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On photon splitting in theories with

Lorentz invariance violation.
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In a model with Lorentz invariance violation implemented through modified dispersion relations,
we estimate the rate for the decay process γ → 3γ and find that it provides a relevant bound on
Lorentz invariance violation.
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Lorentz invariance is not necessarily an exact symme-
try of nature. Though all the experimental results show
that the laws of physics are Lorentz invariant, several ap-
proaches to quantum gravity, for example, suggest that
at very high energies Lorentz invariance might be bro-
ken. Surprisingly, such violations, even if associated with
Planck scale physics, may be constrained by present ob-
servations.
To discuss Lorentz invariance violation (LIV) we adopt

the kinematic framework based on modified dispersion re-
lations. That is, we alter the relation between the energy
and the momentum of a given particle but keep intact the
dynamics and the energy-momentum conservation law.
Such modifications are indeed suggested by certain ap-
proaches to Quantum Gravity [1].
Modified dispersion relations manifest in different

ways [2]. They may affect the propagation of photons
by inducing dispersion and birefringence over long travel
times. They could modify the threshold for known pro-
cesses, as in γγ → e+e− and the GZK reaction [3].
They might also induce new processes not allowed in
QED such as photon decay (γ → e+e−), photon split-
ting (γ → γγ, γγγ, ...), and vacuum Cerenkov radiation
(e → eγ). The non-observation of such anomalous ef-
fects, then, constrains the assumed dispersion relations.
We consider, following Ref. [2], the modified dispersion

relation for the photon

E2
γ = p2γ + ξ

p3γ
M

(1)

where Eγ and pγ are the energy and momentum of the
photon, the scale M = 1019 GeV is an energy scale close
to the Planck mass, and ξ is a Lorentz invariance vio-
lating parameter. This dispersion relation preserves ro-
tation invariance but not boost invariance. Thus it can
hold in only one reference frame, usually identified with
the rest frame of the cosmic microwave background.
Within an effective field theory (EFT) framework, the

photon satisfies the polarization dependent dispersion re-
lation E2

± = p2 ± ξ(p3/M), where the subscripts ± refer

to the right and left circular polarizations of the pho-
ton [5]. It may be, however, that EFT does not describe
the leading effects of Lorentz invariance violation. In
any case, EFT is a dynamical assumption that goes be-
yond the kinematic framework we are following. We will,
therefore, neglect polarization dependence in the disper-
sion relation and assume that all photons satisfy Eq. (1)
with ξ positive.
In standard QED the photon splitting process γ → 3γ

does not occur because, due to energy and momentum
conservation, the three momenta must all be parallel and
the amplitude vanishes in this configuration. However,
such decay is allowed in the presence of the modified
dispersion relation in Eq. (1) for ξ > 0. Since in this case
the process γ → 3γ has no threshold, its effectiveness in
constraining ξ depends solely on the rate. So far, only
a crude guess of this rate exist in the literature. In this
letter, we provide an estimate of the decay rate Γ(γ →
3γ) and show that the observation of high energy photons
from astrophysical sources provides an upper bound on
ξ stronger than previously believed.
To compute the rate of the decay γ → 3γ we write

the modified dispersion relation in terms of an “effective
photon mass”,

m2
γ = ξ

p3γ
M

, (2)

so that the photon satisfies E2
γ = p2γ +m2

γ .
Notice that all the scalar products of photon momenta

in the process γ → 3γ, as well as all the scalar products
of momenta and polarization vectors, vanish for mγ = 0.
The presence of a smallmγ ( 6= 0) changes the kinematics
of the process, allowing the final photon momenta to have
small components perpendicular to the initial momentum
and proportional tom2

γ/Eγ . In addition, each photon ac-
quires a longitudinal polarization vector ǫµ ∼ pµγ/mγ . As
a result, all the non-vanishing scalar products of photon
momenta as well as all the scalar products of momenta
and polarization vectors are of the order of the initial ef-
fective photon mass. Thus, apart from the dependence
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of the decay rate on 1/Eγ , which remains explicitly in
the final result, the important energy scale for the rate
is given by the “effective mass” of the initial photon (the
“effective photon masses” of the final photons are smaller
and typically of the same order of magnitude of the ini-
tial photons mass, due to their dependence on the photon
momenta).

We believe that this argument shows clearly that the
relevant energy scale for photon decay is not the energy
Eγ of the initial photon, but its “effective mass”. And
due to the large suppressionM−1 of this effective mass in
Eq. (2), even energetic photons may have a small effective
mass (say mγ ∼ 10−2ξ1/2MeV for E ≃ TeV).
To proceed with our argument, let us define the “effec-

tive initial photon gamma factor” γ = mγ/Eγ , multiply
and divide the standard equation defining the differen-
tial decay rate by mγ and extract a factor of inverse γ
from it. The remaining equation is identical to the decay
rate computed in the reference frame where the energy
of the initial photon is mγ (which is the “rest frame”
of our “massive photon”), if we compute the amplitude
from Lorentz invariant terms (there may be other non-
Lorentz invariant terms but certainly the contribution of
the Lorentz invariant terms should be there). In fact,
if the squared amplitude |Mβα|

2 term is invariant (here
α stands for the initial state and β for the final state)
we can change frames in the usual manner to compute
the decay rate, since the other factors are δ(4)(pβ − pα),
still valid since we are assuming energy and momentum
conservation, and the invariant volume of the final par-
ticles, which would not be affected with respect to the
standard case if we consider that only the initial photon
has an “effective non-zero mass” (in any event the order
of magnitude of the decay rate would not be changed by
taking effective photon masses as defined above also for
the final photons or only for the initial photon).

We think that these arguments justify to estimate the
decay rate of this “massive photon” in its rest frame and
boost it -with the usual Lorentz factor- to the laboratory
frame (which practically coincides with the rest frame of
the CMB) to obtain the desired rate. This calculation
accounts for the contributions to the decay rate of the
Lorentz invariant terms in the Lagrangian (those present
in the usual QED) although there may be other LIV
terms in the Lagrangian [4], in particular those terms
of dimension five which give origin to the modified dis-
persion relations we consider. The contribution of such
terms, however, seems to be smaller than the one we
computed here [2, 4].

The “effective photon mass” will need to be smaller
than the electron mass (as shown below, m2

γ < 4m2
e)

for the photon splitting to dominate the decay rate over
the process γ → e+e−. In fact we will find that the
“effective photon mass” is much smaller than the elec-
tron mass. Thus the electron mass should not be ne-
glected in the dimensional arguments given in Ref. [2].

In this reference it is inferred that the decay rate must
depend of a factor E5ξ4M−4 at photon energies E well
above the electron mass. However, as we have shown,
it is the effective mass of the photons which provide the
relevant energy scale, and not the initial photon energy.
We find here that the rate contains an additional fac-
tor of (Eγ/me)

8ξM−1, which comes from the inverse
gamma factor (mγ/Eγ) times a factor (mγ/me)

8 due to
the Euler-Heisenberg Lagrangian we use to describe the
interactions among photons. This Lagrangian provides
the effective 4-γ coupling given by QED at energy scales
smaller than the electron mass. Note that we are not
modifying QED to actually include a photon mass in the
Lagrangian. We use the modified kinematics induced by
an “effective photon mass”, but do not modify the dy-
namics.
In order to gain confidence in the procedure we pro-

pose, we will start by applying it to two processes for
which rate calculations have been published, i.e. γ →
e+e− and p → pγ [6]. Let us first consider γ → e+e−.
In the center of mass frame, the decay rate of a “mas-
sive photon” into an electron-positron pair is simply
ΓCM ≃ (α/2)mγ . In the laboratory frame the rate gets
an additional inverse gamma factor, γ−1 = mγ/Eγ ,

Γlab =
α

2

m2
γ

Eγ
=

α

2

ξE2
γ

M
. (3)

This result coincides with that obtained in Ref. [6], which
is Γ ≃ (α/2)(c2 − 1)E, for a photon with four momen-
tum (E,E/c), if we replace the effective photon mass
in Eq. (3) by its value in the model of Ref. [6], namely
m2

γ = E2(c2 − 1). The energy threshold for this decay
is obviously given by the condition m2

γ = 4m2
e, which is

equivalent to the condition E2 = 4m2
e/(c

2 − 1) found in
Ref. [6]. Thus, in terms of the “effective photon mass”
the expression for the energy threshold and the decay
rate are particularly simple. In fact, in the footnote 7 of
Ref. [3], the procedure we follow is mentioned as provid-
ing the right result.
The rate for the p → pγ decay of Ref [6] can also be

obtained from kinematic considerations similar to those
used above for γ → e+e−. Let us use the modified dis-
persion relation for the proton also proposed in Ref. [2],

E2
p = p2p +m2 + η

p3p
M

. (4)

Since the effective mass of the proton depends on its mo-
mentum, the mass of the parent proton, mP , is larger
than that of the daughter p, mD, and the decay p → pγ
is kinematically allowed. In the rest frame of the parent
proton the rate is ΓCM ≃ αmP (1−m2

D/m2
P ). In the lab-

oratory frame the rate gets an additional inverse gamma
factor, γ−1 = mP /Ep, thus

Γp→pγ ≃ α
m2

P

Ep
(1 −m2

D/m2
P ) ≃ α

ηE2
p

M
. (5)
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The result quoted in Ref. [6] is for the rate of energy
loss, dE/dx ≃ −αE2

p(cp − 1) (see the notation of Ref [3]
in which we have taken the maximal possible speed of a
photon cγ = 1 and the maximal speed of the proton to
be cp > 1). Here cp = ∂E/∂p, and from Ref. 4 cp ≃
1 + ηEp/M . Since dE/dx ≃ −ΓEp, the result of Ref. [6]
is the same we obtain.
Let us now concentrate on γ → 3γ. At energy scales

(given by the “effective photon mass”) smaller than the
electron mass, the interactions among photons are de-
scribed by the Euler-Heisenberg Lagrangian,

LE-H =
2α2

45m4
e

[

(

1

2
FµνF

µν

)2

+ 7

(

1

8
ǫµνρσFµνFρσ

)2
]

.

(6)
Using this Lagrangian we estimate Γ(γ → 3γ) in the
laboratory frame (i.e. the CMB rest frame) as

Γ(γ → 3γ) =

(

2α2

45

)2
1

3! 211π9

m9
γ

m8
e

mγ

Eγ
× f (7)

= 1.5× 10−20
ξ5E14

γ

M5m8
e

× f , (8)

where f is the integral over momenta with some large
factors taken out, i.e.

f =
4π4

m9
γ

∫

d3k1 d
3k2 d

3k3
E1E2E3

δ4(pγ−k1−k2−k3) |M|2 , (9)

and M is the invariant matrix element obtained from
Eq.(6) by omitting the global factor 2α2/(45m4

e).
Defined in this manner the factor f is of order one.

Indeed, a similar (but not identical) integration was per-
formed numerically in Ref. [7] and f turned out to be
0.2. In our formulas we will keep explicitly the depen-
dence on f and we will see that our final bound depends
very weakly on f (in fact as f−1/5, thus only an f of order
either 105 or 10−5 would change the order of magnitude
of our calculation).
Thus the photon lifetime is

τ(γ → 3γ) = 0.025ξ−5 f−1

(

50TeV

Eγ

)14

sec. (10)

For a given ξ and a particular photon time of flight
t, the condition τ ∼ t defines a critical value for the
photon energy, Ec. Due to the strong dependence of
the lifetime on the energy, photons with energies above
Ec would quickly cascade down before reaching Earth
from a distance ct and therefore would not be observed.
Thus, photons reaching Earth from a distance ct should
satisfyEγ < Ec or equivalently τ ≥ t. Since photons with
Eγ ≈ 50TeV coming from the Crab nebula -1013 seconds
away- have been detected [8], we get the constraint

ξ ≤ 1.2× 10−3f−1/5

(

50TeV

Eγ

)2.8

. (11)

This bound is considerably more restrictive than the
bound ξ ≤ 104 previously obtained [2] using the same
decay mode, and it is comparable to the strongest con-
straint on ξ, i.e. |ξ| . 10−4 [9], coming from vacuum
birefringence (different speeds for different photon polar-
izations). This latter bound, however, was derived within
the EFT framework, in which the Lorentz invariance vi-
olating parameters for left and right circular polarized
photons have opposite signs. Notice that the factor f
that we do not compute in this paper would need to be
∼ 10−35 to bring the bound we obtain here to coincide
with the bound mention in Ref. [2], but since we have ex-
tracted from the integral defining f all large dimensional
quantities, we believe that the remaining integral cannot
either very large or very small, but of order one.
Notice that as soon as the decay γ → e+e− is kinemat-

ically allowed, i.e. for m2
γ > 4m2

e, this decay mode, that
happens at tree level, dominates over the one-loop sup-
pressed γ → 3γ We need to make sure that m2

γ < 4m2
e,

because then is the decay γ → 3γ important. The con-
dition m2

γ < 4m2
e, which guarantees the validity of our

approach, translates into a restrictive bound on ξ less
restrictive than the bound found above

ξ ≤ 10−1

(

50TeV

Eγ

)3

. (12)

Thus the required condition m2
γ < 4m2

e is automatically
fulfilled. This last condition insures also that the high
energy photons coming from the Crab nebula did not
decay into e+e− before they reached Earth.
In conclusion, we have estimated the decay rate of the

process γ → 3γ for photons fulfilling the Lorentz in-
variance violating dispersion relation E2 = p2 + ξp3/M
and found that the observation of high energy photons
from the Crab nebula sets an important constraint on the
Lorentz invariance violation parameter ξ, much stronger
than previously claimed.
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