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We compute the total cross section as well as angular and energy distributions for process e+e− →
γγγ with both unpolarized and polarized beams in the framework of noncommutative quantum
electrodynamics (NCQED). The calculation is performed in the center of mass of colliding electron
and positron and is evaluated for energies and integrated luminosities appropriate to future linear
colliders. We find that by using unpolarized beams it is possible to probe the Lorentz symmetry
violating azimuthal dependence of the cross section. Furthermore, with polarized beams the left-
right asymmetry of the CP violating NCQED amplitudes can be used to obtain bounds on the
noncommutative scale ΛNC which exceed 1.0 TeV.

1. INTRODUCTION

The idea of formulating field theories on noncommutative spaces goes back some time [1]. Interest has been
revived recently with the realization that noncommutative quantum field theories emerge in the low energy limit
of string theories [2, 3, 4]. This has led to numerous investigations of the phenomenological implications of
noncommutative QED [5, 6].

In noncommutative geometries, the coordinates xµ obey the commutation relations

[xµ, xν ] = iθµν , (1)

where θµν = −θνµ. The extension of quantum field theories from ordinary space-time to noncommutative
space-time is achieved replacing the ordinary products with Moyal ⋆ products, defined by

(f ⋆ g) (x) = exp ( 1
2
iθµν∂xµ∂yν ) f (x) g (y)

∣

∣

x=y
. (2)

Here, in order to ensure the S matrix unitarity, we assume that θ0i = θi0 = 0, i = 1, 2, 3, .

In the following, we study the effect of noncommutative geometry on the process e+e− → γγγ using non-
commutative quantum electrodynamics, NCQED. NCQED, defined and described for example in [7], has as its
Lagrangian

L = ψ̄ ⋆ ( 6D −m)ψ − 1

2e2
Tr (Fµν ⋆ F

µν) + Lgauge + Lghost , (3)

where Lgauge and Lghost denote the gauge fixing and ghost terms. The corresponding Feynman rules for phe-
nomenological calculations can be derived from Eq. (3) [7]. Since scale at which noncommutative effects are likely
to occur is large, we focus on the energy scales typically associated with future linear colliders. Our calculations
are performed in the center of mass of the colliding electron and positron. In the next section, we outline the
calculation of the squared amplitudes. This is followed by a summary of the cross section computations and a
discussion of the results. Details of the calculation are presented in the Appendices.
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2. NCQED AMPLITUDES

Typical Feynman graphs contributing to the e+e− → γγγ at leading order are shown in Fig. 1. Diagrams in
which the fermion line is connected to the final photons by a single photon propagator vanish. The complete
set is obtained by permuting the photons, which gives a total of twelve diagrams. We have calculated specific
helicity amplitudes and it is therefore unnecessary to include ghost contributions [8]. The amplitudes were
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p4 = k3 − p2

(a)
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p1

p2

p3 = p1 − k1

(c)

FIG. 1: Diagram (a) represents the contributions from abelian interaction terms and diagrams (b) and (c) represent
contributions from the non-abelian interaction terms.

calculated using the Feynman rules in Ref.[7]. We computed the helicity amplitudes with the aid of the symbolic
manipulation program FORM and simplified the results using Mathematica.

To simplify the presentation of the results, we introduce kinematical variables

a = k2 ·k3b = k3 ·k1c = k1 ·k2 (4)

p = p1 ·k1q = p1 ·k2r = p1 ·k3 (5)

s = p2 ·k1t = p2 ·k2u = p2 ·k3 (6)

v = cos (k1 ·θ ·k2/2) w = sin (k1 ·θ ·k2/2) (7)

S = (p1 + p2)
2
, (8)

where p·θ ·q = pµθ
µνqν . These variables are related as

S/2 = s+ t+ u = p+ q + r
a = q + r − s = t+ u− p
b = p+ r − t = s+ u− q
c = p+ q − u = s+ t− r .

(9)

In the center of mass system we also have

k1 ·θ ·k2 = k2 ·θ ·k3 = k3 ·θ ·k1 . (10)

While there are only five independent variables, it is convenient for displaying the results and examining sym-
metries to retain six. If the helicities are labelled λ, λ̄;λ1, λ2, λ3, the square of helicity amplitude +,−; +,+,−
is

|M+,−;+,+,−|2 =
2 e6 r2

p q s t

[

S − 4w2

(

3S

2
+
a
(

p2 + s2
)

b c
+
b
(

q2 + t2
)

a c
+
c
(

r2 + u2
)

a b

− p q + (p+ s) (q + t) + s t

c
− p r + (p+ s) (r + u) + s u

b
− q r + (q + t) (r + u) + t u

a

)

− 4 v w

(

1

a
+

1

b
+

1

c

)

ǫ(k1, k2, p1, p2)

]

. (11)

The remaining squared amplitudes are given in Appendix C.

With the aid of Eqs. (4,5,6,7, and 10), it is easy to check that Eq. (11) satisfies Bose symmetry. The last term
in Eq. (11) changes sign under the exchange of p1 and p2, which is a reflection of the lack of charge conjugation
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symmetry. The parity transformation ~p → −~p, λ → −λ gives Mλ,λ̄;λ1,λ2,λ3
= M−λ,−λ̄;−λ1,−λ2,−λ3

, as can be
seen using Appendix C. As a consequence, CP is violated, but CPT is preserved [10]. The CP violating terms
cancel in the sum over fermion helicities.

Summing over photon helicities and averaging over electron helicities gives

∣

∣Me+e−→γγγ

∣

∣

2
= e6

p s
(

p2 + s2
)

+ q t
(

q2 + t2
)

+ r u
(

r2 + u2
)

p q r s t u

×
[

S − 4w2

(

a
(

p2 + s2
)

b c
+
b
(

q2 + t2
)

a c
+
c
(

r2 + u2
)

a b
− p q + (p+ s) (q + t) + s t

c

− p r + (p+ s) (r + u) + s u

b
− q r + (q + t) (r + u) + t u

a
+

3S

2

)]

. (12)

We have checked that this result satisfies the Ward identity Mµk
µ
i = 0 for each photon and that it reduces to

the standard QED result [9] if θµν = 0.

3. CROSS SECTION RESULTS

3.1. Unpolarized Cross Section

The details of obtaining the cross section from |Me+e−→γγγ |2, Eq. (12), are given in Appendix A. The result
consists of the pure QED cross section, which contains an infrared divergence that must be regularized, and an
infrared finite NCQED correction. To check the validity of our helicity amplitudes, we recalculated the QED
spin averaged total cross section by retaining all terms linear in the electron mass squared, m2, in the numerators
of Eq. (12). Our result then agrees with that of Berends and Kleiss [11], namely

σQED

e+e−→γγγ
=

2α3

S

(

(log ρ− 1)2 (logω − 1) + 3
)

, (13)

with

ρ =
S

m2
ω =

E2

E 2
min

. (14)

By assuming the non-commutative factor w2 in Eq. (12) is small, we have w2 = sin2ϕ ∼= ϕ2, where ϕ is

ϕ ≡ 1
2
k1 ·θ ·k2 = 1

2

(

~k1 × ~k2

)

·~θ . (15)

It is then possible to express the non-commutative effects in terms of λ, the angle between ~p1 and ~θ and
z = S/Λ2

NC. The NCQED contribution to the spin averaged cross section has the form

σNCQED

e+e−→γγγ
=
z2α3

S

[

2231

720
− π2

120
− 5

2
ζ(3) + sin2 λ

(

π2

80
+

7

2
ζ(3)− 148957

34560
− 7 logρ

960

)]

. (16)

If we average over λ, the expression for the total cross section becomes

σe+e−→γγγ =
α3

S

[

2 (log ρ− 1)2 (logω − 1) + 6 + z2
(

65219

69120
− π2

480
− 3

4
ζ(3)− 7 logρ

1920

)]

. (17)

With or without the average over λ, the effect of non-commutativity on spin averaged total cross section is
relatively small since it depends on z2 and has a log ρ rather than a log2 ρ dependence.

To determine if NCQED can be tested using the spin averaged three photon process, we examined the depen-
dence of the cross section on the azimuthal angle φ of one of the photons. This is a pure NCQED effect since
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the QED cross section has no such φ-dependence. Before doing this, it is important to determine the range of
validity of the approximation sin2 ϕ ≈ ϕ2. From Appendix A, ϕ2 has the form

ϕ2 =
z2

64
ν21ν

2
2 sin

2 α sin2 β , (18)

where νi = Ei/E and α and β vary between 0 and π. Thus, the approximation is always good if z < 8. Since all
the other factors vary between 0 and 1, and we integrate over some or all of them in calculating the distributions,
a limit on z based on the the average value

〈

ϕ2
〉

can be useful. This limit is

z <
8

√

〈

ν21ν
2
2 sin

2 α sin2 β
〉

< 35 . (19)

In the following, we choose
√
S = 0.5TeV, 1.0TeV, 5.0TeV, which, for ΛNC = 1.0TeV, corresponds to z =

0.25, 1.0, 25.0.

As in the e+e− → γγ case, the φ-dependence of the spin averaged cross section is proportional to z2. With
no cut imposed on the polar angle θ, we have

dσ

dφ
=

z2α3

πS

[

2231

1440
− π2

240
− 5

4
ζ(3)− sin2 λ

(

86141

69120
− 11π2

1440
+

7 log ρ

1152
− ζ(3)

+

(

1963

1080
+

π2

360
− 7 log ρ

1440
− 3

2
ζ(3)

)

cos2 φ

)]

. (20)

The effect of this characteristic φ-dependence is illustrated in the left panel of Fig 2. The signature of 3γ φ-

FIG. 2: (color online) In the left panel, the solid line is number of events as a function of φ for the case
√
S = 5TeV,

ΛNC = 1TeV, λ = π/4, L = 500 fb−1 and no cut on cos θ. The dashed line is the uniform background from QED with no
cos θ cut. The right panel shows the effect of imposing the additional cut | cos θ| ≤ 0.9.

dependence, a unique feature of NCQED, can be further enhanced by imposing a cut on polar angle θ. This has
a rather large effect on the NCQED signal since the QED contribution to the e+e− → γγγ cross section is very
sharply peaked in the forward a backward directions. The result of the cut | cos θ| ≤ 0.9 is shown in the right
panel of Fig 2.

We also checked the NCQED corrections to the QED energy and polar angle distributions of one of the photons.
While there are some differences in the shapes of the NCQED distributions relative to their QED counterparts,
particularly in the energy distribution, using these differences as a test of NCQED appears difficult because of
their z2 and energy dependence. The search for φ-dependence remains the best possibility if the e+ and e−

beams are unpolarized.

There are, however, CP violating terms linear in z in the individual helicity amplitudes, as can be seen in
Eq. (11) or in Appendix C. To probe these terms it is necessary to consider polarization effects.
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3.2. Polarized Cross Sections

We will confine our discussion to cross sections arising from longitudinally polarized beams. In this case, a
typical cross section can be written [12]

σP
e−

P
e+

=
1

4
[(1 + Pe−)(1 + Pe+)σRR + (1− Pe−)(1 − Pe+)σLL

+(1 + Pe−)(1 − Pe+)σRL + (1− Pe−)(1 + Pe+)σLR] , (21)

where, for example, σRL denotes the cross section when the e− beam has pure right-handed polarization (Pe− = 1)
and the e+ beam has pure left-handed polarization (Pe+ = −1). The remaining cross sections are defined
similarly.

For the process e+e− → γγγ, amplitudes with λ = λ̄ vanish, and we can express the polarized cross section as
[12]

σP
e−

P
e+

= (1 − Pe−Pe+)
σRL + σLR

4

[

1− Pe− − Pe+

1− Pe−Pe+

σLR − σRL

σLR + σRL

]

= (1 − Pe−Pe+)σunpol [1− PeffALR] , (22)

where the effective polarization Peff and the left-right asymmetry ALR are

Peff =
Pe− − Pe+

1− Pe−Pe+
, (23)

ALR =
σLR − σRL

σLR + σRL

. (24)

The left-right asymmetry can be obtained using the squared amplitudes in Appendix C and Eq.(̇17), which
results in

ALR = −E
2
e cosλ

Λ2
NC

(

4ζ(3)− 29

6
+

4π2

9

)

[

(log(
4E2

e

m2
)− 1)2(log(ω)− 1) + 3

]

. (25)

For the process e+e− → γγγ, the NCQED correction is the main source of a left-right asymmetry. Competing
standard model sources of left-right asymmetry such as Z exchange in Möller scattering [5] are suppressed
because they involve loops. Taking ΛNC = 1.0 TeV, Table I shows the cross section values for the cases [5]
Pe− = −Pe+ = ±0.9 and several values of

√
s and cosλ = 1.

√
s TeV σ0.9−0.9 fb σ−0.9 0.9 fb

1.0 4315.4 4316.9

2.0 1187.9 1189.3

3.0 557.1 558.6

4.0 325.1 326.6

5.0 213.9 215.4

TABLE I: The cross sections for 90% left-right and right-left polarized beams are shown for ΛNC = 1TeV and λ = 0.

As the numbers in the Table I indicate, the left-right asymmetry, though non-zero, must be distinguished from
a fluctuation in the large left-right symmetric QED e+e− → γγγ cross section. To obtain a sense of the range of
values of ΛNC that can be probed polarized cross sections, we examined the signal to square root of background
ratio

R =
L(σ0.9−0.9 − σ−0.9 0.9)
√

L(σ0.9−0.9 + σ−0.9 0.9)
. (26)
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FIG. 3: (color online) The bounds on ΛNC attainable using the left-right asymmetry of the total cross section are

illustrated as a function of luminosity at
√
S = 2 TeV (left) and as a function of

√
S for L = 500 fb−1 (right). The solid

lines correspond to λ = 0 and the dashed lines to λ = π/4.

Requiring R ≥ 3 implies the bounds attainable on ΛNC illustrated in Fig. 3 as function of luminosity L and
collider energy

√
S.

The constraints on ΛNC obtainable from the polarized total cross section suggest that cuts on the polarization
asymmetries in distributions such as

(dσLR − dσRL)/dν

(dσLR + dσRL)/dν
or

(dσLR − dσRL)/d cos θ

(dσLR + dσRL)/d cos θ
(27)

could improve the bounds on ΛNC . These distributions are shown in Fig. 4. While both distributions show a

FIG. 4: (color online) The polarization asymmetries with respect to the photon energy fraction ν (left) and the photon
angle with respect to the beam axis (right) are shown. The three shaded regions correspond to center of mass energies of
0.5, 1.0 and 5.0 TeV.

distinct left-right asymmetry, the cos θ distribution is the most promising from the experimental point of view in
that it can be rather large – ∼ few % – over a substantial region of cos θ. By imposing cuts on cos θ it is possible
substantially increase the lower bound on ΛNC obtained using Eq. (26). The largest lower bound is obtained by
restricting cos θ as | cos θ| ≤ 0.85, which is illustrated in Fig. (5). The behavior of the bound on ΛNC as the cut
on cos θ varies from | cos θ| ≤ 0.5 to | cos θ| ≤ 1.0 is shown in Fig. 6.
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FIG. 5: (color online) Same as Fig. 3 with | cos θ| ≤ 0.85.

FIG. 6: (color online) The bounds on ΛNC for 0.5 ≤ | cos θmax| ≤ 1.0 are shown for
√
S = 0.5TeV (dot-dash-dash), 1.0

TeV (dot-dash), 2.0 TeV (dashed) and 5.0 TeV (solid). Here L = 500 fb−1 and cos λ = 1. The bounds scale as L1/4 and√
cosλ.

4. DISCUSSION AND CONCLUSIONS

To summarize, we have computed the noncommutative contributions to the angular and energy distributions
of a single photon as well as to the total cross section for the process e+e− → γγγ assuming both the unpolarized
and polarized electron and positron beams. Because we are dealing with a three particle final state, it is possible
to include these corrections using only the space-space portion of the tensor θµν . This enables us to avoid the
use of the space-time terms θk0 and thereby satisfy the requirement of unitarity [13]. The use of space-time
terms cannot be always avoided in 2 → 2 processes e.g. eγ → eγ, e+e− → γγ or e+e− → e+e− and this tends to
complicate their interpretation. The cross sections and distributions depend on the angle λ between the beam

direction and the non-commutativity vector ~θ. In the unpolarized case, the noncommutative effects are second
order in the ratio z = S/Λ2

NC , whereas in polarized case, the noncommutative effects are leading order in z.

In the unpolarized case, the shapes of the QED and NCQED energy distributions are quite different but it
is the dependence of the cross section on the azimuthal angle φ which offers the best opportunity to detect
non-commutative effects. The observation of any variation of the cross section with respect to φ is a clear
violation of Lorentz symmetry. It is possible to introduce reasonable cuts significantly enhance this signature of
non-commutativity.

Further, the use of polarized beams makes it possible to probe the order z CP violating terms in the helicity
amplitudes by measuring the left-right asymmetry. In contrast to Möller scattering, where Z exchange introduces
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a large standard model left-right asymmetry which competes with the NCQED asymmetry, the NCQED left-
right asymmetry in the 3γ final state is the dominant source of asymmetry, with standard model contributions
being suppressed by loops. Even without cuts on the polarized cross section, the bounds attainable on ΛNC

are competitive with those obtained in pair annihilation [5]. Imposition of cuts on cos θ, the angle between one
of the photons and the beam direction, extends the reach on ΛNC to the TeV range. Accumulating enough
data to reach these bounds will require monitoring the (unknown) direction of the non-commutativity vector
~θ. Techniques for doing this were proposed by Hewett, Petriello and Rizzo [5] and implemented by the OPAL
collaboration [14].

Currently, the experimental lower bound on ΛNC is 140 GeV [14], and the calculations of Ref [5] indicate that
ΛNC scales of 1.7 TeV can be probed in Möller scattering at a 500 Gev e+e− collider. Like Möller scattering,
the NCQED contribution to e+e− → γγγ can be parameterized solely in terms of the unitarity preserving space-
space components of θµν . This, together with its NCQED dominant left-right asymmetry signature, makes the
three photon process promising candidate in the experimental search for noncommutative effects.
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APPENDIX A: SPIN AVERAGED CROSS SECTION

The tensor θij can be parameterized in terms of a unit vector ~θ and a noncommutativity scale ΛNC as

θij =
1

Λ2
NC

ǫijkθ
k . (A1)

To define the coordinates, we fix the origin at the center of mass, choose the z axis parallel to ~p1 and take ~θ in

the plane x-z plane. In this system, ~k1 is defined by its polar angle α1, its azimuthal the angle β1 and its energy

E1. Similarly ~k2 is defined by its energy E2, its polar angle α2 and, for convenience, an azimuthal angle β1 +β2.

The phase space integration is given in detail in Appendix B, where it is shown that, in addition to the
variables mentioned above, it is necessary to introduce a minimum photon energy Emin to control the infrared
singularities. Introducing the dimensionless variables (i = 1, 2)

νi =
Ei

E
ci = cosαi

ǫ =
Emin

E
n =

√

1− m2

E2
, (A2)

the terms in Eq.(12) can be expressed as

p = S
4
ν1 (1− nc1) q = S

4
ν2 (1− nc2) r = S

4
(2− ν1 (1− nc1)− ν2 (1− nc2))

s = S
4
ν1 (1 + nc1) t = S

4
ν2 (1 + nc2) u = S

4
(2− ν1 (1 + nc1)− ν2 (1 + nc2))

. (A3)

The total cross section is expressible in terms of these variables as

σe+e−→γγγ =
1

6 (4π)5

(
∫ 1−ǫ

ǫ

dν1

∫ 1

1−ν1

dν2 +

∫ 1

1−ǫ

dν1

∫ 2−ν1−ǫ

ǫ

dν2

)

×
∫ 1

−1

dc1

∫ c+

c
−

dc2

∫ 2π

0

dβ1

∣

∣Me+e−→γγγ

∣

∣

2

√

(c+ − c2) (c2 − c−)
(A4)
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where

c± = c1 − 2
c1 (ν1 + ν2 − 1)∓

√

(1− c21) (1− ν1) (1− ν2) (ν1 + ν2 − 1)

ν1ν2
. (A5)

Using the symmetry of Eq.(12) under a permutation of ~k1, ~k2, ~k3, and neglecting m2 in the numerator of
Eq. (12), the commutative contribution to the cross section becomes

σQED

e+e−→γγγ
=

2α3

S π

(
∫ 1−ǫ

ǫ

dν1

∫ 1

1−ν1

dν2 +

∫ 1

1−ǫ

dν1

∫ 2−ν1−ǫ

ǫ

dν2

)
∫ 1

−1

dc1

∫ c+

c
−

dc2

× (2− ν1 − ν2)
2
+ n2 (c1ν1 + c2ν2)

2

(1− n2c21) (1− n2c22)
√

(c+ − c2) (c2 − c−) ν21ν
2
2

, (A6)

where the integration over β1 has been completed since the process has axial symmetry for ~θ = 0. The integration
of Eq.(A6), neglecting terms which vanish for m2/S → 0, gives [15]

σQED

e+e−→γγγ
=

2α3

S

(

(log ρ− 1)
2
(logω − 1) + (log ρ− 1) logω + 3− π2

3

)

(A7)

with

ρ =
S

m2
ω =

E2

E 2
min

. (A8)

As will be seen below, the NCQED correction is small relative to the pure QED cross section. To be certain
that the comparison of the two is sensible, we computed the correction to the QED cross section obtained by
retaining all the order m2 terms in the numerators of Eq. (12). The calculations are explained in [11, 16, 17].
Our result, which agrees with that of Berends and Kleiss, is

σQED

e+e−→γγγ
=

2α3

S

(

(log ρ− 1)
2
(logω − 1) + 3

)

(A9)

For the noncommutative term, the integrand is no longer invariant with respect to rotations about the z axis
and it is necessary to consider the β1 integration in more detail. From Eq.(A1) we have

ϕ ≡ 1
2
k1 ·θ ·k2 = 1

2

(

~k1 × ~k2

)

·~θ

=
E1E2

2Λ2
NC

(sinα1 (sinβ1 cosα2 sinλ+ sinα2 sinβ2 cosλ)− cosα1 sinα2 sin (β1 + β2) sinλ) , (A10)

where λ is the angle between ~p1 and ~θ. Assuming ϕ to be small, the noncommutative factor w2 in Eq.(̇12)
becomes w2 = sin2ϕ ∼= ϕ2. Since β1 appears only in w2 we can integrate this factor to obtain

∫ 2π

0

dβ1 ϕ
2 =

πz2

64

[

(1− 3 cos2 λ)
(

4 c1c2(ν1 + ν2 − 1) + ν1ν2(c1 − c2)
2
)

+8 cos2 λ(1 − ν1)(1 − ν2)(ν1 + ν2 − 1)
]

. (A11)

Owing to the additional factors of E1 and E2 in Eq.(A10), the noncommutative contribution is infrared finite,
and it is possible to set ǫ = 0 in Eq. (A4). Then, using Eq.(A11) and the symmetry of Eq.(12) in k1, k2, k3, the
expression for the noncommutative contribution to the cross section is

σNCQED

e+e−→γγγ
= − z2α3

64 π S

∫ 1

0

dν1

∫ 1

1−ν1

dν2

∫ 1

−1

dc1

∫ c+

c
−

dc2
N (c1, c2, ν1, ν2)

D(c1, c2, ν1, ν2)
, (A12)

where

N (c1, c2, ν1, ν2) =
[

(2− ν1 − ν2)
2 + n2(c1ν1 + c2ν2)

2
] [

(3 (ν1 + ν2)− 1) (2− ν1ν2)− ν21ν
2
2

+ (2ν1ν2 − 7)(ν1 + ν2)
2 + 4(ν1 + ν2)

3 − (ν1 + ν2)
4 + n2

(

c1c2ν1ν2(ν
2
1 + ν1ν2 + ν22 − 1)

+ c21ν
2
1 (1− ν2 + ν21 + ν1ν2 + ν22 − 2ν1) + c22ν

2
2(1− ν1 + ν21 + ν1ν2 + ν22 − 2ν2)

)]

(A13)

×
[

(1− 3c2λ)ν1ν2
(

4c1c2(ν1 + ν2 − 1) + ν1ν2(c1 − c2)
2
)

+ 8 c2λ(1− ν1)(1− ν2)(ν1 + ν2 − 1)
]

,
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and

D(c1, c2, ν1, ν2) = ν21ν
2
2 (1− ν1) (1− ν2) (ν1 + ν2 − 1)

(

1− n2c21
) (

1− n2c22
)
√

(c+ − c2) (c2 − c−) . (A14)

When Eq.(A12) is integrated over α1 and α2, we can take ρ = m2/S = 0 except for terms involving log ρ, and
take n = 1 in Eq. (A2), which does not introduce any collinear divergences. The integration of Eq.(A12) can be
evaluated analytically and the noncommutative contribution is

σNcQED

e+e−→γγγ
=
z2α3

S

[

2231

720
− π2

120
− 5

2
ζ(3) + sin2 λ

(

π2

80
+

7

2
ζ(3)− 148957

34560
− 7 logρ

960

)]

. (A15)

From this expression it is clear that production of the three photons depends on the angle between the incident

beam and the vector ~θ, which violates Lorentz invariance. Since the direction of ~θ is not known, we average over
sin2 λ to obtain

σ̄NCQED

e+e−→γγγ
=
z2α3

S

(

65219

69120
− π2

480
− 3

4
ζ(3)− 7 logρ

1920

)

. (A16)

Adding Eq.(A7) and Eq.(A16) we get the total cross section

σe+e−→γγγ =
α3

S

[

2 (log ρ− 1)
2
(logω − 1) + 6 + z2

(

65219

69120
− π2

480
− 3

4
ζ(3)− 7 logρ

1920

)]

. (A17)

APPENDIX B: PHASE SPACE

Taking the center of mass energies of the electron and positron to be E and the flux factor |~v1 − ~v2| → 2, the
expression for the three body phase space in the electron-positron center of mass is

dΓ =
(2π)

4

3! 2 (4E2)
δ4(p1 + p2 − k1 − k2 − k3)

d3 ~k1

(2π)3 2E1

d3 ~k2

(2π)3 2E2

d3 ~k3

(2π)3 2E3

=
1

3S (4π)5
δ(2E − E1 − E2 − E3) δ

3
(

~k1 + ~k2 + ~k3

) d3 ~k1d
3 ~k2d

3 ~k3
E1E2E3

(B1)

where we have already introduced the symmetry factor 1/3!. In spherical coordinates the components of ~k1 and
~k2 can be defined by

~k1 = E1 {sinα1 cosβ1, sinα1 sinβ1, cosα1}
~k2 = E2 {sinα2 cos (β1 + β2), sinα2 sin (β1 + β2), cosα2} . (B2)

The integration over δ3
(

~k1 + ~k2 + ~k3

)

gives

E3 =

√

~k3
2
=

√

(

~k1 + ~k2

)2

=
√

E2
1 + E2

2 + 2E1E2 (cosα1 cosα2 + cosβ2 sinα1 sinα2) (B3)

where we have used the definitions (B2). The phase space integral Eq.(B1) can then be written

dΓ =
δ(2E − E1 − E2 − E3)

3S (4π)5
d3 ~k1d

3 ~k2
E1E2E3

=
δ(2E − E1 − E2 − E3)

3S (4π)5
dE1dE2d cosα1d cosα2dβ1dβ2

E1E2

E3

(B4)
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with E3 given by Eq.(B3). The remaining integration over δ(2E − E1 − E2 − E3) leads to

E2
3 = E2

1 + E2
2 + 2E1E2 (cosα1 cosα2 + cosβ2 sinα1 sinα2)

= (2E − E1 − E2)
2
. (B5)

Solving Eq.(B5) for β2 results in two solutions

β2 = ±β20 (B6)

with

β20 = arccos

(

E1E2(1− cosα1 cosα2)− 2E(E1 + E2 − E)

E1E2 sinα1 sinα2

)

. (B7)

The derivative of the argument of the δ with respect to β2,

d (2E − E1 − E2 − E3)

dβ2
=
E1E2

E3

sinα1 sinα2 sinβ2 . (B8)

then gives

δ(2E − E1 − E2 − E3) =
1

∣

∣

∣

∣

E1E2

E3

sinα1 sinα2 sinβ20

∣

∣

∣

∣

(

δ(β2 − β20) + δ(β2 + β20)

)

(B9)

Replacing the Eq.(B9) in Eq.(B4) we get

dΓ =
1

3S (4π)5
dE1dE2d cosα1d cosα2dβ1dβ2

δ(β2 − β20) + δ(β2 + β20)

sinα1 sinα2 sinβ20
.

In the squared amplitude, β2 is present only in the noncommutative factor w2. As can be seen from Eq.(A3),
the other variables are independent of β2. The integration over β2 produces w2(β20) and w2(−β20), but these
contributions are equal after the subsequent β1 integration. Hence, for both the QED and NCQED terms, we
can write

dΓ =
2

3S (4π)5
dE1 dE2 d cosα1 d cosα2 dβ1

sinα1 sinα2 sinβ2
, (B10)

where for simplicity we have dropped the zero on β2. The limits of integration on, say, cosα2 are constrained by
Eq. (B7). Using this equation to solve for sinα1 sinα2 sinβ2, we find, in the notation of Eq. (A2),

sinα1 sinα2 sinβ2 =
√

(c+ − c2)(c2 − c−) (B11)

with

c± = c1 − 2
c1 (ν1 + ν2 − 1)∓

√

(1− c21) (1− ν1) (1− ν2) (ν1 + ν2 − 1)

ν1ν2
. (B12)

The limits of integration on the energies are determined by solving the relations

Emin ≤ Ej ≤ E E1 + E2 + E3 = 2E , (B13)

with j = 1, 2, 3, for E1 and E2. Elimination of E3 yields the additional inequalities

E2 ≥ E − E1 , ≤ 2E − E1 − Emin . (B14)

The limits of integration on E2 depend on whether Emin ≤ E1 ≤ E−Emin or E−Emin ≤ E1 ≤ E. In the former
case,

E − E1 ≤ E2 ≤ E , (B15)

while in the latter

Emin ≤ E2 ≤ 2E − E1 − Emin . (B16)
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APPENDIX C: SQUARED MODULUS OF THE HELICITY AMPLITUDES

The helicity amplitudes with permuted photon helicities can be derived by the corresponding permutation
of the variables p, q, r and s, t, u. Amplitudes with every helicity reversed just change the sign of CP-breaking
term, while amplitudes in which the electron and positron are exchanged can be derived changing the sign of
the antisymmetric term and exchanging the variables p, q, r with s, t, u. The amplitudes {±,±;λ1, λ2, λ3} and
{λ, λ̄;±,±,±} are zero. The twelve non-zero helicity amplitudes are given in the following table.

λ, λ̄;λ1, λ2, λ3 |Mλ,λ̄;λ1,λ2,λ3
|2 λ, λ̄;λ1, λ2, λ3 |Mλ,λ̄;λ1,λ2,λ3

|2

+,−; +,+,− r2

pqst
A− +,−;−,−,+

u2

pqst
A−

+,−; +,−,+
q2

prsu
A− +,−;−,+,− t2

prsu
A−

+,−;−,+,+
p2

qrtu
A− +,−; +,−,− s2

qrtu
A−

−,+;−,−,+
r2

pqst
A+ −,+;+,+,− u2

pqst
A+

−,+;−,+,− q2

prsu
A+ −,+;+,−,+

t2

prsu
A+

−,+;+,−,− p2

qrtu
A+ −,+;−,+,+

s2

qrtu
A+

TABLE II: The absolute squares of the twelve non-zero helicity amplitudes, |Mλ,λ̄;λ1,λ2,λ3
|2, are expressed in terms of

the amplitudes A± given below.

The common factor A± in all the entries in Table II is

A± = 2e6
[

S − 4w2

(

3

2
S +

a (p2 + s2)

bc
+
b (q2 + t2)

ac
+
c (r2 + u2)

ab

− pq + (p+ s)(q + t) + st

c
− pr + (p+ s)(r + u) + su

b
− qr + (q + t)(r + u) + tu

a

)

± 4vw

(

1

a
+

1

b
+

1

c

)

ε(k1, k2, p1, p2))

]

(C1)
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