
ar
X

iv
:h

ep
-p

h/
05

03
02

7v
1 

 2
 M

ar
 2

00
5

Covariant Model for Relativistic

Three-Body Systems ∗

Philippe Droz-Vincent

LUTH, Observatoire de Paris-Meudon
Place Jules Janssen, F-92195 Meudon, France

Abstract

The system is described by three mass-shell constraints. When at

least two masses are equal, this picture has a reasonable nonrelativistic

limit. At first post-Galilean order and provided the interaction is not

too much energy-dependent, the relativistic correction is tractable like

a conventional perturbation problem. A covariant version of harmonic

oscillator is given as a toy model.

A system of three particles can be covariantly described by three mass-
shell constraints, involving an interaction term referred to as potential. These
constraints must reduce to three independent Klein-Gordon (or Dirac) equa-
tions in the absence of potential. In any case, they determine the evolution
of a wave function which depends on three four-dimensional arguments, say
pa with a, b = 1, 2, 3, if we chose the momentum representation of quantum
mechanics.
Naturally, the potential depends on both configuration and momentum vari-
ables, qa, pb, and must allow for mutual compatibility of the constraints.
Moreover it happens that, just like in the Bethe-Salpeter approach, mani-
fest covariance is paid by the presence of redundant degrees of freedom of
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which the elimination is by no means straightforward (in contrast to the
two-body case). These two important issues have been considered earlier by
H. Sazdjian [1] who aimed at solving the general n−body case and proposed
an approximate solution.
Specially dealing with the three-boson case, we have recently exhibited in
closed analytic form a new set of variables q′

a
, p′

b
. In terms of these new

variables, admissible expressions for the potential are explicitly available, and
two superfluous degrees of freedom can be eliminated [2]. Setting P =

∑
p

we linearly introduce relative variables

zA = q1 − qA, yA =
P

3
− pA, A = 2, 3

and similar formulas for z′
A
, y′

B
in terms of q′

a
, p′

b
.

The mass-shell constraints can be equivalently replaced by their sum and

differences; it is convenient to set νA =
1

2
(m2

1 −m2
A).

The difference equations, in their original form, yield no simplification.
But we perform a quadratic change among the momenta, say pa → p′

a
, or

equivalently P, yA → P ′, y′
A
. in order to ensure the elimination of two redun-

dant degrees of freedom; this change is characterized by

(p1 − pA)(p1 + pA) = (p′1 − p′A) · P

whereas P ′ = P and the transverse parts of the momenta remain unaffected,
say ỹ′ = ỹ, where the tilda on any four-vector refers to its transverse part
with respect to P .
Of course, this procedure generates a change of canonical variables [2], in
particular we obtain new configuration variables, z′

A
.

Three-dimensional Reduction

We impose a sharp value of the total linear momentum, it is a timelike vector
k, and we define k · k =M2.
Notations: The hat on any vector refers to its transverse part with respect
to k.
Underlining any dynamical variable indicates that, in its expression, we sub-
stitute k for P and take into account equation the difference equations

3y′A · k Ψ = (4νA − 2νB)c
2 Ψ (1)
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We factorize out the relative energies; as a result the sum equation becomes

(3
∑

m2 −M2)c2 ψ = 6(ŷ22 + ŷ23 + ŷ2 · ŷ3)ψ + (6M2c2Ξ + 18V ) ψ (2)

for a reduced wave function ψ which depends only on the transverse relative
momenta ŷ′

A
= ŷA.

The meaning of Ξ is purely kinematic; this term depends only on the mo-
menta and can be expressed in terms of their transverse part and P . Here V
denotes the relativistic potential; it may be phenomenological or motivated
by considerations of field theory. In particular it may be formally constructed
as a sum of two-body terms, like in equation (5) below; so doing one uses the
shape of two-body potentials but (for the sake of compatibility) with the new
three-body variables as arguments. Not only the total momentum P but also
the new configuration variables z′

A
mix the two-body clusters, which amounts

to automatically incorporate three-body forces. Admissible potentials entail
that V is a function of the new variables ẑ′2, ẑ

′

3 and M2c2.
The reduced equation (2) is actually a nonconventional eigenvalue probem,
where the operator to be diagonalized explicitly depends on its eigenvalue.
This situation is by no means a special drawback of our model, in fact it is
common in relativistic quantum mechanics [3], but it would make a general
treatment rather involved.
On the other hand, it is natural to expand the formulas in powers of 1/c2 and
to look for the nonrelativistic limit. For arbitrary masses, the term M2c2Ξ
generally blows up, which leads to consider, instead of (2) an alternative
combination of the mass-shell constraints.

Two equal masses.
Drastic simplifications arise when two masses are equal, say m2 = m3 = m,
equivalently ν2 = ν3 = ν. We find that the Galilean limit of our eigenvalue
problem is a Schroedinger equation with effective (or Galilean) masses that
are generally distinct from the constituent masses ma. However they still
coincide with the constituent masses, at first order in the ”mass-dispersion
index” ν/m2.

Three Equal Masses.
When ma = m for all particles, equation (2) can be written as follows, using
the rest frame

λψ = (y2
2 + y2

3 + y2 · y3)ψ − 3V ψ −M2c2Ξψ (3)
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with 6λ = (M2 − 9m2)c2. Now the last term in (3) remains finite in the

nonrelativistic limit. Indeed we can write Mc2Ξ =
1

M2c2
Γ(0) + O(1/c4)

where

Γ(0) =
3

4
{(ŷ22)2 + (ŷ23)

2 + 4(ŷ2 · ŷ3)2 + 2(ŷ22 + ŷ23) (ŷ2 · ŷ3)− ŷ22 ŷ
2
3} (4)

At first order in 1/c2 we can, in Ξ, replace M2 by 9m2, which is independent
from λ. Thus we replace M2c2Ξ by Γ(0)/9m

2c2. If the relativistic ”potential”
V doesnot depend on P 2, or if this dependence is of higher order, equation
(3) becomes a conventional eigenvalue problem, tractable by perturbation
theory. The last term in(3) brings a negative correction to the value λNR

furnished by the nonrelativistic approximation, say

λ = λNR− < Γ(0) > /9m2c2

if λNR corresponds to a nondegenerate level. One has to calculate < Γ(0) >
in the eigenstate solution of the nonrelativistic problem.

Harmonic Oscillator

A covariant version of the harmonic potential is given by

V = 2κ {(z̃′2)2 + (z̃′3)
2 − z̃′2 · z̃′3} (5)

hence V in terms of ẑ′
A
· ẑ′

B
= −z′

A

2 · z′
B

2. In the nonrelativistic limit we
recover the naive SU6 invariant Schroedinger equation. At the first post-
Galilean approximation, M2 can be replaced by 9m2, neglecting the depen-
dence on total energy in the reduced equation. At this stage, the eigen-
value problem amounts to diagonalize a nonrelativistic harmonic oscillator,
with potential VNR = −3V /m, submitted to a momentum-dependent per-
turbation. Expressed in terms of Jacobi-like coordinates, namely R2 =
−z′2 + z′3 R3 = (z′2 + z′3)/

√
3 and their conjugate momenta, the un-

perturbed ground state is a Gaussian. If the unit of lenght is choosen such

that κ =
2

9
, one finds < Γ(0) >= 11 + 1/4.

This approach is intented for applications to confining interactions; future
work should implement spin and investigate a possible contact with recents
developments [4] of the BS approach.
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