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Abstract

The quantum theory of the spin light of neutrino (SLν) exactly accounting for
the effect of the background matter is developed. The SLν rate and power, and also
the emitted photon’s energy are obtained for the different values of the neutrino mo-
mentum and density of matter. The spatial distribution of the radiation power and
the dependence of the emitted photon’s energy on the direction of radiation are stud-
ied. It is also shown that, in a wide range of the neutrino momentum and densities
of matter, the SLν radiation is characterized by nearly total circular polarization.
Conditions for the effective neutrino spin-light radiation in the electron plasma are
discussed.

1 Introduction

It is well known that a neutrino with non-zero mass may have non-trivial electromag-
netic properties. In particular, the Dirac massive neutrino can posses non-vanishing mag-
netic and electric dipole moments. It is believed that non-zero neutrino magnetic moment
could have an important impact on astrophysics and cosmology.

In the minimally extended Standard Model with SU(2)-singlet right-handed neutrino
the one-loop radiative correction generates neutrino magnetic moment which is propor-
tional to the neutrino mass [1]

µν =
3

8
√
2π2

eGFmν = 3× 10−19µ0

(

mν

1eV

)

, (1)
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where µ0 = e/2m is the Bohr magneton, mν and m are the neutrino and electron masses,
respectively. There are also models [2] in which much large values for magnetic moments
of neutrinos are predicted.

So far, the most stringent laboratory constraints on the electron, muon, and tau neu-
trino magnetic moments come from elastic neutrino-electron scattering experiments. The
now days constraints for the magnetic moments of the three flavour neutrinos are as fol-
lows [3]: µνe ≤ 1.5× 10−10µ0, µνµ ≤ 6.8× 10−10µ0, µντ ≤ 3.9× 10−10µ0 .

The recent studies of a massive neutrino electromagnetic properties within the one-loop
level, including the neutrino magnetic moment, can be found in [4], the detailed discus-
sion on the neutrino charge radius is also presented in [5, 6]. Electromagnetic properties
of a massive neutrino in external electromagnetic fields were studied in [7] and in the
background matter were discussed in [8] (see also [9] for a review).

In a series of papers [10,11] we have predicted that a massive neutrino moving in matter
and external electromagnetic and/or gravitational fields can emit electromagnetic radiation
due the neutrino non-zero magnetic moment. We have named this radiation the ”spin light
of neutrino” (SLν) in matter and external fields. The quasi-classical theory of the SLν
in matter was developed in [10, 11] on the basis of Bargmann-Michel-Telegdi equation
generalized [12–15] for the case of a neutrino moving in external fields. In our recent
papers [16] we have developed the quantum approach to the SLν in matter. However,
at the final stage of the performed calculations of the the SLν rate and total power we
have considered the limit of low matter density. Therefore, the evaluation of the consistent
quantum theory of the SLν in matter has still remained an open issue. Note that the
neutrino radiation due to the magnetic moment interaction with a constant magnetic field
was considered in [17].

Here below we present the quantum theory of the neutrino spin-light exactly accounting
for the effect of the background matter on the basis of the obtained [16] exact solutions of
the modified Dirac equation for the neutrino wave function in matter.

2 Neutrino wave function in matter

For developing of the quantum theory of the SLν in matter one has to find the neutrino
wave functions with the effect of matter accounted for. To derive the quantum equation
for the neutrino wave function in the background matter we start with the effective La-
grangian that describes the neutrino interaction with particles of the background matter.
For definiteness, we consider the case of the electron neutrino ν propagating through mov-
ing and polarized matter composed of only electrons (the electron gas). Assume that the
neutrino interactions are described by the extended standard model supplied with SU(2)-
singlet right-handed neutrino νR. We also suppose that there is a macroscopic amount
of electrons in the scale of a neutrino de Broglie wave length. Therefore, the interaction
of a neutrino with the matter (electrons) is coherent. In this case the averaged over the
matter electrons addition to the vacuum neutrino Lagrangian, accounting for the charged
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and neutral interactions, can be written in the form

∆Leff = −fµ
(

ν̄γµ
1+γ5

2
ν
)

,

fµ = GF√
2

(

(1 + 4 sin2 θW )jµ − λµ
)

,

(2)

where the electrons current jµ and electrons polarization λµ are given by

jµ = (n, nv), (3)

and

λµ =

(

n(ζv), nζ
√
1− v2 +

nv(ζv)

1 +
√
1− v2

)

, (4)

θW is the Weinberg angle.
The Lagrangian (2) accounts for the possible effect of the matter motion and polar-

ization. Here n, v, and ζ (0 6 |ζ|2 6 1) denote, respectively, the number density of the
background electrons, the speed of the reference frame in which the mean momenta of the
electrons is zero, and the mean value of the polarization vector of the background electrons
in the above mentioned reference frame. The detailed discussion on the determination of
the electrons polarization can be found in [13–15].

From the standard model Lagrangian with the extra term ∆Leff being added, we derive
the following modified Dirac equation for the neutrino moving in the background matter,

{

iγµ∂
µ − 1

2
γµ(1 + γ5)f

µ −m
}

Ψ(x) = 0. (5)

This is the most general equation of motion for a neutrino in which the effective potential
Vµ = 1

2
(1 + γ5)fµ accounts for both the charged and neutral-current interactions with the

background matter and also for the possible effects of the matter motion and polarization.
If we neglect the contribution of the neutral-current interaction and possible effects of

motion and polarization of the matter then from (5) we can get corresponding equations
for the left-handed and right-handed chiral components of the neutrino field derived in [18].

The generalizations of the modified Dirac equation (5) for more complicated matter
compositions (and the other flavour neutrinos) are just straightforward. For instance, if
one considers the case of realistic matter composed of electrons, protons and neutrons,
then the matter term in (5) is (see, for instance, [19], [14] and the second paper of [16])

fµ =
GF√
2

∑

f=e,p,n

jµf q
(1)
f + λµfq

(2)
f (6)

where

q
(1)
f =(I

(f)
3L − 2Q(f) sin2 θW + δef),

q
(2)
f =− (I

(f)
3L + δef),
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δef =

{

1 forf = e,

0 forf = n, p.

and I
(f)
3L is the value of the isospin third component of a fermion f , Q(f) is the value of its

electric charge and θW is the Weinberg angle. The fermion’s currents jµf and polarizations
λµf are given by eqs.(3) and (4) with the appropriate substitutions: n, ζ,v → nf , ζf ,vf .

In the further discussion below we consider the case when no electromagnetic field
is present in the background. We also suppose that the matter is unpolarized, λµ = 0.
Therefore, the term describing the neutrino interaction with the matter is given by

fµ =
G̃F√
2
(n, nv), (7)

where we use the notation G̃F = GF (1 + 4 sin2 θW ).
In the rest frame of the matter the equation (5) can be written in the Hamiltonian

form,

i
∂

∂t
Ψ(r, t) = ĤmattΨ(r, t), (8)

where
Ĥmatt = α̂p+ β̂m+ V̂matt, (9)

and

V̂matt =
1

2
√
2
(1 + γ5)G̃Fn, (10)

here p is the neutrino momentum. We use the Pauli-Dirac representation for the Dirac
matrices α̂ and β̂, in which

α̂ =

(

0 σ̂

σ̂ 0

)

= γ0γ, β̂ =

(

1 0
0 −1

)

= γ0, (11)

where σ̂ = (σ1, σ2, σ3) are the Pauli matrixes.
The form of the Hamiltonian (9) implies that the operators of the momentum, p̂, and

longitudinal polarization, Σ̂p/p, are the integrals of motion. So that, in particular, we
have

Σ̂p

p
Ψ(r, t) = sΨ(r, t), Σ̂ =

(

σ̂ 0
0 σ̂

)

, (12)

where the values s = ±1 specify the two neutrino helicity states, ν+ and ν−. In the
relativistic limit the negative-helicity neutrino state is dominated by the left-handed chiral
state (ν− ≈ νL), whereas the positive-helicity state is dominated by the right-handed chiral
state (ν+ ≈ νR).

For the stationary states of the equation (5) we get

Ψ(r, t) = e−i(Eεt−pr)u(p, Eε), (13)
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where u(p, Eε) is independent on the coordinates and time. Upon the condition that the
equation (5) has a non-trivial solution, we arrive to the energy spectrum of a neutrino
moving in the background matter:

Eε = ε

√

p2
(

1− sα
m

p

)2

+m2 + αm, (14)

where we use the notation

α =
1

2
√
2
G̃F

n

m
. (15)

The quantity ε = ±1 splits the solutions into the two branches that in the limit of the
vanishing matter density, α → 0, reproduce the positive and negative-frequency solutions,
respectively. It is also important to note that the neutrino energy in the background matter
depends on the state of the neutrino longitudinal polarization, i.e. in the relativistic case
the left-handed and right-handed neutrinos with equal momenta have different energies.

The procedure, similar to one used for derivation of the solution of the Dirac equation
in vacuum, can be adopted for the case of a neutrino moving in matter. We apply this
procedure to the equation (5) and arrive to the final form of the wave function of a neutrino
moving in the background matter:

Ψε,p,s(r, t) =
e−i(Eεt−pr)

2L
3

2

















√

1 + m
Eε−αm

√

1 + sp3
p

s
√

1 + m
Eε−αm

√

1− sp3
p

eiδ

sε
√

1− m
Eε−αm

√

1 + sp3
p

ε
√

1− m
Eε−αm

√

1− sp3
p
eiδ

















(16)

where the energy Eε is given by (14),L is the normalization length and δ = arctan p2/p1.
In the limit of vanishing density of matter, when α → 0, the wave function (16) transforms
to the vacuum solution of the Dirac equation.

The quantum equation (5) for a neutrino in the background matter with the obtained
exact solution (16) and energy spectrum (14) establish a basis for a very effective method
(similar to the Furry representation of quantum electrodynamics) in investigations of dif-
ferent phenomena that can appear when neutrinos are moving in the media.

Let us now consider in some detail the properties of a neutrino energy spectrum (14)
in the background matter that are very important for understanding of the mechanism of
the neutrino spin light phenomena. For the fixed magnitude of the neutrino momentum p
there are the two values for the ”positive sign” (ε = +1) energies

Es=+1 =

√

p2
(

1− αm
p

)2

+m2 + αm,

Es=−1 =

√

p2
(

1 + αm
p

)2

+m2 + αm,

(17)

that determine the positive- and negative-helicity eigenstates, respectively. The energies
in Eq.(17) correspond to the particle (neutrino) solutions in the background matter. The
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two other values for the energy, corresponding to the negative sign ε = −1, are for the
antiparticle solutions. As usual, by changing the sign of the energy, we obtain the values

Ẽs=+1 =

√

p2
(

1− αm
p

)2

+m2 − αm,

Ẽs=−1 =

√

p2
(

1 + αm
p

)2

+m2 − αm,

(18)

that correspond to the positive- and negative-helicity antineutrino states in the matter.
The expressions in Eqs.(17) and (18) would reproduce the neutrino dispersion relations
of [18] (see also [20]), if the contribution of the neutral-current interaction to the neutrino
potential were left out.

3 Quantum theory of SLν with exact account for mat-

ter density

In this section we should like to use the obtained solutions (16) of the equation (5) for a
neutrino moving in the background matter for the study of the spin light of neutrino (SLν)
in the matter. We develop below the quantum theory of this effect exactly accounting for
the matter number density n. Note that in our previous studies [16] the SLν rate and
radiation power were derived in the limit of not very high densities of the background
matter (see also our comments to Eq.(31) below).

Within the quantum approach, the corresponding Feynman diagram of the SLν in the
matter is the standard one-photon emission diagram with the initial and final neutrino
states described by the ”broad lines” that account for the neutrino interaction with the
matter. It follows from the usual neutrino magnetic moment interaction with the quantized
photon field, that the amplitude of the transition from the neutrino initial state ψi to the
final state ψf , accompanied by the emission of a photon with a momentum kµ = (ω,k)
and polarization e∗, can be written in the form

Sfi = −µ
√
4π

∫

d4xψ̄f (x)(Γ̂e
∗)

eikx√
2ωL3

ψi(x), (19)

where µ is the neutrino magnetic moment, ψi and ψf are the corresponding exact solutions
of the equation (5) given by (16), and

Γ̂ = iω
{[

Σ× κκκ

]

+ iγ5Σ
}

. (20)

Here κκκ = k/ω is the unit vector pointing the direction of the emitted photon propa-
gation. Note that the developed approach to the considered process in the presence of
matter is similar to the Furry representation in studies of quantum processes in external
electromagnetic fields.
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The integration in (21) with respect to time yields

Sfi = −µ
√

2π

ωL3
2πδ(Ef − Ei + ω)

∫

d3xψ̄f (r)(Γ̂e
∗)eikrψi(r), (21)

where the delta-function stands for the energy conservation. Performing the integrations
over the spatial co-ordinates, we can recover the delta-functions for the three components
of the momentum. Finally, we get the law of the energy-momentum conservation for the
considered process,

Ei = Ef + ω, pi = pf + κκκ. (22)

where Ei and Ef are the energies of the initial and final neutrino states in matter. From
(22) it follows that the emitted photon energy ω exhibits the critical dependence on the
helicities of the initial and final neutrino states. In the case of electron neutrino moving
in matter composed of electrons α is positive. Thus, it follows that the only possibility for
the SLν to appear is provided in the case when the neutrino initial and final states are
characterized by si = −1 and sf = +1, respectively. We conclude that in the considered
process the relativistic left-handed neutrino is converted to the right-handed neutrino. A
discussion on the main properties of the SLν emitted by different flavour neutrinos moving
in matter composed of electrons, protons and neutrons can be found in [16] ( see also [21]).

The emitted photon energy in the considered case (si = −sf = −1) obtained as an
exact solution of the equations (22) reads

ω =
2αmp [(E − αm)− (p+ αm) cos θ]

(E − αm− p cos θ)2 − (αm)2
, (23)

where θ is the angle between κκκ and the direction of the initial neutrino propagation.
In the case of not very high density of matter, when the parameter G̃Fn/m ≪ 1, we

can expand the photon energy (23) over the above mentioned parameter and in the liner
approximation get the result of [16]:

ω =
1

1− β cos θ
ω0, (24)

where

ω0 =
G̃F√
2
nβ, (25)

and β is the neutrino speed in vacuum.
Using the wave functions (16) for the neutrino initial and final states in matter we

calculate the spin light transition rate exactly accounting for the matter density parameter
and get

Γ = µ2

∫ π

0

ω3
[

(β̃β̃ ′ + 1)(1− y cos θ)− (β̃ + β̃ ′)(cos θ − y)
] sin θ

1 + β̃ ′y
dθ, (26)
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Here we use the notations

β̃ =
p+ αm

E − αm
, β̃ ′ =

p′ − αm

E ′ − αm
, (27)

where the final neutrino energy and momentum are

E ′ = E − ω, p′ = Kω − p, (28)

respectively, and

y =
ω − p cos θ

p′
, K =

E − αm− p cos θ

αm
. (29)

Performing the integration in Eq.(26), we obtain for the SLν rate in matter

Γ =
1

2 (E − p)2 (E + p− 2αm)2 (E − αm) p2

×
{

(

E2 − p2
)2 (

p2 − 6α2m2 + 6Eαm− 3E2
) (

(E − 2αm)2 − p2
)2

× ln

[

(E + p) (E − p− 2αm)

(E − p) (E + p− 2αm)

]

+ 4αmp
[

16α5m5E
(

3E2 − 5p2
)

−8α4m4
(

15E4 − 24E2p2 + p4
)

+ 4α3m3E
(

33E4 − 58E2p2 + 17p4
)

−2α2m2
(

39E2 − p2
) (

E2 − p2
)2

+ 12αmE
(

2E2 − p2
) (

E2 − p2
)2

−
(

3E2 − p2
) (

E2 − p2
)3
]}

, (30)

where the energy of the initial neutrino is given by (14).
As it follows from (30), the SLν rate is a rather complicated function of the neu-

trino momentum p and mass m, it is also non-trivially dependent on the matter density
parameter α. In the limit of low densities of matter, α≪ 1, we get

Γ ≃ 64

3

µ2α3p3m

E0

, (31)

where E0 =
√

p2 +m2. The obtained expression is in agreement with our results of
refs. [10, 16]. Note that the considered limit of α ≪ 1 can be appropriate even for very
dense media of neutron stars with n ∼ 1033 cm−3 because 1

2
√
2
G̃Fn ∼ 1 eV for a medium

characterized by n = 1037 cm−3.
Let us consider the SLν rate for the different limiting values of the neutrino momentum

p and matter density parameter α. In the relativistic case p≫ m from (30) we get

Γ =







64
3
µ2α3p2m, for α ≪ m

p
,

4µ2α2m2p, for m
p
≪ α≪ p

m
,

4µ2α3m3, for α ≫ p
m
.

(32)
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In the opposite case p≪ m we get

Γ =







64
3
µ2α3p3, for α≪ 1,

512
5
µ2α6p3, for 1 ≪ α≪ m

p
,

4µ2α3m3, for α ≫ m
p
.

(33)

On the basis of (21) we also derive the SLν radiation power:

I = µ2

∫ π

0

ω4
[

(β̃β̃ ′ + 1)(1− y cos θ)− (β̃ + β̃ ′)(cos θ − y)
] sin θ

1 + β̃ ′y
dθ.

Performing the integration and considering the case α ≪ 1, we get for the total power

I ≃ 128

3
µ2α4p4 (34)

in agreement with refs. [10, 16].
Let us now consider the SLν radiation power for the different limiting values of the

neutrino momentum p and matter density parameter α. In the relativistic case p ≫ m
from (34) we get

I =







128
3
µ2α4p4, for α ≪ m

p
,

4
3
µ2α2m2p2, for m

p
≪ α≪ p

m
,

4µ2α4m4, for α ≫ p
m
.

(35)

In the opposite case p≪ m we get

I =







128
3
µ2α4p4, for α≪ 1,

1024
3
µ2α8p4, for 1 ≪ α ≪ m

p
,

4µ2α4m4, for α≫ m
p
.

(36)

Note that the obtained SLν rate and radiation power in the case p ≫ m for α ≫ m
p

are in agreement with [21].
From the obtained expressions for the SLν rate and total power it is possible to get an

estimation for the emitted photons average energy:

〈ω〉 = I

Γ
. (37)

In the case p≫ m we get

〈ω〉 ≃











2α p2

m
, for α≪ m

p
,

1
3
p, for m

p
≪ α ≪ p

m
,

αm, for α≫ p
m
.

(38)

In the opposite case p≪ m for the emitted photons overage energy we have

〈ω〉 ≃







2pα, for α≪ 1,
10
3
pα2, for 1 ≪ α≪ m

p
,

αm, for α≫ m
p
.

(39)
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4 Conclusion

We should like to note that for a wide range of the neutrino momentum p and density
parameter α the SLν power is collimated along the direction of the neutrino propagation.
The form of the radiation power spatial distribution calculated with use of Eq.(34) in the
case p > m for low and high density of matter are shown in Figs. 1 and 2, respectively. As
it follows from these figures, the form of the distribution depends on the density of matter.
The form of the spatial distribution of the radiation moves from the projector-like shape to
the cap-like one with increase of the matter density. From (34) we derive, that in the case
of p≫ m for a wide range of the matter densities, α ≪ p

m
, the direction of the maximum

in the spatial distribution of the radiation power is characterized by the angle

cos θmax ≃ 1− 2

3
α
m

p
. (40)

It follows that in a dense matter the SLν radiation in the direction of the initial neutrino
motion is strongly suppressed, whereas there is a lighted ring on the plane perpendicular
to the neutrino motion.

The quantum calculation of the radiation power with the photon’s circular polarization
being accounted for (see also [16]) shows another very important property of the SLν in
matter. In the limit of low matter density, α≪ 1, we get for the power

I(l) ≃ 64

3
µ2α4p4

(

1− l
p

2E0

)

, (41)

where l = ±1 corresponds to the right and left photon circular polarizations, respectively.
In this limiting case the power of radiation of the left-polarized photons exceeds that of
the right-polarized photons. In particular, this result is also valid for the non-relativistic
case p ≪ m for low density with α ≪ 1. It is remarkable that in the most interesting
case of a rather dense matter (α ≫ m

p
for p ≫ m and α ≫ 1 for p ≪ m), the main

contribution to the power is provided by the right-polarized photons, whereas the emission
of the left-polarized photons is suppressed:

I(+1) ≃ I, (42)

I(−1) ≃ 0. (43)

We conclude that in a dense matter the SLν photons are emitted with nearly total right-
circular polarization.

Finally, we should like to discuss in some detail restrictions on the propagation of the
SLν photons that are set by the presence of the background electron plasma in the case
of p ≫ m for the density parameter m

p
≪ α ≪ p

m
. Only the photons with energy that

exceeds the plasmon frequency

ωpl =

√

4πe2

me
n, (44)
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p

Figure 1: The spatial distribution of the
SLν radiation power for the case p/m =
5, αm = 0.01.

p

Figure 2: The spatial distribution of the
SLν radiation power for the case p/m =
103, αm = 100.

can propagate in the plasma (here e2 = αQED is the fine-structure constant and me is the
mass of the electron). From (23) and (40) it follows that, on the one hand, the photon’s
energy and the radiation power depend on the direction of the radiation. On the other
hand, we can conclude that the maximal value of the photon’s energy,

ωmax = p, (45)

and the energy the photon emitted in the direction of the maximum radiation power,

ω(θmax) =
3

4
p, (46)

are of the same order in the considered case. For the relativistic neutrino and rather dense
matter the angle θmax, at which the radiation power has its maximum, is very close to zero
when the photon energy reaches the maximal value (45). Therefore, the condition for the
effective SLν production and propagation through the plasma can be written in the form

p≫ pmin = 3.5× 104
( n

1030cm−3

)1/2

eV. (47)

For n ∼ 1033 cm−3 we get pmin ∼ 1 MeV .
The investigated properties of the neutrino spin light in matter (i.e., the spatial distri-

bution of the radiation power and the angular dependence of the emitted photon’s energy,
as well as nearly total circular polarization of the radiation) might be important for the
experimental identification of the SLν from different astrophysical and cosmology objects
and media.
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[6] J. Bernabéu, J. Papavassilion, D. Binosi, hep-ph/0405288.

[7] A. Borisov, V. Zhukovskii, A. Kurilin, A. Ternov, Sov. J. Nucl. Phys. 41, 473 (1985);
A. Borisov, V. Zhukovskii, A. Ternov, Sov. J. Nucl. Phys. 46, 310 (1987);
A. Borisov, V. Zhukovskii, A. Ternov, Sov. Phys. Dokl 34, 8841 (1989);
A. Egorov, G. Likhachev, A. Studenikin, in: ”Elementary Particle Physics”, ICAS (Moscow,
1999), 52.

[8] J. Nieves, P. Pal, Phys. Rev. D 40, 1693 (1989).

[9] K. Bhattacharya, P. Pal, hep-ph/0212118.

[10] A. Lobanov, A. Studenikin, Phys. Lett. B 564, 27 (2003); Phys. Lett. B 601, 171 (2004).

[11] M. Dvornikov, A. Grigoriev, A. Studenikin, ”Spin light of neutrino in gravitational fields”,
hep-ph/0406114; to appear in: Int. J. Mod. Phys. D.

[12] A. Egorov, A. Lobanov, A. Studenikin, in: ”New Worlds in Astroparticle Physics”, ed.
A.Mourao, M.Pimento, P.Sa, World Scientific, Singapore, 153 (1999), hep-ph/9902447;
A. Egorov, A. Lobanov, A. Studenikin, Phys. Lett. B 491, 137 (2000), hep-ph/9910476.

[13] A. Lobanov, A. Studenikin, Phys. Lett. B 515, 94 (2001).

[14] M. Dvornikov, A. Studenikin, JHEP 09, 016 (2002).

[15] A. Studenikin, Phys. Atom. Nucl. 67, 1014 (2004), hep-ph/0306280;
A. Studenikin, in: Proc. of the XXI Int.Conference on Neutrino Physics and Astrophysics
(Paris, 14-19 June, 2004), ed. J.Dumarchez, Th.Patzak, F.Vannucci, to apper in: Nucl.
Phys. B (Proc.Suppl.), hep-ph/0407010.

[16] A. Studenikin, A. Ternov, in: Proc. of the 13th Int. Seminar on High Energy Physics
”Quarks-2004”, ed. D.Levkov, V.Matveev and V.Rubakov, Publ. Department of Institute
of Nuclear Physics RAS, Moscow, 2004, hep-ph/0410296;
A. Studenikin, A. Ternov, Phys. Lett. B (2005) in press, hep-ph/0410297, hep-ph/0412408.

[17] A. Borisov, V. Zhukovskii, A. Ternov, Sov. Phys. J. 31, 228 (1988).

[18] J. Pantaleone, Phys. Lett. B 268, 227 (1991); Phys. Rev. D 46, 510 (1992).

12

http://arxiv.org/abs/hep-ph/0305206
http://arxiv.org/abs/hep-ph/0405288
http://arxiv.org/abs/hep-ph/0212118
http://arxiv.org/abs/hep-ph/0406114
http://arxiv.org/abs/hep-ph/9902447
http://arxiv.org/abs/hep-ph/9910476
http://arxiv.org/abs/hep-ph/0306280
http://arxiv.org/abs/hep-ph/0407010
http://arxiv.org/abs/hep-ph/0410296
http://arxiv.org/abs/hep-ph/0410297
http://arxiv.org/abs/hep-ph/0412408


[19] P. Pal, Int. J. Mod. Phys. A 7, 538 (1992).

[20] K. Kiers, N. Weiss, Phys. Rev. D 56, 5776 (1997);
K. Kiers, M. Tytgat, Phys. Rev. D 57, 5970 (1998).

[21] A. Lobanov, hep-ph/0411342.

13

http://arxiv.org/abs/hep-ph/0411342

	Introduction
	Neutrino wave function in matter
	Quantum theory of SL with exact account for matter density
	Conclusion

