Run II with the

branching ratio larger than 2× 10−8, the GMSB scenario with N = 1 would be excluded
upto Mmess ∼ 1010 GeV and tanβ . 50.

In the AMSB scenario, the hidden sector SUSY breaking is assumed to be mediated
to our world only through the auxiliary component of the supergravity multiplet (namely

super-conformal anomaly) [29]. In this scenario, the gaugino masses are proportional
to the one-loop beta function coefficient for the MSSM gauge groups, whereas the tri-

linear couplings and scalar masses are related with the anomalous dimensions and their

derivatives with respect to the renormalization scale. Since the original AMSB model
suffers from the tachyonic slepton problem, we simply add a universal scalar mass m2

0

to the scalar fermion mass parameters of the original AMSB model, and assume that
the aforementioned soft parameters make initial conditions at the GUT scale for the RG

evolution. Thus, the minimal AMSB model is specified by the following four parame-
ters : tanβ, sign(µ), m0, Maux. We scan these parameters over the following ranges :

20 TeV ≤ maux ≤ 100 TeV, 0 ≤ m0 ≤ 2 TeV, 1.5 ≤ tan β ≤ 60, and sign(µ) > 0. In
the case of the AMSB scenario with µ > 0, the B → Xsγ constraint is even stronger

compared to other scenarios. and almost all the parameter space with large tan β > 30 is
excluded. Also stops are relatively heavy in this scenario mainly due to the universal ad-

dition of m2
0. Therefore the branching ratio for Bs → µ+µ− is smaller than 4× 10−9, and

this process becomes unobservable at the Tevatron Run II. For the detailed discussions

on other variations of AMSB scenarios, see Refs. [27].
Summarizing this section, we showed that there are qualitative differences in cor-

relations among (g − 2)µ, B → Xsγ, and Bs → µ+µ− in various models for SUSY

breaking mediation mechanisms, even if all of them can accommodate the muon aµ:
10 × 10−10 . aSUSY

µ . 40 × 10−10. Especially, if the Bs → µ+µ− decay is observed at

the Tevatron Run II with the branching ratio greater than 2× 10−8, the GMSB with low
number of messenger fields N and certain class of AMSB scenarios would be excluded. On

the other hand, the minimal supergravity scenario and similar mechanisms derived from
string models, GMSB with large messenger scale and the deflected AMSB scenario can



accommodate this observation without difficulty for large tanβ [27]. Therefore search for
Bs → µ+µ− decay at the Tevatron Run II would provide us with important informations

on the SUSY breaking mediation mechanisms, independent of informations from direct
search for SUSY particles at high energy colliders. This is remarkable, since Bs → µ+µ−

could be an excellent discriminator of SUSY breaking mediations without directly pro-
ducing SUSY particles at all. Let us stay tuned with updated data analysis on this decay

by CDF and D0 collaborations at the Tevatron.

6. Interplay of B physics with cosmology

6.1. B physics and electroweak baryogenesis (EWBGEN) within SUSY models

Let us first discuss an effective SUSY model with minimal flavor violation [21]. In

this model, the 1st and the 2nd generation squarks are very heavy and almost degenerate,
thus evading SUSY flavor/CP problem. And flavor violation comes through CKM matrix,

whereas CP violation originates from the µ and At phases as well as the KM phase.
Therefore the stop-chargino loop have additioncal source of CP violation in addition to

the KM phase in the SM. One-loop electric dipole moment (EDM) constraint is evaded in
the effective SUSY model due to the decoupling of the 1st/2nd generation sfermions, but

there are poentially large two-loop contribution to electron/neutron EDM’s through Barr-
Zee type diagram in the large tan β region [30]. Imposing this two-loop EDM constraint

and direct search limits on Higgs and SUSY particles, we make the following observations
[31,32]:

• No new phase shifts in Bd − Bd and Bs − Bs mixings: Time dependent CP asym-
metries in Bd → J/ψKS still measures the KM angle β = φ1

• ∆MBd
can be enhanced upto ∼ 80% compared to the SM prediction

• Direct CP asymmetry in B → Xsγ (Ab→sγ
CP ) can be as large as ±15% ( Fig. 8 (a)

and (b) ) which is now strongly constrained by the data (0.5± 3.6)% [13]

• Rµµ ≡ B(B → Xsµ
+µ−)/B(B → Xsµ

+µ−)SM can be as large as 1.8, which is now
strongly constrained by the data from B factories [33]

• ǫK can differ from the SM value by ∼ 40% .

Therefore we predict substantial deviations in certain observables in the B and K systems

in SUSY models with minimal flavor violation and complex µ and At parameters. Even
if the At phase is set to zero, the predictoins do not change much. Now this model

is beginning to be strongly constrained by new data on the direct CP asymmetry in
B → Xsγ and Rµµ from B factories [33].

This class of models includes the electroweak baryogenesis (EWBGEN) within the

MSSM [34] and some of its extensions such as NMSSM or extra U(1) gauge symmetry,
where the chargino and stop sectors are the same as in the MSSM and the µ phase plays a
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Figure 8: Direct CP asymmetry in B → Xsγ as functions of (a) B(b → sγ) and (b) mχ (the lighter
chargino mass). The parameter space excluded by two loop EDM constraint is denoted by x.

key role to generate baryon number asymmetry. In the EWBGEN scenario within MSSM,

Murayama and Pierce argued that there could no large CP violating effects from the µ
phase on B physics, except for the Bd(s) − Bd(s) mixing: 1 ≤ ∆Ms/(∆Ms)SM ≤ 1.30

[35]. This is mainly because of the strong tension between the light t̃R and heavy t̃L. In
the EWBGEN scenario, we need a strong 1st order phase transition, and this requires a

light t̃R. On the other hand, the current LEP bound on the lightest Higgs mass m0
h for

3 . tanβ . 6 (for larger tan β, the µ phase effect drops out) calls for heavy t̃L to generate

large stop loop corrections to m0
h.

However, the LEP bound on the lightest Higgs mass becomes less problematic in the

extensions of MSSM such as NMSSM or MSSM with extra U(1) gauge group, because
there are tree level contributions to the Higgs mass. Therefore the tension between the

light t̃R and the heavy t̃L becomes much milder compared to the MSSM, and our predic-
tions on the B system still remain valid in such scenarios.

6.2. Neutralino dark matter scattering and Bs → µ+µ−

In SUSY models with R−parity conservation, the lightest superparticle (LSP) is sta-
ble and becomes a good candidate for dark matter of the universe. In particular, the

neutralino (χ) LSP is a nice candidate for cold dark matter, and could be detected in
the laboratory through (in)elastic scattering with nuclei. There are several direct search

experiments going on around the world [36]. A few years ago, the DAMA Collaboration
reported a positive signal in the range of σχp = (10−5 − 10−6) pb with mχ at electroweak

scale [37]. However this was not confirmed by other experiments. Recently, the DAMA
signal region has been excluded by the CDMS cryogenic DM search experiment [38] in

the range of
σχ̃p = (10−6 − 10−5) pb,

with the corresponding DM mass depends on galactic halo models. Since the CDMS

experiment probes the DM scattering down to 3 × 10−7 pb level in certain range of
DM mass, it is important to calculate the DM scattering cross section within well defined



and/or motivated SUSY models, in which the cross section can be in the CDMS sensitivity.
Anyway the present sensitivity of the ongoing DM scattering experiments is roughly 10−6

pb, and it is important to identify the parameter space of general MSSM which can be
probed by the DM scattering experiments.

In the following we show that there is a strong correlation between σχp and Bs → µ+µ−

[39]. In the large tanβ region of SUSY models, both processes are dominated by neutral

Higgs exchange diagram, and the amplitudes for these two processes depend on tan β as

M(Bs → µ+µ−) ∝ tan3 β/m2
A,

M(χ0p→ χ0p) ∝ tanβ/m2
A. (9)

Therefore one can expect some correlation between the two obervables in the large tan β
limit. Since the current limit on B(Bs → µ+µ−) is already tight enough, this could

provide an important constraint on the neutralino DM scattering cross section.
In the minimal supergravity model with R−parity conservation, the LSP is binolike

neutralino in most parameter space, and the spin-independent dark matter scattering
cross section σχp turns out to be very small . 10−8 pb, after imposing various constraints

from Higgs and SUSY particle masses, B → Xsγ, etc. [ Fig. 9 (a) ]. The mSUGRA
models cannot give a large enough σχp in the signal regions of DAMA and CDMS or

in the sensitivity region of other experiments down to ∼ 10−8 pb. However, the usual
minimal SUGRA boundary conditions for soft parameters are too much restrictive without

theoretical justification, and it is important to study the dark matter scattering in more
general supergravity models with nonuniversal soft terms [40]. In such case, one has to be

careful not to overproduce flavor changing neutral current processes, which is a subject
of this subsection.

As discussed before, the universal soft parameters are too restricted assumption with-

out solid ground within supergravity framework. In order to consider more generic situa-
tion within supergravity scenario, let us relax the assumption of universal soft masses as

follows:
m2
Hu

= m2
0 (1 + δHu

), m2
Hd

= m2
0 (1 + δHd

), (10)

whereas other scalar masses are still universal. Here δ’s are parameters with . O(1). By
allowing nonuniversality in the Higgs mass parameters, the situation changes, however.

For illustration of our main point, let us take the numerical values of δ’s as in Refs. [36,40]:

(I) δHd
= −1, δHu

= 1,

(II) δHd
= 0, δHu

= 1, (11)

For δHu
= +1, µ becomes lower and the Higgsino component in the neutralino LSP

increases so that σχp is enhanced, as discussed in Ref. [36]. The change of |µ| also has an

impact on the higgs masses because

m2
A = m2

Hu
+m2

Hd
+ 2µ2 ≃ m2

Hd
+ µ2 −M2

Z/2

at weak scale. For δHd
= −1, mA and mH becomes further lower, and both σχp and

B(Bs → µ+µ−) are enhanced. These features are shown in Fig.s 9 (b) and (c) for Case (I)
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Figure 9: σχ̃p vs. B(Bs → µ+µ−) within (a) mSUGRA with universal Higgs mass parameters for
tanβ = 10, 35 and 55 (from the left to the right), in SUGRA with nonuniversal Higgs mass parameters:
(b) δHu

= 1 and δHd
= −1 and (c) δHu

= 1 and δHd
= 0. Black dots for Ωχh

2 ≥ 0.13, red dots for
0.095 ≤ Ωχh

2 ≤ 0.13 and green dots for Ωχh
2 ≤ 0.095.

δ1 = -1, δ2 = + 1  (tanβ=35)

mχ(GeV)

σ χp
(p

b)

CDMS II limit

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

50 100 150 200 250 300 350 400 450

δ1 = -1, δ2 = + 1  (tanβ=50)

mχ(GeV)

σ χp
(p

b)

CDMS II limit

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

50 100 150 200 250 300 350 400 450

Figure 10: σχ̃p vs. the neutralino LSP mass, with the CDMS upper bound. The points which are
excluded by B(Bs → µ+µ−) < 5.7× 10−7 are denoted by red dots.

and (II), respectively. Note that the CDF upper bound B(Bs → µ+µ−) < 5.8× 10−7 [14]
provides a very strong constraint on the neutralino DM scattering cross section σχp, and

removes the parameter space where the DM scattering is within the reach of the current
DM search experiments.

The impact of the B(Bs → µ+µ−) branching ratio constraint becomes more transpar-
ent in Fig.s 10 (a) and (b). Here we plot the neutralino DM scattering cross sections as

functions of the LSP mass, imposing the CDMS bound as well as the B(Bs → µ+µ−).

The red points in the plots are excluded by B(Bs → µ+µ−) < 5.7×10−7. For tanβ = 35,
both constraints are comparable. However, for tanβ = 50, the Bs → µ+µ− branching

ratio puts a much stronger constraint than the direct search by CDMS. This clearly shows
the importance of Bs → µ+µ− when we study the neutralino DM scattering.

We also considered nonuniversal gaugino masses, in which case the most important
one is the gluino mass parameter via RG running. Therefore we allowed nonuniversality

only in the gluino mass parameter, and found that the qualitative feature is similar as
in nonuniversal Higgs masses. In particular the current limit on B(Bs → µ+µ−) already



puts a strong constraint on σχ̃p in the large tanβ region.
In summary, we found that the upper limit on B(Bs → µ+µ−) is an important con-

straint on SUSY parameter space in the large tanβ region, and the DM scattering cross
section could be strongly affected by this constraint. This is an example of an interesting

interplay between particle physics and cosmology.

7. Conclusion

In this talk, I discussed flavor physics within SUSY models, in particular where we

may expect large deviations from the SM predictions, even if the unitarity triangle is the
same as the SM case. This includes B → Xdγ, B → Xsγ, Bd → φKS, Bs − Bs mixing,

and Bs → µ+µ− as well as ǫ
′

/ǫK . Also I discussed some interplay between B physics
and cosmologically interesting SUSY scenarios. In EWBGEN scenarios within SUSY

models, one may expect a large direct CP violation in B → Xsγ, which is now strongly
constrained by the data. Dark matter scattering cross section and Bs → µ+µ− exhibit

a strong correlation for large tanβ. In particular, the branching ratio of Bs → µ+µ−

can exceed the current CDF limit, when the DM scattering cross section becomes large

within the sensitivity of the current DM search experiments: σχp ∼ (10−6 − 10−7) pb.

This is an example where B physics and cosmology show an interesting interplay, and the
upper limit on the branching ratio for Bs → µ+µ− becomes an important constraint on

SUSY parameter space in the large tan β region, even stronger than the CDMS bound. In
short, it is still possible to have substantial SUSY effects in the b→ s transition without

conflict with any other observed phenomena as of now. Therefore these processes should
be actively searched for at B factory experiments in the coming years. By doing so, we

can verify the CKM paradigm for flavor and CP violation, and better constrain the flavor
and CP structures of SUSY models. Or we may encounter some nice surprise from the

b→ s transition.
Note : Recently, the D0 collaboration presented a new data [41]:

B(Bs → µ+µ−) < 4× 10−7 (90% C.L.),

which is better than the CDF bound we used in the published paper. This D0 data would
improve slightly the bounds discussed in Sec. 4 and Sec. 5.2.
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