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Abstract

We present a comprehensive analysis of the contributions to K → πνν̄ decays not de-
scribed by the leading dimension-six effective Hamiltonian. These include both dimension-
eight four-fermion operators generated at the charm scale, and genuine long-distance con-
tributions which can be described within the framework of chiral perturbation theory. We
show that a consistent treatment of the latter contributions, which turn out to be the dom-
inant effect, requires the introduction of new chiral operators already at O(G2

Fp
2). Using

this new chiral Lagrangian, we analyze the long-distance structure ofK → πνν̄ amplitudes
at the one-loop level, and discuss the role of the dimension-eight operators in the match-
ing between short- and long-distance components. From the numerical point of view, we
find that these O(G2

FΛ
2
QCD) corrections enhance the SM prediction of B(K+ → π+νν̄) by

about ≈ 6%.
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1 Introduction

Flavour-changing neutral-current (FCNC) processes and the related GIM mechanism [1]
are one of the most fascinating aspects of flavour physics. Within the Standard Model
(SM), FCNC amplitudes are strongly suppressed and often completely dominated by
short-distance dynamics. In this case, their precise study allows to perform very stringent
tests of the model and ensures a large sensitivity to possible new degrees of freedom [3, 4].

On general grounds, we can distinguish two types of FCNC transitions: those where
the leading short-distance amplitude exhibits a power-like GIM mechanism, and those
where the GIM suppression is only logarithmic. This distinction plays a key role in
kaon physics, where long-distance effects are enhanced by the hierarchy of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [2] and could easily spoil the short-distance structure
of FCNC amplitudes. Only in the case of a power-like GIM mechanism, or a power-like
suppression of light-quark contributions, long-distance effects can be kept under good
theoretical control.

The quark-level transition s → dνν̄ is the prototype of FCNC amplitudes with a
power-like GIM mechanism. The leading contributions to this amplitude are genuine
one-loop electroweak effects, which are usually encoded in the following O(G2

F ) effective
Hamiltonian (see e.g. Ref. [4]):

H(6)
eff =

GF√
2

α

2π sin2 θW

[

V ∗
tsVtdXt(xt) + V ∗

csVcdX
l
c(xc)

]

(s̄d)V−A(ν̄lνl)V−A , (1)

with xq = m2
q/M

2
W As a consequence of the power-like GIM mechanism, the coefficient

functions of the unique dimension-6 operator in Eq. (1) behave as Xq(xq) ∝ xq (up to
logarithmic and subleading power corrections).1 This implies that the term proportional
to V ∗

tsVtd, which is enhanced by the large top-quark mass and can be precisely computed
in perturbation theory at the electroweak scale [5, 6, 7], is the dominant contribution.

In the case of CP-conserving transitions, such as the K+ → π+νν̄ decay, the charm
contribution in H(6)

eff cannot be neglected. Indeed the power suppression of X l
c with

respect to Xt is partially compensated by the large CKM coefficient (|V ∗
csVcd| ≈ 103 ×

|V ∗
tsVtd|). Moreover, charm quarks remain dynamical degrees of freedom for a large range

of energies below the electroweak scale. This imply an enhancement factor due to large
logs and a stronger sensitivity to QCD corrections in X l

c. Thanks to the NLO calculation
of Ref. [5, 7], X l

c is known with a relative precision of about 18%. Since the charm
contribution amounts to about 30% of the total magnitude of A(s → dνν̄)SM, the NLO
uncertainty translates into an error of about 10% in the SM estimate of B(K+ → π+νν̄).
This type of uncertainty can possibly be reduced to below 4% with a NNLO calculation
of X l

c [4].
Aiming to get a few % precision on the K+ → π+νν̄ amplitude, it becomes important

to address the question of the subleading terms not described by the effective Hamilto-
nian in Eq. (1). In particular, H(6)

eff does not allow to evaluate in a systematic way the

1 This behavior illustrates the O(G2
F ) structure of H(6)

eff : GFα/(2
√
2π sin2 θW )× xq = G2

Fm
2
q/(2π

2)
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contributions of O(G2
FΛ

2
QCD) to the K+ → π+νν̄ amplitude. Naively, these contributions

are parametrically suppressed only by O(Λ2
QCD/m

2
c) ≈ O(10%) with respect to the charm

contribution in Eq. (1). Therefore, they are not trivially negligible at the few % level of
accuracy. The purpose of this paper is a systematic analysis of this type of effects.

The relevant subleading contributions to K → πνν̄ can be safely computed in the
limit Vtd = 0 (or in the limit where charm- and up-quark loops appear with the same
CKM coefficient) and can be divided into two groups:

i. O(1) (tree-level) matrix elements of local FCNC operators of dimension eight, such
as (s̄Γ∂s)× (ν̄Γ∂ν), appearing in the O(G2

F ) Hamiltonian;

ii. O(GF ) (beyond tree-level) matrix elements of the ∆S = 1 dimension-6 four-fermion
operators appearing in the O(GF ) effective Hamiltonian.

The distinction between these two types of effects depends on the choice of the renormal-
ization scale for the effective four-fermion theory. For instance, choosing a renormalization
scale well above the charm mass, one can essentially neglect the dimension-8 FCNC op-
erators and encode all the effects via appropriate matrix-elements of the ∆S = 1 effective
Hamiltonian (where charm quarks are still treated as dynamical degrees of freedom). This
approach would be the most natural choice in view of a calculation of these matrix el-
ements by means of lattice QCD (probably the ultimate way to address this problem).
Waiting for such a calculation on the lattice, here we adopt a different procedure and
choose a renormalization scale for the effective four-fermion operators below the charm
mass. As shown in Ref. [8, 9], this is the most natural choice in view of a fully analytic
approach to the problem.

Concerning the construction of the dimension-8 four-fermion Hamiltonian, we com-
pletely confirm the results of Ref. [9]. However, we substantially extend this work by
analysing the impact of the genuine long-distance component of the amplitude, namely
the matrix-elements of ∆S = 1 four-fermion operators (where only u, d and s quarks
are treated as dynamical degrees of freedom). The latter component cannot be com-
puted at the partonic level and the best analytic approach to evaluate its size is provided
by chiral perturbation theory (CHPT). Several authors have already addressed the issue
of long-distance effects in the K+ → π+νν̄ amplitude within the framework of CHPT
[10, 11, 12, 13, 14]. However, as we shall show, all previous attempts to address this prob-
lem were not complete and, in particular, were not able to discuss the matching between
short- and long-distance components of the amplitudes.

The paper is organized as follows: in section 2 we analyse the structure of the
dimension-8 four-fermion Hamiltonian. The main new results are contained in section 3,
where we construct the effective Lagrangian relevant to evaluate FCNCs of O(G2

F ), we
evaluate the long-distance components of K → πνν̄ amplitudes up to O(G2

Fp
4), and we

discuss the matching between the chiral approach and the four-fermion operators. These
results are used in section 4 to address the numerical impact on B(K+ → π+νν̄). The
conclusion are summarized in section 5.
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2 The O(G2
F ) four-fermion effective Hamiltonian

Since we are interested only in contributions generated by up- and charm-quark loops
(namely we neglect the corrections of O(ΛQCD/m

2
t )), we can set Vtd = 0. In this limit,

CKM unitarity allows to express all the relevant contributions in terms of one independent
CKM combination: λc = V ∗

csVcd = −V ∗
usVud. As discussed in Ref. [5, 9], the central point

for the construction of the low-energy effective theory is the expansion in terms of local
operators of the following T-products,2

OZ
1 = −i

∫

d4x T [Qcc
1 (x) Q

ccνν
Z (0) −Quu

1 (x) Quu νν
Z (0)] , (2)

OZ
2 = −i

∫

d4x T [Qcc
2 (x) Q

cc νν
Z (0) −Quu

2 (x) Quu νν
Z (0)] , (3)

OB
l = −i

∫

d4x T
[

Qcl(x) Qlc(0) −Qul(x) Qlu(0)
]

, (4)

whose leading term is given by

Q
(6)
l = s̄γµ(1− γ5)d ν̄lγµ(1− γ5)νl . (5)

Here

Qqq
1 = s̄iγ

µ(1− γ5)qj q̄jγµ(1− γ5)di ,

Qqq
2 = s̄iγ

µ(1− γ5)qi q̄jγµ(1− γ5)dj , (6)

denote the leading ∆S = 1 four-quark operators (q = u, c),

Qqqνν
Z = q̄kγ

µ

[

(1− γ5)−
8

3
sin2 θW

]

qk ν̄lγµ(1− γ5)νl (7)

is the effective neutral-current coupling induced by the integration of the Z boson, and

Qql
3 = s̄γµ(1− γ5)q ν̄lγµ(1− γ5)l

Qlq
4 = l̄γµ(1− γ5)νl q̄γµ(1− γ5)d (8)

are the effective charged-current couplings induced by integration of the W± bosons. Note
that, even if we are interested in dimension-8 operators, we work at O(G2

F ) and we can
safely use a point-like propagator in the case of both Z and W± bosons. The T-products
in Eqs. (2)–(4) correspond to the diagrams in Figure 1.

The first two steps necessary for the construction of the effective theory, namely the
determination of the initial conditions at µ = MW of OZ

1,2, O
B
l and Q(6), and the renor-

malization group evolution down to lower scales, proceeds exactly as in Refs. [5]-[7]. On

2 For a complete discussion, we refer to Ref. [5]. Note that, since we are interested also in the
subleading terms arising by the expansion of the T-products, we include both left-handed and vector
components of Qqqνν

Z in Eq. (7). The latter has been ignored in [5] since it does not contribute to the
leading dimension six operator.
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Figure 1: One-loop diagrams corresponding to the T-products in Eqs. (2)–(4).

the other hand, we differ from these works in the last step, namely the removal of the
charm as dynamical degrees of freedom. In this case we proceed as in Ref. [9], matching
the operator product expansion of the T-products into an effective theory which includes
also dimension-8 operators. The structure of the local terms, for µIR

<∼ mc, takes the form
of the following effective Hamiltonian density

H(6+8)
eff (µIR) =

GF√
2

α

2π sin2 θW
λc

∑

l=e,µ,τ

[

X l
c(xc)Q

(6)
l +

1

M2
W

∑

i

C l
i(µIR)Q

(8)
il

]

. (9)

Neglecting neutrino masses, the only Q
(8)
il with non-vanishing coefficients to lowest order

in αs(mc) are

Q
(8)
1l = s̄γµ(1− γ5)d ∂2 [ν̄lγµ(1− γ5)νl] ,

Q
(8)
2l = (s̄

←−
Dα)γ

µ(1− γ5)(
−→
Dαd) ν̄lγµ(1− γ5)νl ,

Q
(8)
3l = (s̄

←−
Dα)γ

µ(1− γ5)d
[

ν̄l(
←−
∂α −−→∂α)γµ(1− γ5)νl

]

. (10)

The operator Q
(8)
1l arises by the neutral-current coupling (left diagram in Figure 1), while

Q
(8)
2l and Q

(8)
3l are generated by the charged-current coupling (right diagram in Figure 1).

The operator Q
(8)
3l , which has been considered first in Ref. [8], is the only term which can

induce a CP-conserving contribution to the K2 → π0νlν̄l transition. In agreement with
the results of Ref. [8, 9], we find

C l
1(µIR) =

1

12

(

1− 4

3
sin2 θW

)

log
(

m2
c/µ

2
IR

)

[3C1(µc) + C2(µc)]

Ce,µ
2 (µIR) =

1

2
log
(

m2
c/µ

2
IR

)

CB(µc) (11)

Cτ
2 (µIR) = −1

4
f
(

m2
c/m

2
τ

)

CB(µc)

C l
3(µIR) = −C l

2(µIR)
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where C1,2(µc) represent the Wilson coefficients at scale µc = O(mc) for the operators in
Eqs. (2)–(3), and

f(x) =

(

6x− 2

(x− 1)3
− 2

)

log x− 4x

(x− 1)2
. (12)

In the calculation of the subleading dimension-8 operators, we shall take into account
QCD corrections only up to the leading logarithmic level. In this approximation, the
C1,2,B(µc) coefficients reads

C1(µc) =
1

2

[

(

αs(mc)

αs(mb)

)−6/25(
αs(mb)

αs(MW )

)−6/23

−
(

αs(mc)

αs(mb)

)12/25(
αs(mb)

αs(MW )

)12/23
]

C2(µc) =
1

2

[

(

αs(mc)

αs(mb)

)−6/25(
αs(mb)

αs(MW )

)−6/23

+

(

αs(mc)

αs(mb)

)12/25(
αs(mb)

αs(MW )

)12/23
]

CB(µc) = 1 (13)

Before leaving this section, we comment on the role of the scale µIR. This scale works as
an infrared cutoff for the expansion of the T-products in Eqs. (2)–(4): µIR separates the
long-distance contributions associated to up-quark loops (with low virtuality), from the

local part encoded in H(6+8)
eff (µIR). In order to cancel the µIR dependence in the phys-

ical amplitudes, we should sum to 〈πνν̄|H(6+8)
eff (µIR)|K〉 also the non-local contribution

generated by the matrix elements of the five four-fermion operators in Eqs. (6)–(8), with
q = u. In these matrix elements µIR should act as ultraviolet cut-off for the light degrees
of freedom. The estimate of these matrix elements will be addressed in section 3.

2.1 Matrix elements of the dimension-8 operators

The contributions of the dimension-8 operators can be conveniently normalized in terms
of the leading matrix element of Q

(6)
l . The simplest case is the one of Q

(8)
1l , for which we

can write
〈π+(k)νlν̄l|Q(8)

1l |K+(p)〉 = −q2 〈π+νlν̄l|Q(6)
l |K+〉 (14)

where q = (p− k)2 = (pν + pν̄)
2.

Concerning Q
(8)
2l and Q

(8)
3l , we can proceed as in Ref. [8] finding a suitable chiral repre-

sentation for the corresponding bilinear quark currents. The contribution of Q
(8)
3l , which

describes the transition into a |νν̄〉 final state with J = 2, turns out to be completely
negligible [8]. This matrix element i) suffers of a severe kinematical suppression; ii) van-
ishes to lowest order in the chiral expansion; iii) does not interfere with the leading term.

On the contrary, Q
(8)
2l generates a non-negligible contribution; however, this cannot be

expressed in terms of known low-energy couplings. In general, we can write

〈π+(k)νlν̄l|Q(8)
2l |K+(p)〉 = B̂2 [p · k +O(mq)] 〈π+νlν̄l|Q(6)

l |K+〉 (15)

where B̂2 is an unknown hadronic parameter, expected to be of O(1), and O(mq) denotes
contributions proportional to light-quark masses.

5



In summary, the leading contributions to the K+ → π+νν̄ amplitude generated by the
effective Hamiltonian in (9) can be written as

A(8)(K+ → π+νlν̄l) = −〈π+νlν̄l|H(6+8)
eff (µIR)|K+〉 ≡ A(6)

Z +A(8)
Z +A(8)

WW (16)

where, adopting the standard CHPT convention 〈π+|s̄γµd|K+〉 = −(p + k)µ and using
λ = −λc, we have

A(6) = −GF√
2

α λ

2π sin2 θW
X l

c(xc) [(p + k)µ νlγµ(1− γ5)νl] (17)

A(8)
Z =

GF√
2

α λ

2π sin2 θW

q2

M2
W

C l
1(µIR) [(p+ k)µ νlγµ(1− γ5)νl] (18)

A(8)
WW = −GF√

2

α λ

2π sin2 θW
B̂2

p · k
M2

W

C l
2(µIR) [(p+ k)µ νlγµ(1− γ5)νl] (19)

3 K → πνν̄ amplitudes within CHPT

As discussed in the previous section, the scale dependence ofK → πνν̄ amplitudes induced
by the dimension-8 operators must be compensated by a corresponding scale dependence
of their long-distance component. The latter is generated by the matrix elements of four-
fermion operators which involve only light quarks (u,d and s) and light lepton fields.
In this case both internal and external fields do not involve high-energy scales, thus a
partonic calculation of this part of the amplitude would be inadequate. In the following
we shall present an estimate of these contributions in the framework of CHPT.

The four-fermion operators we are interested in are four-quark operators of the type
in Eq. (6) as well as quark-lepton couplings of the type in Eqs. (7)–(8). All these effec-
tive operators are generated by the exchange of a single heavy gauge boson (Z or W ),
and correspondingly have an effective coupling of O(GF ). However, our final goal is the
evaluation of their T-product between |K〉 and |πνν̄〉 states which –by construction– is of
O(G2

F ). As we shall show in the next subsection, this observation has important conse-
quences in the framework of CHPT. In particular, it implies that a consistent treatment
of these effects requires the introduction of new appropriate chiral operators of O(G2

Fp
2).

3.1 The O(p2) chiral Lagrangian including O(G2
F ) FCNCs

We start by the considering the chiral realization of the O(GF ) coupling between quark
and lepton currents. To this purpose, we introduce the so-called strong chiral Lagrangian
of O(p2) in presence of external currents [15]3

L(2)
S =

F 2

4

〈

DµUDµU †〉+
F 2B

2

〈

MU + U †M
〉

. (20)

3 The symbol 〈〉 denotes the trace over the 3× 3 flavour space.
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As usual, we define

U = exp(
√
2iΦ/F ) , Φ =







π0√
2
+ η√

6
π+ K+

π− − π0√
2
+ η√

6
K0

K− K̄0 − 2η√
6






(21)

whereM = diag(mu, md, ms) and, to lowest order, we can identify F with the pion decay
constant (F ≈ 92MeV) and express B in term of meson masses [m2

π = B(mu+md)]. The
generic covariant derivative, DµU = ∂µU − irµU + iUlµ, allows to systematically include
the coupling to external currents (lµ and rµ) transforming as (8L, 1R) and (1L, 8R) under
SU(3)R×SU(3)L. In the specific case of the O(GF ) couplings to charged lepton currents,
we can thus identify the covariant derivative with

D(W )
µ U = ∂µU − i

g√
2
U(T+W

+
µ + h.c.) , T+ =





0 Vud Vus

0 0 0
0 0 0



 (22)

The situation is slightly more complicated in the case of the Z boson, which couples to
both right- and left-handed SU(3) currents, but also to the following singlet current

J
(1)
Lµ =

∑

q=u,d,s

q̄LγµqL (23)

which has a non-vanishing U(1)L charge. As pointed out in [12], the Z coupling to J
(1)
Lµ

involve a new effective coupling which cannot be determined within the SU(3)R×SU(3)L
chiral group. Putting all the ingredients together, the covariant derivative with external
W and Z fields reads

D(W,Z)
µ U = ∂µU − igZZµ

(

sin2 θW [Q,U ] + UQ− a1
6
U
)

− i
g√
2
U(T+W

+
µ + h.c.) , (24)

where Q = diag(2/3,−1/3,−1/3), gZ = g/ cos θW and a1 is the new coupling related to
the U(1)L current.4 We finally recall that, being external fields, the W µ and Zµ operators
appearing in Eq. (24) are only a short-hand notation to denote the corresponding leptonic
currents (as obtained after the integration of the heavy gauge boson). In particular, the
case we are interested in corresponds to

W+
µ →

g

2
√
2M2

W

∑

l

l̄γµ(1− γ5)νl , Zµ →
gZ
4M2

Z

∑

l

ν̄lγµ(1− γ5)νl . (25)

We shall now proceed by considering the O(GF ) four-quark operators. The chiral
realization of the |∆S = 1| non-leptonic Hamiltonian has been widely discussed in the lit-
erature (see e.g. Ref. [16]). The contraction of a single W field coupled to quark currents

4 The normalization of the U(1)L coupling is such that a1 → 1 in the limit where we can extend the
symmetry of the QCD action (with 3 massless quarks) from SU(3)R × SU(3)L to U(3)R × U(3)L, as it
happens for Nc →∞.

7



leads to two independent structures which transform as (8L, 1R) and (27L, 1R), respec-
tively. Given the strong phenomenological suppression of the (27L, 1R) terms, in the
following we shall consider only the (8L, 1R) operators. To lowest order in the chiral
expansion, O(p2), the (8L, 1R) non-leptonic weak Lagrangian contains only one term:

L(2)
|∆S|=1 = G8F

4
〈

λ6D
µU †DµU

〉

(26)

Here G8 = O(GF ) is the effective coupling which is usually fixed from K → 2π and
incorporates the phenomenological ∆I = 1/2 enhancement (G8 ≈ 9×10−6 GeV−2), while
(λ6)ij = δ2iδj3 + δ3iδj2. As shown in Ref. [17, 18], the number of independent operators
increase substantially at O(p4).

The inclusion in the non-leptonic chiral Lagrangian of external SU(3)R × SU(3)L
currents –which are hidden in the covariant derivative in Eq. (26)– allows to describe
in a systematic way also non-leptonic weak interactions in presence of external gauge
fields. This is for instance the case of the K → πγ amplitude analysed in Ref. [19].
However, contrary to what stated in Ref. [12], this minimal coupling is not sufficient in
theK → πνν̄ case. Here we are interested in FCNC amplitudes where the leptonic current
is associated to a broken generator of the electroweak gauge group: at O(G2

F ) this coupling
is not anymore protected by gauge invariance. This argument can easily be understood by
looking at the effective Hamiltonian in Eq. (1): from the point of view of chiral symmetry,
the FCNC dimension-6 operator in Eq. (1) corresponds to a non-gauge-invariant coupling
between a (8L, 1R) quark current and an external neutral left-handed current. We thus
need to extend the basis of chiral operators and include the chiral realization of all the
O(G2

F ) independent terms of this type. At O(p2) the situation is again quite simple since
we have only two independent terms:

〈

λ6U
†DµUlµ

〉

,
〈

λ6U
†DµU

〉

〈lµ〉 . (27)

In the specific case we are interested in, we can thus add to the |∆S| = 1 Lagrangian in
Eq. (26), with the covariant derivative (24), the following O(G2

Fp
2) term

L(2)
FCNC = igZF

4Zµ

[

GZ
8

〈

λ6U
†DµUQ

〉

+GZ
1 a1

〈

λ6U
†DµU

〉]

, (28)

where again the Zµ field has to be understood as the neutral current in Eq. (25).
The consistent inclusion of all the relevant O(G2

Fp
2) operators has forced us to in-

troduce two new effective chiral couplings of O(GF ), namely GZ
8 and GZ

1 . At this order

the chiral Lagrangian L(2)
FCNC + L(2)

|∆S|=1 –with the covariant derivative given in (24)– has
a local current-current structure identical to the one of the leading dimension-6 Hamil-
tonian in Eq. (1). Since we are able to compute explicitly the K0 → Z matrix element
in both approaches, we can fix the unknown chiral couplings by an appropriate matching
condition on the K0 → Z amplitude. In particular, imposing the condition

〈K0|L(2)
|∆S|=1 + L

(2)
FCNC|Zµ〉 = 0 (29)

we eliminate from the O(G2
Fp

2) chiral Lagrangian any contamination from the leading
dimension-6 operators. The matrix elements of the latter must then be computed directly

8
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Figure 2: Tree-level contributions to the K → πZ amplitudes within CHPT. Dashed and
empty circles correspond to vertices derived from L(2)

|∆S|=1+GIM and L(2)
S , respectively

by means of the partonic Hamiltonian, as in the standard approach. The condition (29)
implies GZ

8 = −2G8 and GZ
1 = G8/3, which leads to the following structure for the weak

Lagrangian of O(GFp
2 +G2

Fp
2):

L(2)
|∆S|=1+GIM = G8F

4〈λ6

[

DµU †DµU − 2igZZµU
†DµU

(

Q− a1
6

)]

〉 (30)

Using this Lagrangian,5 together with the ordinary L(2)
S , we are finally ready to analyse

the structure of K → πνν̄ long-distance amplitudes up to the one-loop level.

3.2 Z-mediated amplitudes: general structure and O(p2) results

Following the same conventions adopted for the short-distance calculation, we define the
K(p)→ π(k)νν̄ amplitude mediated by Z exchange by

A(K → πνν̄)Z = −i〈π| δ

δZµ

∫

[dφ]ei
∫

dxL[φ,Z] |K〉 × gZ
4M2

Z

∑

l

ν̄lγµ(1− γ5)νl (31)

and we find it convenient to decompose it as follows

A(Ki → πiνν̄)Z =
GF√
2
G8F

2
[

Mi
L pµ +Mi

V

(

q2pµ − p · q qµ
)]

∑

l

ν̄lγµ(1− γ5)νl (32)

where q = p − k and the form factors Mi
V,L are regular functions in the limit q2 → 0

and p · q → 0. The Mi
V terms, which can be different from zero only at O(p4) in the

chiral expansion, correspond to the conserved component of the coupling to the external
current.

In the decomposition (32) we have implicitly neglected the O(qµ) terms which do
not appear in the coefficient of Mi

V (all the O(qµ) terms give a negligible result when
contracted with the neutrino current). This allows to substantially simplify the calculation
and, in particular, to neglect the bilinear couplings Zµ∂µφ. In this limit, the only non-
vanishing O(p2) tree-level diagrams contributing the K → πZ amplitude are those in

5 We denote it with a subscript “GIM” since the condition (29) is equivalent to enforcing an exact
GIM cancellation for the tree-level FCNC associated to the leading short-distance operator.
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Figure 3: Examples of valence-quark topologies appearing in K → πZ amplitudes. Left:
non-spectator topology contributing to the K+ → π+ transition only (the black box denotes
a weak four-quark operator). Right: penguin-type contraction or insertion of the local
FCNC effective coupling.

figure 2. They leads to the following results for the non-conserved terms of charged and
neutral channels:

M+(2)
L = 4 , M0(2)

L = 0 . (33)

Because of the modified weak Lagrangian in (30), these results are qualitatively different
from those available in the literature. On the one side, find that the charged amplitude
(K+ → π+Z) is different from zero and is completely determined in terms of known
couplings. In particular, the amplitude does not vanish in the large NC limit, as claimed
in Ref. [12]. On the other hand, we find that the neutral amplitude (K0 → π0Z) is
identically zero. By comparison, it should be noted that the K0 → π0Z amplitude
computed with the minimal-coupling prescription of Ref. [12] is different from zero, even
in the large NC limit. The vanishing of the K0 → π0Z amplitude at O(p2) is a direct
consequence of the condition imposed by Eq. (29), which removes from the low-energy
effective Lagrangian the spurious tree-level FCNC coupling generated by the minimal
substitution. As already mentioned, by means of this procedure the leading penguin-type
contractions (see figure 3) are removed from the low-energy effective theory and treated
directly by means of the partonic Hamiltonian. In this approach, the only non-vanishing
contributions of O(p2) are the genuine long-distance effects associated to non-spectator
topologies, which can affect only the charged transition K+ → π+Z (see figure 3).

3.3 One-loop contributions to K → πZ amplitudes

The O(p4) calculation of the K → πZ amplitude involves several one-loop diagrams.
However, a substantial simplification is obtained by performing the calculation in the basis
of Ref. [20], where the weak O(p2) mixing among pseudoscalar mesons is diagonalized,
and neglecting the O(qµ) pole diagrams due to the Zµ∂µφ coupling (as at the tree-level,
this completely removes the unknownw a1 parameter from the relevant vertices). With
these simplifications, the relevant one-loop diagrams are shown in figure 4.

In the case of theM+
L form factor, the complete one-loop contribution can be decom-

posed as

M+(4)
L

∣

∣

∣

loop
=

2

(4πF )2

[

T 0
a+b+c − (m2

K −m2
π)T 1

a+b+c

]

+
1

2
(δZK + δZπ)M+(2)

L (34)
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Figure 4: One-loop contributions to the K → πZ amplitudes within CHPT in the pseu-
doscalar basis of Ref. [20]. Dashed and empty circles correspond to flavour-changing and
flavour-conserving vertices, respectively. The wave-function renormalization diagrams (d)
contribute only toM+

L (which is non-zero already at lowest order).

where the subscripts refer to the labels of the diagrams in figure 4. The explicit compu-
tation of the various terms yields

T 0
a+b+c = A0

(

m2
K

)

+ A0

(

m2
η8

)

− 1

6

(

4m2
K − q2

)

B0

(

q2;m2
K , m

2
π

)

+
1

12

(

4m2
K − q2

)

B0

(

q2;m2
K , m

2
K

)

+
1

12

(

4m2
π − q2

)

B0

(

q2;m2
π, m

2
π

)

(35)

T 1
a+b+c =

1

6

(

2 +
m2

K

m2
π

)

B0

(

m2
π;m

2
K , m

2
η8

)

+
1

6

(

1− m2
K

m2
π

)

B0

(

0;m2
K , m

2
η8

)

+

(

2

3
− m2

K

2m2
π

+
m2

K −m2
π

6q2

)

B0

(

0;m2
K , m

2
π

)

−
(

1

3
+

m2
K −m2

π

6q2

)

B0

(

q2;m2
K , m

2
π

)

+
m2

K

2m2
π

B0

(

m2
π;m

2
K , m

2
π

)

(36)
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δZπ = − 1

(4πF )2

[

2

3
A0

(

m2
π

)

+
1

3
A0

(

m2
K

)

]

(37)

δZK = − 1

(4πF )2

[

1

4
A0

(

m2
π

)

+
1

2
A0

(

m2
K

)

+
1

4
A0

(

m2
η8

)

]

(38)

where the expressions for the loop functions A and B, evaluated in dimensional regular-
ization, are given in the Appendix.

Interestingly, the complete expression of M+(4)
L |loop is finite and vanishes exactly in

the SU(3) limit (mK = mη8 = mπ). The amplitude has a mild q2 dependence and for
q2 > 4m2

π develops a small imaginary part –related to the K → 3π intermediate state–
via the loop function B0(q

2;m2
π, m

2
π). From the numerical point of view, the various terms

inM+(4)
L |loop are separately of O(1); however, there is a strong cancellation among them:

using the Gell-Mann Okubo (GMO) relation among pseudoscalar masses, we find

∣

∣

∣
M+(4)

L

∣

∣

∣

loop
< 0.01 (39)

in all the allowed q2 range. This cancellation is very sensitive to possible violations of the
GMO relation, but even for physical masses we find a result substantially smaller than
the tree-level value in Eq. (33).

In the case of theM+
V form factor, the result of the one-loop calculation yields

M+(4)
V

∣

∣

∣

loop
=

2

(4πF )2

(

1− 4

3
sin2 θW

)[

m2
K

q2
B0

(

0;m2
K , m

2
K

)

+
m2

π

q2
B0

(

0;m2
π, m

2
π

)

+
1

4
B0

(

q2;m2
K , m

2
K

)

(

1− 4m2
K

q2

)

+
1

4
B0

(

q2;m2
π, m

2
π

)

(

1− 4m2
π

q2

)

+
1

3

]

(40)

As expected, this result coincides (up to the overall normalization) with the one-loop
expression of the K+ → π+γ amplitude obtained by Ecker, Pich and de Rafael [19]. To
make more explicit the connection with their result, it is sufficient to note that

M+(4)
V

∣

∣

∣

loop
=

1

(4πF )2

(

1− 4

3
sin2 θW

)[

Dε − log
mKmπ

µ2
+ 3φπ

(

q2
)

+ 3φK

(

q2
)

]

(41)

where Dε and φi(q
2) –defined as in Ref. [19]– are reported in the Appendix. Contrary to

the one-loop expression ofM+
L , the result in (40) is not finite and does not vanish in the

SU(3) limit.

Although not strictly necessary for practical purposes, we report here also the one-loop
results for the neutral form factors, which are useful to investigate the SU(3) properties
of K → πZ amplitudes. Due to the absence of tree-level contributions, the calculation of
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the neutral form factors is somewhat simpler. We find

M0(4)
L

∣

∣

∣

loop
= −

√
2

(4πF )2

{

−5
3

[

A0

(

m2
K

)

− A0

(

m2
π

)]

+
1

6

(

4m2
K − q2

) [

B0

(

q2;m2
K , m

2
K

)

− B0

(

q2;m2
K , m

2
π

)]

+
(

m2
K −m2

π

)

[

1

3
− 2B0

(

m2
K ;m

2
π, m

2
π

)

+
m2

K −m2
π + 2q2

6q2
B0

(

q2;m2
K , m

2
π

)

−m
2
K −m2

π + q2

6q2
B0

(

0;m2
K , m

2
π

)

]}

(42)

and

M0(4)
V

∣

∣

∣

loop
= − 1√

2(4πF )2

(

1− 4

3
sin2 θW

)[

Dε − log
m2

K

µ2
+ 6φK

(

q2
)

]

(43)

Also in this case the ML term vanishes in the SU(3) limit and there is perfect analogy
with the result of Ref. [19] for the vector form factor. However, contrary to the charged
case, Eq. (42) is not finite beyond the SU(3) limit. In particular, we find

M0(4)
L

∣

∣

∣

div

loop
=

7(m2
K −m2

π)√
2(4πF )2

Dε (44)

Concerning the finite parts, the one-loop expression ofML is O(1), it is almost constant,
and it has a large absorptive part associated to the K0 → π+π− intermediate state.

Combining all the one-loop results, the SU(3) limit of the two amplitudes satisfy the
relation

A(K+ → π+νν̄)loopZ

∣

∣

∣

SU(3)
= −
√
2 A(K0 → π0νν̄)loopZ

∣

∣

∣

SU(3)
≡ Aloop

Z , (45)

in perfect analogy with the K+ → π+γ case. In this limit, the (UV) scale dependence of
the amplitude is given by

µ2 d

dµ2
Aloop

Z =

(

1− 4

3
sin2 θW

)

GFG8

16
√
2π2
× q2 [pµνlγµ(1− γ5)νl] . (46)

3.4 Matching and O(p4) counterterms for K → πZ amplitudes

One of the key features of our result, is the fact that the scale dependence of the one-loop
CHPT amplitude turns out to be proportional to (1− 4

3
sin2 θW ). This fact is particularly

welcome since it signals a short-distance behavior in agreement with the one derived at the
partonic level. Indeed, the same coupling appears in the Wilson coefficient of Q

(8)
1l , namely

the four-fermion dimension-8 operator corresponding to the Z-penguin contraction. Thus
the short-distance behavior of the one-loop CHPT amplitude is perfectly compatible with
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the IR structure derived by the partonic calculation. To be more explicit, the UV scale
dependence in (46) should be compared with

µ2
IR

d

dµ2
IR

A(8)
Z = −

(

1− 4

3
sin2 θW

)

G2
Fλ[3C1(µc) + C2(µc)]

12π2
× q2 [pµνlγµ(1− γ5)νl] , (47)

which follows from Eq. (19). As expected, the two expressions do not match exactly, given
the non-perturbative QCD effects encoded in G8, but they have the same kinematical
dependence, and the same parametrical dependence from the electroweak couplings. The
second feature is a direct consequence of the matching condition which has been imposed
on the O(G2

Fp
2) Lagrangian in (30).

As a consequence of the non-perturbative enhancement of G8 (G8 ≫ GFλ), which
is a manifestation of the ∆I = 1/2 rule, the scale dependence derived within CHPT is
substantially larger with respect to the one obtained by the dimension-8 partonic Hamil-
tonian. This fact signals that, at least in the case of Z-mediated amplitudes, the genuine
long-distance contributions evaluated within CHPT represent the dominant effect.

Within a pure CHPT approach, the scale dependence of the L(2) × L(2) one-loop
amplitude must be exactly compensated by that of the O(p4) local counterterms, whose
renormalized finite parts encode possible short-distance contributions. In the present case,
we can distinguish three types of O(p4) counterterms:

i. the Li(µ) of the strong Lagrangian [15];

ii. the Ni(µ) of the O(GFp
4) non-leptonic weak Lagrangian [18];

iii. new O(G2
Fp

4) local terms with explicit lµ fields, namely the O(p4) generalization of
the O(p2) terms in Eq. (27).

Unfortunately, only in the first two cases the finite parts of the counterterms are exper-
imentally known. Considering only the contribution of these known couplings, we can
write

M+(4)
V

∣

∣

∣

CT
=

4

F 2

(

1− 4

3
sin2 θW

)

[N14(µ)−N15(µ) + 3L9(µ)] +O(N ′
i)

≡ 1

(4πF )2

(

1− 4

3
sin2 θW

)[

1− 3
GF

|G8|
a+ + log

mKmπ

µ2

]

+O(N ′
i) (48)

M0(4)
V

∣

∣

∣

CT
= −

√
2

F 2

(

1− 4

3
sin2 θW

)

[2N14(µ) +N15(µ)] +O(N ′
i)

≡ − 1√
2(4πF )2

(

1− 4

3
sin2 θW

)[

1 + 3
GF

|G8|
aS + log

m2
K

µ2

]

+O(N ′
i) (49)

where O(N ′
i) denote sin2 θW -independent and µ2-independent combination of countert-

erms which includes the new unknown couplings, as well as the unknown a1 parameter
from the O(p4) strong and non-leptonic weak Lagrangian (i. and ii.). According to the
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experimental data on K+ → π+ℓ+ℓ− decays, the numerical value of the (finite) low-energy
constant appearing in (48) is a+ ≈ −0.6 [21, 22].

ConcerningML, the counterterm structure is more complicated. In the charged mode,
where the tree-level result is different from zero, we expect terms correcting G8 and the
meson decay constants. From the konwn size of the latter, we naturally expect O(25%)
corrections to the tree-level results, though we cannot exclude that strong cancellations
similar to those leading to Eq. (39) do occur. It should also be noted that spurious
O(G2

Fp
4) effects from dimension-6 operators are still present in the q2-independent part

of bothM+(4)
L andM0(4)

L ; however, disentangling these effects from the genuine O(G2
Fp

4)
long-distance corrections is beyond the scope of this work. Given these uncertainties on
the counterterm structure of theML terms, in the numerical analysis of section 4 we shall
assign a conservative 50% error to the tree-level result forM+

L .

3.5 W–W amplitudes

As can be seen from figure 5, within CHPT the structure of FCNC amplitudes induced
by two charged currents is substantially simpler than the Z-mediated case. On general
grounds, since the heavy τ lepton has already been integrated out at the level of the par-
tonic Hamiltonian, we can decompose these contributions to the K+ → π+νν̄ amplitude
as follows

A(K+ → π+νν̄)WW = G2
FF

2λ
∑

l=e,µ

Ml
WW pµν̄lγµ(1− γ5)νl (50)

The O(p2) tree-level contribution has already been analysed in Ref. [11]; however, we
disagree with their final result by a factor of 4. In particular, we obtain

Ml(2)
WW = 2

[

1 +
m2

l

t−m2
l

]

≈ 2 (l = e, µ) (51)

where t = (p − pν)
2. Given the strong kinematical suppression of terms asymmetric in

the two neutrino momenta [8], the approximate result in the r.h.s. of Eq. (51) turns out
to be an excellent approximation in the evaluation of the total decay rate.

The O(p4) one-loop calculation yields

Ml(4)
WW

∣

∣

∣

loop
=

1

(4πF )2

{

(m2
π −m2

l )

(

2− m2
l

2t

)

B0(0;m
2
l , m

2
π) + 4A0(m

2
l )−A0(m

2
π)

+

[

4(m2
π − t) + (m2

l −m2
π + t)

(

2− m2
l

2t

)]

B0(t;m
2
l , m

2
π)

}

(52)

and in the limit ml → 0 becomes (see Appendix):

Ml(4)
WW

∣

∣

∣

loop

ml→0−→ 1

(4πF )2

[

(3m2
π − 2t)

(

Dε − log
m2

π

µ2

)

+5m2
π − 4t+ 2

(m2
π − t)2

t
log

(

1− t

m2
π

)]

(53)
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Figure 5: Tree-level and one-loop contributions to K+ → π+νν̄ amplitudes induced by
W–W exchange, within CHPT. Contrary to the case of figure 1, here the index ℓ runs
only over the first two families of leptons.

As expected, the one-loop result is divergent. Within a pure CHPT calculation, such
divergence is cured by appropriate O(G2

Fp
4) counterterms. Unfortunately, we cannot

determine the finite part of these counterterms, neither from first principles nor from
data. However, a reasonable estimate of their size can be obtained by imposing the
matching of the scale dependence with the short-distance partonic calculation. Since in
this case there are no sizable non-perturbative effects associated to the ∆I = 1/2 rule (as
in the Z-mediated case), we expect a good numerical matching. From Eq. (53) it follows

µ2 d

dµ2
Aloop

WW =
G2

Fλ

16π2
(3m2

π − 2t) [pµνlγµ(1− γ5)νl]

= −G
2
Fλ

8π2

[

p · k +O(m2
π)
]

[pµνlγµ(1− γ5)νl] + O [p · (pν − pν̄)] , (54)

while from Eq. (19) we get

µ2
IR

d

dµ2
IR

A(8)
WW =

G2
Fλ

2π2

[

B̂2(p · k) +O(mq)
]

[pµνlγµ(1− γ5)νl] . (55)

As can be noted, the two expression have the same kinematical structure (within the
approximations employed) and the scale dependence can be matched with an appropriate
choice of the hadronic parameter defined in Eq. (15), namely B̂2 ≈ 1/4. This result
allows us to have a full control on the total W–W amplitude, with the inclusion of the
contribution of the dimension-8 partonic operator. Neglecting O(p4) terms not enhanced
by the large factor log(m2

c/m
2
π), we finally obtain

M(4)
WW = 2− 1

16π2F 2
(m2

K − q2) log
m2

c

m2
π

+O

(

m2
K

16π2F 2

)

(l = e, µ) (56)

Note that, despite the large-log enhancement, the O(p4) term turns out to be smaller
than the tree-level contribution. It is also worth to stress that the overall term in (56)
is smaller that the estimate of the dimension-8 contribution only presented in Ref. [9],
which was based on näive dimensional analysis.
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4 Numerical analysis for B(K+ → π+νν̄)

Collecting the results of the previous section, we can finally estimate the complete sub-
leading Z– and W–W–mediated contributions to the K+ → π+νν̄ amplitude (including
both dimension-8 and long-distance effects). We express them through the coefficients
PZ(q

2) and PWW (q2), defined by

A(K+ → π+νν̄) = −GF√
2

α λ5

2π sin2 θW

∑

l=e,µ,τ

[

PZ(q
2) + P l

WW (q2)
]

(p+k)µν̄lγµ(1−γ5)νl (57)

The normalization of PZ(q
2) and PWW (q2) is such that they can easily be compared with

the leading dimension-6 charm contribution in Eq. (17). In particular, the combination

δPc,u =
1

3

∑

l=e,µ,τ

〈

PZ(q
2) + P l

WW (q2)
〉

(58)

where 〈〉 denotes an appropriate average over the phase space, represents the correction
to be added to the leading coefficient

P (6)
c =

1

λ4

[

2

3
Xe

c +
1

3
Xτ

c

]

= 0.39± 0.07 , (59)

whose numerical value corresponds to the present NLO accuracy of H(6)
eff [7, 4].

According to the results in Eq. (33), (41) and (48), we find

PZ(q
2) = −π

2F 2sgn(G8)√
2λ5M2

W

[

4|G8|
GF

− 3a+q
2

16π2F 2

(

1− 4

3
sin2 θW

)

+O(N ′
i , q

4)

]

(60)

while for the W–W contribution we get

P e,µ
WW (q2) = − π2F 2

λ4M2
W

[

2− 1

16π2F 2
(m2

K − q2) log
m2

c

m2
π

+O

(

m2
K

16π2F 2

)]

P τ
WW (q2) = −(m

2
K − q2)

32λ4M2
W

f
(

m2
c/m

2
τ

)

(61)

In the case of PZ(q
2), we have explicitly pointed out the dependence from sgn(G8), which

has to be estimated starting from the partonic four-quark Hamiltonian. As discussed in
Ref. [22], employing the factorization approximation leads to G8 < 0. From the numerical
point of view, the sum of the O(p4) terms encoded in PZ(q

2) and PWW (q2) turn out to be
about 20% of the O(p2) terms, in good agreement with näive chiral counting. However,
as discussed at the end of section 3.4, we have not been able to estimate all the possible
O(p4) contributions. For this reason, we believe that the most conservative approach for
the numerical analysis is obtained by fixing the central value of δPc,u from the complete
O(p2) result, and attribute to it a 50% error:

δPc,u ≈
π2F 2

λ4M2
W

[

4|G8|√
2λGF

− 4

3

]

= 0.04± 0.02 (62)
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In summary, the subleading contributions of O(G2
FΛ

2
QCD) to the K+ → πνν̄ amplitude

turns out to be a constructive 10% correction with respect to the leading charm contri-
bution

P (6)
c → P (6)

c + δPc,u δPc,u = 0.04± 0.02 (63)

This correction implies a ≈ 6% increase of the SM prediction of B(K+ → π+νν̄).
The overall effect of the O(G2

FΛ
2
QCD) corrections turns out to be smaller than the error

of the dimension-6 term at the NLO level, thus it was justified to neglect these subleading
terms at this level of accuracy (as for instance done in the recent analysis of Ref. [4, 23]).
However, these subleading terms are not negligible in view of a NNLO analysis of the
dimension-6 contribution.

5 Conclusions

We have presented a comprehensive analysis of the O(G2
FΛ

2
QCD) contributions toK → πνν̄

amplitudes not described by the leading dimension-6 effective Hamiltonian. These include
both the effects of dimension-8 four-fermion operators generated at the charm scale, and
the genuine long-distance contributions which can be described within the framework of
CHPT. As we have shown, these two type of effects are closely correlated. The main
results of our analysis can be summarized as follows:

• The dominant contributions are the O(G2
Fp

2) tree-level amplitudes which can be
computed within CHPT. A consistent evaluation of these amplitudes requires the
introduction of new chiral operators of O(G2

Fp
2), in addition to those already present

in the non-leptonic weak chiral Lagrangian. These operators, which are needed to
cancel spurious tree-level FCNCs and to ensure a correct UV behavior of the chiral
amplitudes, have not been considered in the previous literature [12, 13, 14].

• The introduction of the new O(G2
Fp

2) operators has allowed us to obtain a consistent
matching between the CHPT one-loop amplitudes of O(G2

Fp
4) and the contributions

of the dimension-8 four-fermion Hamiltonian. Thanks to this matching, we have
been able to estimate more precisely both these sources of subleading contributions.
In particular, we have estimated the hadronic matrix element of all the dimension-8
partonic operators of Ref. [9], strongly reducing this source of uncertainty. From the
numerical point of view, both the O(G2

Fp
4) chiral amplitudes and the dimension-8

partonic operators induce very small effects on K → πνν̄ amplitudes (corrections
below the 1% level).

• In the K+ → π+νν̄ case, the leading corrections due to the O(G2
Fp

2) chiral ampli-
tudes amount to about 10% of the dimension-6 charm contribution, or about 3%
of the total SM amplitude. Their effect can be efficiently encoded in the standard
analysis of B(K+ → π+νν̄) be means of Eq. (63). The size of these effects can easily
be understood by noting that they scale as (πF/mc)

2 ≈ 5% with respect to the
leading charm contribution and are partially enhanced by the ∆I = 1/2 rule (see

18



Eq. (62)). These subleading terms are not negligible in view of a NNLO analysis of
the dimension-6 contribution.
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A Loop functions

Following standard conventions, we define

B0

(

q2, m2
1, m

2
2

)

= −i (4π)2 µε

∫

ddk

(2π)d
1

(k2 −m2
1)
(

(k − p)2 −m2
2

) (64)

A0(m
2) = −i (4π)2 µε

∫

ddk

(2π)d
1

(k2 −m2)
(65)

where ε = 4− d. The following identities holds

B0

(

0, m2, m2
)

=
A0 (m

2)

m2
− 1 = Dε − log

m2

µ2

B0

(

0, m2
1, m

2
2

)

= Dε + 1− 1

m2
1 −m2

2

(

m2
1 log

m2
1

µ2
−m2

2 log
m2

2

µ2

)

=
A0 (m

2
1)− A0 (m

2
2)

m2
1 −m2

2

B0

(

q2, m2, m2
)

= Dε − log
m2

µ2
+H1

(

q2

m2

)

(66)

where Dε = 2/ε− γ + log 4π and

H1 (a) =



















2− 2
√

4/a− 1 arctan
1

√

4/a− 1
a < 4

2−
√

1− 4/a

(

log
1 +

√

1− 4/a

1−
√

1− 4/a
− iπ

)

a > 4
(67)

The one-loop function defined in Ref. [19] is

φi(q
2) = −4

3

m2
i

q2
+

5

18
+

1

3

(

4m2
i

q2
− 1

)

2−H1 (q
2/m2

i )

2
(68)

and for small q2 can be expanded as

φi(q
2) = −1

6

[

1 +
q2

10m2
i

+O

(

q4

m4
i

)]

(69)
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