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Abstract

F -term GUT inflation coupled to N = 1 Supergravity is confronted with CMB

data. Corrections to the string mass-per-unit-length away from the Bogomolny

limit are taken into account. We find that a superpotential coupling 10−7/N .

κ . 10−2/N , with N the dimension of the Higgs-representation, is still compatible

with the data. The parameter space is enlarged in warm inflation, as well as in

the curvaton and inhomogeneous reheat scenario. F -strings formed at the end of

P -term inflation are also considered. Because these strings satisfy the Bogomolny

bound the bounds are stronger: the gauge coupling is constrained to the range

10−7 < g < 10−4.

1 Introduction

The cosmic microwave background (CMB) power spectrum measured by WMAP points

to a predominantly adiabatic perturbation spectrum, as produced in standard inflation

[1]. The existence of the acoustic peaks excludes cosmic strings as the main source of

perturbations, although a 10% contribution is not excluded [2]. This has important

implications for hybrid inflation [3] because almost all particle physics models of hybrid

inflation, such as standard SUSY GUT F -term inflation, D-term inflation and brane

inflation, predict the formation of cosmic strings at the end of inflation [4, 5, 6]. The string

contribution to the CMB anisotropies inD-term models is far too high [4] unless the gauge

coupling constant is unnaturally small [7]. In this paper we focus on F -term inflation

which can naturally arise from SUSY GUTs and as a low energy effective description of

a certain class of interacting D-brane models.
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†E-mail:mpostma@nikhef.nl
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The minimal field content of F -term inflation is a gauge singlet superfield and two

Higgs superfields which transform in complex conjugate representations of some gauge

group G. Inflation takes place as the singlet field slowly rolls down a valley of local

minima where the vacuum expectation value (VEV) of the Higgs fields vanish and G is

unbroken. When the scalar singlet falls below a certain critical value, the Higgs mass

becomes tachyonic and inflation ends very rapidly, via a phase transition during which

the Higgs fields acquire a non-vanishing VEV and G spontaneously breaks down to a

subgroup H . Of all topological defects that can form during such a phase transition, only

cosmic strings are cosmologically viable.

In the context of GUTs, where monopoles ought to form, this implies that monopoles

should be formed in a phase transition prior to inflation. Hence, the group G which gets

broken at the end of inflation is not the GUT group itself, but some intermediate symmetry

group. There will be more phase transitions after inflation if H is larger than the standard

model gauge group, and these should not lead to the formation of unwanted defects. These

arguments together with the observation that the rank of the symmetry group G which is

broken at the end of inflation is reduced by one unit (rank(G) = rank(H)+1) and simple

homotopy arguments, lead to the conjecture that cosmic strings always form at the end

of GUT hybrid inflation [4]. This was proven for an SO(10) GUT [8], and recently for all

GUT groups with rank less than 8 [5]. The strings which form at the end of inflation are

topological and remain stable down to low energies if R-parity remains unbroken.

The constraints from the CMB data can be avoided if the cosmic strings are unstable,

or if no strings are formed at all. We note that this only happens in rather specific models.

The embedded strings arising in GUT models in which R-parity is broken can be unstable,

depending on the particular model. Strings can be made semi-local, and thus unstable,

by adding extra charged chiral multiplets [9], or by assuming that the Higgs fields also

transform non-trivially under some non-Abelian group [10]. If the gauge symmetry is

already broken during inflation, there are no strings at all. This can be done by either

adding a non-renormalisable term in the superpotential [11], extra GUT Higgs superfields

[12], or a discrete symmetry [13].

In this paper we determine the parameter range for which standard F -term inflation

is compatible with CMB data. The strings that form at the end of GUT F -inflation do

not satisfy the Bogomolny bound. Therefore the string tension is a function of the Higgs

and gauge field masses. This is in contrast with the F -term inflation models that emerge

2



as an effective description of brane inflation [7], as the strings formed in these models

do satisfy the Bogomolny bound. Note that SUSY is broken in the core of the strings

and hence there are fermionic zero modes solutions bounded to the strings in the global

SUSY case [14]. These zero modes disappear when gravity is included [15]. F -strings do

not carry any current and hence the tension and energy-per-unit-length of the strings are

equal [15, 16]. Our work improves in two ways on the existing literature [17, 18, 19, 20].

First of all, for GUT strings we take the corrections to the string tension away from the

Bogomolny limit into account. This enlarges the parameter space. Secondly, we include

in a consistent manner all Supergravity corrections to the potential. To do so we assume

general hidden sector supersymmetry breaking. Possible dissipative corrections are also

discussed.

The layout of this paper is as follows. In the next section we introduce the potential of

standard F -term hybrid inflation, and include all SUSY breaking and SUGRA corrections.

In section 3 we address the bounds on the symmetry breaking scale implied by the data.

Apart from the “10%-bound” mentioned at the very beginning of this introduction, we also

give the Kaiser-Stebbins bound, and the bound coming from pulsar observations. The

density perturbations produced by hybrid inflation are discussed in section 4. Setting

them equal to the observed spectrum gives the symmetry breaking scale M as function of

the Higgs-inflaton coupling κ. This allows to translate the various bounds onM in bounds

on κ. We derive an analytic expression for M(κ) in the limit where one term dominates

the potential. However, our approximation breaks down in the large coupling limit and

numerical calculations are needed. Our numerical results are presented in section 5. We

discuss both the constraints on GUT and on brane F -term inflation. Finally, in section

6 we discuss warm inflation, occurring when the the inflaton or Higgs fields can decay

during inflation and the corresponding dissipative terms are important. Dissipation can

ameliorate the CMB bounds.

2 Hybrid inflation — The potential

The superpotential for standard hybrid inflation is given by [21, 22]

Winf = κS(φ+φ− −M2), (1)
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with S a gauge singlet superfield, and φ+, φ− Higgs superfields in complex conjugate rep-

resentations of a gauge group G. In this paper, we use the same notation for the superfield

and their scalar components. The coupling constant κ and the symmetry breaking scale

M can be taken real and positive without loss of generality. The supersymmetric part of

the scalar potential is given by

VSUSY =
∑

b

∣

∣

∣

∣

∂W

∂φb

∣

∣

∣

∣

2

+
g2

2

∑

a

(

∑

b

φ†
b,it

a,i
j φj

b

)2

= κ2|φ+φ− −M2|2 + κ2|S|2(|φ+|2 + |φ−|2) + VD (2)

where the sum b is over all fields. tai are the generators of G, a = 1...n where n is the

dimension ofG, and i, j = 1...N whereN is the dimension of the representation of the field

φb. In Eq.(2) φ− and φ+ refer to the scalar components of the corresponding superfields

which acquire a VEV after inflation. Vanishing of the D-terms enforces |φ−| = |φ+|.
Assuming chaotic initial conditions the fields get trapped in the inflationary valley of

local minima at |S| > Sc = M and φ− = φ+ = 0, where G is unbroken. The potential is

dominated by a constant term

V0 = κ2M4 (3)

which drives inflation. Inflation ends when the inflaton drops below its critical value Sc (or

when the second slow-roll parameter η equals unity, whatever happens first) and the fields

roll toward the global SUSY minima of the potential |φ+| = |φ−| = M and S = 0. During

this phase transition the gauge group G is spontaneously broken down to a subgroup H .

Cosmic strings form via the Kibble mechanism if the vacuum manifold G/H is simply

connected [23]. If G is embedded in a GUT theory, or G = U(1) as is the case in effective

D-brane models, cosmic strings form [4, 5].

In the standard scenario the flatness of the tree level potential is lifted by loop cor-

rections [22]. These do not vanish during inflation because FS 6= 0 and SUSY is broken.

The two scalar mass eigenstates χ± = 1/
√
2(φ+ ± φ−) have masses m2

± = κ2(S2 ±M2),

while their fermionic superpartners both have mass m̃2
± = κ2S2. If the Higgs repre-

sentation is N -dimensional, there are N such mass-splitted double-pairs. The one loop

correction to the potential can be calculated using the Coleman-Weinberg formula [24]

Vloop = 1
64π2

∑

i(−)Fi M4
i ln

M2
i

Λ2 , which for the superpotential in Eq. (1) gives1 [22]

1When |S| is very close to mp there are SUGRA corrections to the masses of the scalars and fermions
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Vloop =
κ4M4N
32π2

[

2 ln

(

M2κ2z

Λ2

)

+ (z + 1)2 ln(1 + z−1) + (z − 1)2 ln(1− z−1)

]

(4)

with

z = x2 =
|S|2
M2

. (5)

2.1 SUGRA corrections

In addition to Vloop there are SUGRA corrections to the potential, i.e., corrections that

vanish in the limit that the Planck mass is taken to infinity and gravity decouples. In any

model that aspires to describe the real world, there are two sources of SUSY breaking:

SUSY breaking by the finite energy density during inflation and SUSY breaking in the

true vacuum; the later is responsible for the soft terms today. Both sources of breaking

contribute to the SUGRA corrections. These corrections therefore depend on the particu-

lar scenario for SUSY breaking at low energy and in particular on the form of the hidden

sector superpotential.

The superpotential gets a contribution from both the inflaton and hidden sector po-

tential Wtot = Winf(S, φ+, φ−)+Whid(z). In gauge mediated SUSY breaking models there

is also a contribution from the messenger sector and in general GUT models from other

GUT superfields. We assume that they do not couple to the inflaton sector except grav-

itationnaly. The hidden sector expectation values at the minimum of V may generically

be written as

〈z〉 = amp, 〈Whid〉 = µm2
p, 〈∂Whid

∂z
〉 = cµmp, (6)

with mp = (8πG)−1/2 = 2.4× 1018GeV the reduced Planck mass, a, c dimensionless num-

bers, and µ a mass parameter characterizing the VEV of the hidden-sector superpotential.

Setting the cosmological constant to zero by hand (〈V 〉 = 0 after inflation) requires tuning

|c+ a∗|2 = 3. (7)

The scalar potential is

V = eK/m2
p

[

∑

α

∣

∣

∣

∂W

∂φα
+

φ∗
αW

m2
p

∣

∣

∣

2

− 3
|W |2
m2

p

]

(8)

which enter the loop correction. However, as we shall see further, the loop corrections dominate when

|S| is very close to Sc ≪ mp, and these corrections do no play any rôle.
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where the sum is over all fields. We take minimal kinetic terms, corresponding to a Kähler

potential K =
∑

α |φα|2. The true vacuum gravitino mass is then given by

m3/2 = e|a|
2/2µ. (9)

In gravity mediated SUSY breaking schemes m3/2 ∼ TeV is of the order of the soft mass

terms, whereas it can be smaller in gauge mediated schemes.

During inflation when |S| > Sc and the SUGRA F -term Fα = ∂Wtot/∂φα+
φ∗

αWtot

m2
p

6= 0

for φα = z, S. This is the SUGRA generalization of F -term SUSY breaking. Following

Ref. [25], we rescale the visible sector superpotential Winf → e−|a|2/2Winf in order to

recover from Eq. (8) the properly normalized tree level potential in the global limit given

by Eq. (2), i.e, in the limit when mp → ∞ and gravity decouples.

Expanding the exponential term in Eq. (8) in powers of |S|/mp, we find the SUGRA

corrections to VSUSY
2

VSUGRA = VA + Vm + VNR. (10)

The A-terms are of the form

VA = 2κM2m3/2|S| cos(argµ− arg S)

(

2 +
|S|2
m2

p

+ ...

)

(11)

with the ellipsis denoting higher powers of |S|/mp. The linear term is dominant. It

is proportional to both the high and low energy SUSY breaking scale. This term was

discussed in [17] in the context of an explicit O’Raifeartaigh model, and more recently in

[18].

The mass term is of the form

Vm =
(

3H2(|a|2 + ...)− 2m2
3/2

)

|S|2 (12)

where we have expanded the e|a|
2

in powers of |a|, which is only valid for |a| ≪ 1; the

ellipsis denote higher order terms in |a|. We will refer to the first term as the Hubble

induced mass. The second term, the vacuum soft mass term, is negligible small compared

to the other SUGRA contributions. The Hubble parameter during inflation is given by

the Friedman equation: H2 = V/(3m2
p) ≈ V0/(3m

2
p). There is no soft mass in the absence

2We neglect higher order corrections to the Kähler and super potential; we expect these terms to

change the coefficients in front of the various terms but not their qualitative structure. They could also

destabilise the VEV of the Higgs fields and we assume here that they do not.
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of low energy SUSY breaking (a → 0, m3/2 → 0). This is a consequence of taking minimal

Kähler, the zeroth order term Vm ∼ H2|S|2 cancels; this can be considered as fine tuning.

A scale invariant perturbation spectrum in agreement with observations is obtained

for sufficiently small slow roll parameter |η| ∼ |m2
S|/H2 . 10−2 [26], see Eq. (27) below.

For generic Kähler potential η ∼ 1, which is the infamous η-problem. Scale invariance

thus requires minimal Kähler potential (or close to it) to cancel to the zeroth order Hubble

induced mass term proportional to |a|0, and |a| . 0.1 to cancel the higher order terms

proportional to |a|2n as given in Eq. (12). This last requirement excludes the simplest

Polonyi model Whid = M2
s (β + z) with z = O(1)mp.

3

The non-renormalisable SUGRA terms are of the form

VNR =
1

2
(3H2 −m2

3/2)|S|2
( |S|2
m2

p

+ ...

)

(13)

with the ellipsis denoting higher order terms in |S|2/m2
p. The Hubble induced term

dominates. They have been discussed before [27].

How generic are the above SUGRA corrections? We assume minimal Kähler poten-

tial and general hidden sector SUSY breaking. A non-minimal Kähler potential would

generically be catastrophic, as it means a large Hubble induced mass impeding slow roll

inflation. The hidden sector is characterized by the scale m3/2 and the dimensionless

constant |a|. The A-terms are small for a small gravitino mass, as can occur in gauge

mediated SUSY breaking where m3/2 ≪ TeV is possible. The Hubble induced mass term

does not depend on the gravitino mass; its effect can only be decreased by taking a ≪ 1.

Note that this entails a large hierarchy between the dimensionless hidden sector parame-

ters a and c, see Eq. (7), implying some sort of fine tuning. The non-renormalisable term

is independent of the SUSY breaking sector, and is generic. If SUSY breaking in the true

vacuum occurs after inflation, i.e., z only acquires its VEV after inflation, then µ, a → 0:

the mass and A-terms are absent, but the NR terms are still there.

The scalar potential including all corrections then is

V = VSUSY + Vloop + VSUGRA. (14)

3The Hubble induced mass term in Eq. (12) comes from an expansion of eK/m2
p in Eq. (8) to second

order in the fields; this term is missed in [17].
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During inflation VSUSY ≈ V0 = κ2M4, and the potential reads

V = κ2M4

[

1 +
κ2N
32π2

[

2 ln

(

κ2|S2|
Λ2

)

+ (z + 1)2 ln(1 + z−1)

+ (z − 1)2 ln(1− z−1)
]

+
1

2

|S|2
m2

p

( |S|2
m2

p

+ ...
)

+
(

|a|2 + ...
) |S|2
m2

p

]

+ 2κM2m3/2|S| cos(argµ− argS)
(

2 +
|S|2
m2

p

+ ...
)

, (15)

where we have omitted in VNR and Vm the gravitino mass dependent terms which are

negligible during inflation in the parameter range of interest. Keeping only the dominant

terms and expressing everything in terms of the real inflaton field σ =
√
2|S| gives

V = κ2M4

[

1 +
κ2N
32π2

[

2 ln

(

2κ2σ2

Λ2

)

+ (z + 1)2 ln(1 + z−1)

+ (z − 1)2 ln(1− z−1)
]

+
σ4

8m4
p

+
|a|2σ2

2m2
p

]

+ κAm3/2M
2σ (16)

where A = 2
√
2 cos(arg µ − argS). Here we have assumed that arg S is constant during

inflation. Further, z = x2 = |S|2/M2 = σ2/(2M2) so that z = x = 1 when σ = σc.

3 CMB constraints

3.1 String tension

SUSY is broken in the core of the strings which form at the end of SUSY inflation and

hence there are fermionic zero modes solutions bounded to the strings in the global SUSY

case [14]. These zero modes disappear when gravity is included [15]. F -strings do not

carry any current and hence the tension and energy-per-unit length of the strings are

equal [15, 16].

Cosmic strings satisfying the Bogomolny bound have a tension µ = 2πM2, with M

the VEV of the string Higgs fields far away from the string. The strings forming at the

end of F -term inflation do not satisfy this bound, and there are corrections to the simple

formula above, which depend on the ratio of the common Higgs mass mφ to the string’s

gauge boson mass mA [28, 29]

µ = 2πM2ǫ(β) (17)

8



0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1e-06 1e-05 0.0001 0.001 0.01 0.1

ε 
(β

)

κ

b(x)

Figure 1: ǫ(β) vs. κ for mA ≃ M .

where β = (mφ/mA)
2. mφ = κM with κ the superpotential coupling constant and mA is

given in terms of gauge coupling constant g; the exact relation depends on the dimension

and on the transformation properties of the representations of the Higgs fields φ+ and

φ−. mA =
√
2gM for N = 1. In GUT models g2 ≃ 4π/25 and mA ≃ M . In this paper

we shall use mA ≃ 1 unless stated otherwise. In the Bogomolny limit ǫ(1) = 1. From

Ref. [28]

ǫ(β) ≈







1.04β0.195, β > 10−2,
2.4

log(2/β)
, β < 10−2.

(18)

For mA ≃ M , β varies from 1 to 10−12 as κ goes from 1 to 10−6, and thus µ changes by

a factor ∼ 20. In Fig. 1 we plotted ǫ(β) as function of κ for mA = M . For κ ∼ 10−2 the

bound on µ, discussed below, is weaker by a factor 4 if ǫ(β) is taken into account.

3.2 Bounds from CMB

Cosmological perturbations from inflation and strings in hybrid models are proportional

to the same scale M . They are uncorrelated and thus the multipole moments of the CMB

power spectrum just add up [4]. The proportionality coefficients depend on the GUT

parameters and on the normalised contribution of each component [4]. Cosmic strings
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do not predict the acoustic peaks which have been measured in CMB experiments and

hence their contribution should be rather small, less than 10% at the 3σ level [2]. The

contribution from cosmic strings depends on the mass-per-unit-length µ and on the density

properties of the string network at last scattering. No full field theoretic simulations exist

and hence no robust prediction of the full power spectrum can be made right now. The

model parameters can be constrained, but only up to the uncertainties of the simulations.

The cosmic string contribution to the quadrupole is given by

(

δT

T

)

cs

= yGµ; (19)

the parameter y depends on the simulation. Recent work predicts y = 8.9 [30]. The error

margin they quote gives a range y = 6.7 − 11.6. Older simulations give y = 6 [31], and

semi-analytic approximations give y = 3− 6 [32].

The quadrupole measured by COBE (which coincides with WMAP data) is [26, 33]

(

δT

T

)

COBE

= 6.6× 10−6. (20)

The cosmic string contribution to the quadrupole is given by

B =
∣

∣

∣

(δT/T )cs
(δT/T )COBE

∣

∣

∣

2

. (21)

The analysis of Ref. [2] gives the bound B < 0.1, i.e., a string contribution less than 10%.

Using Eqs.(19) and (17) this implies

Gµ < 6.9× 10−7

(

3

y

)

⇒ Mstr < 4.1× 1015

√

(3/y)

ǫ(β)
. (22)

In our numerical simulations we will use the conservative value y = 3. The bound on M

is a factor
√
3 stronger for y = 9, the value suggested by the most recent simulations.

If there are extra dimensions the string reconnection probability p (the probability

that two strings reconnect when they pass through each other), which is one for four

dimensional gauge theory solitons, can be less than unity [6, 34]. The result is that more

energy is stored in the string network at a given time, and thus the constraint on the

string scale in Eq. (22) becomes tighter by a factor
√
p [2].

Strings can also influence the CMB pattern after the time of last scattering, through

the Kaiser-Stebbins effect [35]. If a moving string is traversing the photons coming towards
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us this will give rise to a step-like discontinuity on small angular scales, the step size being

proportional to the mass-per-unit-length of the string. The absence of such a discontinuity

gives the bound [36]

Gµ < 3.3× 10−7 ⇒ M <
2.8× 1015
√

ǫ(β)
(23)

The Kaiser-Stebbins(KS)-bound is stronger than the 10%-bound for y < 6.3. The KS-

bound depends less on the evolution of the string network, i.e., on the results of numerical

simulations; in this sense it is a much stronger bound.

Finally, the string scale can be bounded by constraining the stochastic gravitational

wave background produced by the string network [29]. Such a background would distort

the regularity of pulsar timing. No such distortion has been observed [37], which translates

to

Gµ < 1× 10−7 ⇒ M <
1.5× 1015
√

ǫ(β)
. (24)

Although the pulsar-bound is the most stringent of the three, it is also the one with the

largest uncertainties. Due to the huge range of scales involved, one of the least certain

aspects of cosmic string dynamics is the long term evolution of small scale structure. And

it is this small scale structure that governs the gravitational radiation.

In our simulations, we shall use the three different bounds given in Eqs.(22), (23) and

(24). In our analytic formulas we will use M < MCMB ≈ 3×1015 GeV, which corresponds

to the KS-bound.

Before closing this section, we would like to mention that a lensing event consistent

with a cosmic string has been reported recently [38]. Further observation is needed to

determine whether the lensing is indeed string induced. Such a string would have

Gµ ≃ 4× 10−7 ⇒ M ≃ 3× 1015
√

ǫ(β)
. (25)

to produce the observed image separation. If it is indeed a cosmic string, we are on the

verge of seeing it in the CMB data.
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4 Density perturbations

We recall here the important formulae for the density perturbations [39]. The number of

e-foldings before the end of inflation is

NQ =

∫ σQ

σend

1

m2
p

V

V ′
dσ (26)

where the prime denotes derivative with respect to the normalised real scalar field σ ≡√
2|S|, and the subscript Q denotes the time observable scales leave the horizon, which

happens NQ ≈ 60 e-folds before the end of inflation. σend is the inflaton VEV when

inflation ends, which is either the critical point where the Higgs mass becomes tachyonic

σend = σc =
√
2M , or the value for which one of the slow roll parameters

ǫ =
1

2
m2

p

(

V ′

V

)2

, η = m2
p

(

V ′′

V

)

, (27)

exceeds unity. For hybrid inflation ǫ ≪ η and can be neglected. The second slow roll

parameter η blows up in the limit x → 1 (as a consequence of the field χ− = (φ+−φ−)/
√
2

becoming massless), and thus determines the end of inflation. As we will see, for small

enough coupling σend ≈ σc. The inflaton contribution to the CMB quadrupole anisotropy

is
(

δT

T

)

inf

=
1

12
√
5πm3

p

V 3/2

V ′
, (28)

evaluated at σ = σQ. The tensor contribution (δT/T )tens ≈ 0.03H∗/mp is small, and can

be neglected. The total anisotropy is

(

δT

T

)

=

√

(

δT

T

)2

inf

+

(

δT

T

)2

cs

+

(

δT

T

)

s

(29)

Here we have included a possible contribution from a scalar field different from the inflaton,

denoted by (δT/T )s. This term can be important if alternative mechanisms for density

perturbation are at work, as is the case in the curvaton [40] and inhomogeneous reheat

scenario [41]. In these scenarios the fluctuations of the curvaton field respectively the

field modulating the inflaton decay rate gives the dominant contribution to the density

perturbations. We define

δC =
(δT/T )inf + (δT/T )cs

(δT/T )COBE
. (30)
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If the inflaton sector including cosmic strings is the only source of perturbations δC = 1,

whereas δC ≪ 1 in the curvaton and inhomogeneous reheat scenario. Note that the

curvaton scenario in its simplest form can only work for H ∼
√

V0/m2
p & 107GeV [42, 43].

Finally, the spectral index is given by

ns − 1 = −6ǫ+ 2η (31)

WMAP bounds ns = 0.99± 0.04 [26].

The potential energy V0 dominates and drives inflation. The amplitude of the density

perturbations is set by V ′. The spectral index is determined by the second derivative V ′′.

The strategy to compute the perturbation spectrum is the following. First determine the

inflaton VEV when inflation ends from the condition |η(σend)| = 1. Then use Eq. (26)

to find the inflaton VEV when observable scales leave the horizon σQ. Finally, compute

the quadrupole using Eqs. (28,29) evaluated at σ = σQ. Setting the quadrupole equal

to the observed COBE value gives the symmetry breaking scale M as a function of the

superpotential coupling κ.

In various regions of the parameter space, various corrections dominate. An analytic

approximation to the perturbation spectrum is then possible in the small coupling limit

(where xend ≈ xQ ≈ 1), as we will discuss now.

4.1 The loop regime

Assume first that the loop potential Vloop dominates. The derivative of the potential,

which is needed for both the determination of NQ and δT/T , is [22]

V ′
loop =

κ4M3N
8
√
2π2

xf(x2), (32)

with

f(z) = (z + 1) ln(1 + z−1) + (z − 1) ln(1− z−1). (33)

Recall that in hybrid inflation the first slow roll parameter is negligible with respect to

the second ǫ ≪ η. To determine the end of inflation we calculate the x-value for which

|η| becomes unity. The loop contribution to η is

ηloop =
κ2N
16π2

(mp

M

)2

g(x2) (34)

13



with

g(z) = (3z + 1) ln(1 + z−1) + (3z − 1) ln(1− z−1). (35)

If x ≫ 1, g(x2) ≃ −3x−2 +O(x−4) which implies that xend =
√

3N /(16π2)κ(mp/M).

This is the regime where the inflaton VEV during inflation is large, and consequently the

non-renormalisable potential VNR becomes important. For this reason, we will not discuss

it any further.

The above expression breaks down for small enough coupling κ . 7/
√
N (M/mp) .

10−2/
√
N , (in the last step we used M ∼ 1016GeV, from Eq. (38) below) and xend

approaches unity. Using xend = 1 in Eq. (26) we find

NQ =
16π2

k2N

(

M

mp

)2 ∫ xQ

1

1

xf(x)
dx (36)

In the limit where the factor in front of the integral 16π2/(k2N )(M/mp)
2 ≫ NQ, the

integral has to be much less than unity which requires xQ → xend ≈ 1. We conclude that

we can approximate

xQ ≈ xend ≈ 1, for κ .

√

16π2

NQN

(

M

mp

)

=
10−2 − 10−3

√
N

. (37)

The inflaton VEV during inflation is always small, and NR terms can be negligible. Using

xQ ≈ 1 in the expression for the fluctuations Eq. (28), and setting it equal to the observed

value, allows to extract M

Mloop = 2× 10−2(δCNκ)1/3mp, (38)

where the subscript loop is a reminder that this formula is valid in the domain where the

loop potential is the dominant term in V ′. The parameter δC defined in Eq. (30) gives the

normalised contribution of the inflaton sector including cosmic strings to the CMB. If the

inflaton sector including cosmic strings is the only source of perturbations δC = 1, whereas

δC ≪ 1 in the curvaton and inhomogeneous reheat scenario. The tensor perturbations are

negligible, and in the parameter space of interest, also the string contribution is small,

B < 10%.

In the loop dominated regime M is a single valued function of κ, given by Eq. (38).

This expression is valid in the small coupling regime κ < 10−2 − 10−3/
√
N , where it is a

good approximation to ignore the string contribution to the CMB, and where xQ ≈ 1 is

valid.

14



The CMB constraint Mloop < MCMB ≈ 3× 1015/
√

ǫ(β) discussed in section 3 implies

κ < 2× 10−4 1

δCN ǫ(β)3/2
. (39)

Taking into account ǫ(β) — the correction to the mass-per-unit-length away from the

Bogomolny bound — weakens the bounds on the coupling compared to an analysis in

which this correction is ignored, as was done in Ref. [19]. This correction changes the

bound by a factor ǫ(β)−3/2 ∼ 10 to κ . 10−3, where we have used that ǫ ∼ 1/5 for

κ ∼ 10−3. Note, however, that the analytic approximation breaks down in this limit, and

one has to go to numerical calculations for a more precise bound.

Vloop is always present. At small coupling it decreases rapidly (∝ κ4) and VA, Vm, VNR

can become dominant. In the large coupling regime S → mp and VNR dominates. Note

that in the regimes where other contributions dominate, the mass scaleM is higher than it

would be in the presence of just the loop potential, and the CMB constraints are stronger.

The reason is that (δT/T ) ∝ M6/V ′, and thus the larger V ′ the larger M is needed to

obtain the observed temperature anisotropy.

4.2 The non-renormalisable SUGRA regime

The non-renormalisable corrections dominate over the loop corrections for density per-

turbations if V ′
NR > V ′

loop, when

x2

f(x2)
>

κ2N
16π2

(mp

M

)4

. (40)

There are two regimes where this inequality is satisfied. The first is when the inflaton

VEV, and thus x, is large during inflation. For x ≫ 1 the term x2/f(x2) → x4 and the

l.h.s. of the above equation is large. For very small κ the r.h.s. becomes small, and this

is the other regime where the NR potential can become important.

First consider the large coupling regime where x ≫ 1. The contribution of VNR to

η is ηNR = 3(M/mp)
2x2. The slow roll parameter exceeds unity for large x and drops

below one when x = 1/
√
3(mp/M). Thus inflation can only happen for σ =

√
2Mx <

(2/3)1/2mp. At still lower x, the loop potential starts dominating η; inflation ends when

ηloop given by Eq. (34) becomes unity. Hence

0.2mp

√
Nκ = σend < σQ < 8× 10−2mp (41)
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where for the upper bound we used that |η| < 10−2 when observable scales leave the

horizon, to assure scale invariance, as given by WMAP data [26]. Both inequalities

together give the upper upper bound κ < 0.5/N obtained in the limit xQ → xend. One

should realize however, that 60 e-folds should pass when the inflaton rolls from xQ to xend,

and they cannot be taken arbitrarily close together.

An analytical approximation in the large coupling regime is hard because of a non-

trivial expression for σQ, and because the string contribution to the CMB becomes im-

portant. However, in the range where non-renormalisable corrections dominate, the scale

M is higher than Mloop given in Eq. (38), which is excluded by CMB measurements, i.e.,

by the requirement M < MCMB. The spectral index is

n− 1 ≃ 2η = −3σ2
Q

m2
p

+
3κ2Nm2

p

4π2σ2
Q

; (42)

it goes from negative to positive as the non-renormalisable contribution comes to domi-

nate. The running of the spectral index is small [44] : dn/d ln κ ∼ −10−3.

In the small coupling regime where κ < 3/
√
N (M/mp)

2 the NR potential dominates

over the loop potential. As before, for small κ it is a good approximation to take xQ ≈
xend ≈ 1 (see Eq. (37)). Then Eq. (28) gives

MNR = 3× 1014GeV
( κ

10−7

)

W−1/2 (43)

It is possible to have for one value of κ several solutions for M , which all produce

the correct density perturbations. The reason is that for fixed κ, by varying M , differ-

ent contributions dominate the density perturbations. At small M the loop potential

dominates and (δT/T ) ∝ M3, at larger M the NR contribution becomes important and

(δT/T ) ∝ M−1, and at still largerM the main contribution comes from cosmic strings and

(δT/T ) ∝ M2. An example is given in Fig. 2, where we have plotted the δC — the tem-

perature fluctuation normalized by the COBE value as defined in Eq. (30) — as a function

of M for κ = 10−6. The maximum M1 corresponds to the mass scale where V ′
loop = V ′

NR,

whereas the minimum M2 corresponds to the scale where (δT/T )inf = (δT/T )cs. Now

M1 = 0.3κ1/2N 1/4mp

M2 = 0.3

(

0.9

yǫ

)1/3

κ1/3mp (44)

where in the second line we have used that ǫ ∼ 10−1 for small κ. For simplicity we have

set δC = 1, and assume that no alternative mechanism for density perturbations such as
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Figure 2: δC vs. M for κ = 10−6 and N = 1.

the curvaton scenario is at work. We will return to this point at the end of the subsection.

We define κ1 the coupling for which δC(M1) = 1, κ2 the coupling for which δC(M2) = 1.

κ1 = 6× 10−8N 1/2

κ2 = 4× 10−6

(

0.9

yǫ

)1/2

(45)

There are then 3 possibilities.

1. δC(M1) > 1 and δC(M2) > 1 ⇐⇒ κ > κ1, κ2

There is only one solution M(κ) for which the loop potential dominates. It is given

by Mloop in Eq. (38). Note that at still larger coupling the contribution from NR

terms and strings kick in again.

2. δC(M1) > 1 and δC(M2) < 1 ⇐⇒ κ2 > κ > κ1

There are three solutions. One at low scale where the loop potential dominates and

M is given by Mloop of Eq. (38), a middle one where NR terms dominate and M

is given by MNR of Eq. (43), and one at high scale which is dominated by string

contributions. The latter solution is excluded by CMB data.

3. δC(M1) < 1 and δC(M2) < 1 ⇐⇒ κ < κ1, κ2

There is one solution, dominated by the string contribution. This solution is ex-

cluded by CMB data.
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Figure 3: M vs. κ for N = 1.

Note that κ > κ1, κ2 is a lower bound on the coupling to be consistent with CMB

data. Thus in the presence of NR terms, the coupling cannot be arbitrarily small. The

minimum mass scale is Mmin = Mloop(κ1) = 2× 1014
√
N .

The above discussion is illustrated by the numerical results shown in Fig. 3. Matching

the quadrupole to the observed value gives M as a function of κ. The result with Vloop,

VNR and the string contribution all turned on is given by the solid line. Also plotted

are the result with VNR turned off (dashed line) and with the string contribution turned

off (dotted line). Consider the full solution, the solid line. At large coupling both the

NR and string contribution are important. There is no solution for arbitrarily large κ,

in agreement with the discussion below Eq. (41). Going to smaller coupling, the loop

potential starts to dominate and xQ → 1: the solution is a straight line as given by Mloop

in Eq. (38). The solution Mloop extends at low coupling until κ = κ1 ∼ 5 × 10−7. The

second branch, where NR terms dominate, is between 5×10−7 ∼ κ1 < κ < κ2 ∼ 5×10−6.

The upper branch is string dominated and excluded by CMB data. In the presence of NR

terms agreement with the CMB requires κ > κ1 and Mmin ∼ 4× 1014 < MCMB.

Let us now briefly return to the possibility that alternative mechanisms for density

perturbations are at work and δC ≪ 1. As can be seen from Fig. 2, for small δC there is

only one solution which is dominated by the loop contribution, and thus given by Mloop

18



in Eq. (38).

4.3 The Hubble regime

Consider the Hubble induced mass term in Vm. This term dominates the density pertur-

bations for V ′
m > V ′

loop, or

κ <
4π|a|

√

N f(x2)

(

M

mp

)

≈ 10−1 |a|3/2δ1/2C

N 1/4
(46)

In the second equality we took M = Mloop and f(x2) ∼ 1.4, which is valid for κ <

10−2−10−3/
√
N . The Hubble induced term dominates for small enough κ. If domination

happens for κ < κ1 ∼ 5 × 10−6, the region already excluded by CMB date due to NR

terms, the Hubble induced mass plays no rôle. This is for |a| < a0 ∼ 10−3(N /δ2C)
1/6.

Consider then |a| > a0; the Hubble induced mass becomes important before NR terms

kick in. The contribution of the Hubble induced mass to η is constant ηm = |a|2; scale
invariance requires |a| < 0.1. The end of inflation is determined by the loop contribution,

and xend ≈ 1. Further xQ ≈ 1 for small coupling. Plugging this into Eq. (28) gives

Mm = 8× 10−4mp
|a|2δC
κ

. (47)

In the κ-region where V ′
m dominates M is a single valued function of κ. Since Mm grows

with decreasing coupling, whereas Mloop decreases with decreasing coupling, there is a

minimum scale M , obtained for V ′
loop = V ′

m, or equivalently, for Mloop = Mm:

Mmin = 2× 1016
√

|a|δCN 1/4. (48)

Agreement with CMB data requires Mmin > MCMB ∼ 3× 1015GeV/
√

ǫ(β), or

|a| < 2× 10−2

√
N δC

1

ǫ(β)
. (49)

This gives a stronger bound on |a| than the requirement of scale invariance.

4.4 The A-regime

The A-term breaks the discrete symmetry S ↔ −S. For A < 0 there is a minimum for

the potential at S0 6= 0. If S0 > Sc the inflaton gets trapped in the false vacuum leading
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to eternal inflation. Assume V = V0 + Vloop + VA, and all other terms negligible small.

Then this happens for x0 > xc with x0 ∼ (Nκ3M)/(8π2Am3/2) and xc = 1, which gives

M &
8π2A

N
m3/2

κ3
∼ 1016GeV

N
( m3/2

102GeV

)

(

10−4

κ

)3

(50)

Hence for a negative A-term, this is a problem for large κ/small gravitino mass.

No new minimum arises for positive A-term, which is the case we discuss now. These

results equally apply to a negative A-term provided x0 ≪ 1. The A-term dominates the

density perturbations if V ′
A > V ′

l , or

κ < 4

(

m3/2A

NM

)1/3

∼ 4× 10−5

N 2/5δ
1/10
C

(

m3/2A

GeV

)3/10

(51)

where in the second step we used M ∼ Mloop. A-term domination at small coupling

happens before NR terms become important, unless the gravitino mass is small m3/2 <

5× 10−4GeV(N /A). Consider then m3/2 large enough for the linear term to play a rôle.

The A-term does not contribute to η, and xend ≈ 1 determined by the loop contribution.

In addition xQ ≈ 1 for small coupling. Using Eq. (28), the observed perturbations are

obtained for

MA =
4× 1013δ

1/4
C√

k

(

m3/2A

103GeV

)1/4

(52)

When the linear term dominates, M increases as a function of decreasing coupling. This

gives a lower bound on the mass scale M , obtained for V ′
A = V ′

l , which is

Mmin = 2× 1015GeVN 1/5δ
1/20
C

(

m3/2A

103GeV

)1/10

(53)

This is only consistent with the CMB bound, i.e., with the requirement Mmin > MCMB, for

N = 1 andm3/2 . 103GeV. Note that the dependence on the gravitino massm3/2 is weak,

and very small m3/2 is needed to lower this minimum scale considerably. This favors gauge

mediated SUSY breaking, or a scenario in which hidden sector SUSY breaking happens

after inflation.

5 Numerical results

We have also solved the equations pertaining the density perturbations Eqs. (19,26,27,28,29).

For ǫ(β) we use the second expression in Eq. (18). This introduces a factor 4 error in the
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limit β = (κ/g)2 → 1, where the BPS limit ǫ(1) = 1 should be approached. Further we

take y = 3, where y is the parameter which parameterises the string contribution as given

in Eq. (19), and reconnection probability p = 1. Setting the quadrupole Eq. (29) equal to

the observed value given in Eq (20) gives the symmetry breaking scale M as a function of

κ. All other quantities such as the spectral index and the inflaton VEV when observable

scales leave the horizon can also be computed. In this section we discuss the results.

Fig. 4 shows M vs. κ for N = 1, 16, 126. The potential includes the loop potential

and the NR terms; all other terms are turned off. Also shown are the bounds on the scale

M ; from top to bottom these are the 10%-bound, the Kaiser-Stebbins-bound, and the

pulsar bound. The 10% bound and especially the pulsar bound has the large theoretical

uncertainties. At large and small coupling cosmic strings dominate the density pertur-

bations, or equivalently M(κ) exceeds the various bounds. This is the region excluded

by experiments. At intermediate coupling, and for small enough N , there are then two

branches compatible with CMB data, the branch where the loop potential dominates, and

a second branch at small coupling where the NR terms dominate. This in good agreement

with the discussion in section 4.2.

The κ range compatible with all bounds is 10−6 . κ . 10−3/N . The upper bound

lies in the κ-range where V ′
loop dominates, which is why it is N dependent. On the other

hand, the lower bound is determined by V ′
NR which is independent of N . If we drop the

pulsar bound, the parameter range is extended at large coupling to 10−7/Nκ . 10−2/N .

Only a small window remains for N = 126, which is clearly disfavored.

In Fig. 5 we show the spectral index for the parameters of Fig. 4. The spectral index

is less than one, except at large coupling when NR terms start to dominate the second

derivative, see Eq. (42). The coupling for which the spectral index starts to diverge

corresponds to the upper bound on κ for which a solution exists (compare Figs. 4, 5).

This is in agreement with the discussion below Eq. (41), where it should be noted that

the potential is steep for large η and thus xend and xQ are well separated. The spectrum

is indistinguishable from scale invariance and gives no new constraints on the available

parameter space.

The string contribution to the quadrupole is parametrized by the parameter y. The

value for y found in the literature ranges from y = 3−12. Fig 6 shows how this affects the

10%-bound. Plotted is the string contribution to the quadrupole B defined in Eq. (21)

as a function of κ for N = 1 and different values of y. The 10% bound corresponds to
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Figure 4: M vs. κ for N = 1, 16, 126. Further shown are, from top to bottom, the

10%-bound, the KS-bound and the pulsar bound.
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Figure 5: Spectral index n vs. κ for N = 1, 16, 126
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Figure 6: B vs. κ for N = 1 and y = 3, 9, 12. B = 0.1 corresponds to the 10%-bound.

B = 0.1. For y = 3 the bound on κ corresponds to that found from the M(κ) plot in

Fig. 4, as it should. For y = 9, 12 the 10%-bound is stronger, and the upper bound on κ

is decreased by about a factor 10. We want to stress that in contrast to the 10% bound,

the KS and pulsar bound are rather insensitive to y. And thus the κ-range compatible

with the KS and pulsar bound is practically the same for the different y-values.

Fig 7 shows the results when the Hubble induced mass term is included, the different

lines corresponds to different values of |a| = 10−1, 10−2, 10−3; in all cases N = 1. M(k)

increases with increasing |a|. Indeed too large |a| = 10−1 is excluded by the data, whereas

|a| ∼ 10−2 decreases the upper bound considerably, to κ . 10−5. For |a| . 10−3, the

available parameter space is unaltered. V ′
m is independent of N , and we can get a good

handle on how it affects parameter space for different N by comparing Figs. 4 and 7.

For N = 16, 126 it follows that |a| & 10−2 is excluded, whereas for example |a| ∼ 10−3

reduces the upper bound to κ . 10−5, 10−6.

Fig. 8 shows the effect of including the linear A-term for gravitino masses m3/2 =

103, 102, 100, 10−2GeV and N = 1. A gravitino mass m3/2 & 102GeV as obtained in

gravity mediated SUSY breaking shrinks parameter space considerably: for N = 1 the

allowed range of κ is 10−5 − 10−4 . κ . 10−3 − 10−2, whereas no parameter space is left

for N = 16, 126.
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Figure 7: M vs. κ with Hubble mass term included. The plots are for a = 10−1, 10−2, 10−3.

Also shown are, from top to bottom, the 10% bound, the KS-bound and the pulsar bound.
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Figure 8: M vs. κ with A term included. The plots are ms = 103, 102, 100, 10−1. Also

shown are, from top to bottom, the 10% bound, the KS-bound and the pulsar bound.
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Figure 9: M vs. κ for δC = 10−1, 10−2, 10−3. Also shown are, from top to bottom, the

10% bound, the KS-bound and the pulsar bound.
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Finally we consider the possibility that an other scalar field than the inflaton gives

the main contribution to the density perturbations, as occurs in the curvaton or inhomo-

geneous reheat scenario. If Fig. 9 we plot κ vs. M for δC = 10−1, 10−2, 10−3. Already

when the combined contribution of the inflaton and cosmic strings to the quadrupole is

reduced to 10% of the COBE value (and thus the other 90% are provided by some other

scalar field), are all constraints avoided. Invoking an alternative scalar field to explain

the density perturbations is thus a good way to avoid all constraints on the string scale.

Note however, that the curvaton scenario in its simplest form can only work for Hubble

constants H > 107GeV. As can be seen from Fig. 10, where we plotted H vs. κ for the

same parameters as in Fig. 9, this implies κ > 10−3 − 10−4. No such constraint exists for

the inhomogeneous reheat scenario.

5.1 Brane F -inflation

In the plots discussed above we have used the GUT value for the gauge coupling g and

varied the trilinear coupling κ. In brane models the gauge coupling may differ by few

orders of magnitude from the GUT value and the coupling constant is given in terms of

g. This does not change anything for the inflation contribution (which is now given as

function of g instead of κ) but only for the strings.

Here we discuss as an example F -term inflation that arises as a certain limit of P -term

brane inflation models [7]. P -term inflationary models in N = 1 supergravity interpolate

between F - and D-term models. The choice of a particular model is determined by the

VEV of the auxiliary triplet field of P-inflation, which depends on the fluxes on the branes

[7].

The matter content of P -inflation is an N = 2 charged hypermutiplet and a U(1) gauge

multiplet. These contain in addition to the gauge bosons a pair of complex conjugate fields

which can be identified with our φ+ and φ− fields and a neutral singlet which we denote

by S. The N = 1 superpotential is given by

W =
√
2gS(φ+φ− −M2). (54)

Hence, we recover the superpotential given in Eq. (1) with κ =
√
2g. The strings that

form at the end of F -term P -inflation have mA = mφ, and satisfy the Bogomolny bound.

Their tension is µ = 2πM2, i.e., ǫ(β) in Eq. (17) equals unity. This in turn modifies the

parameter range allowed by the data. In Fig. 11 we plot M versus κ for ǫ(β) = 1. The
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Figure 11: M vs. κ for N = 1 and ǫ(β) = 1 corresponding to F -term P -inflation. Also

shown are, from top to bottom, the 10% bound, the KS-bound and the pulsar bound.

10%-bound, the KS-bound, and the pulsar bound on M are proportional to ǫ(β)−1/2 (see

Eqs. (22, 23, 24), and are more stringent than for GUT F-term inflation. The KS-bound

gives 10−6 . g . 10−4 which is much below the expected range for g. 4

6 Warm inflation

If the inflaton, or a field coupling to the inflaton, can decay during inflation, it has a

propagator of the Breit-Wigner form with an imaginary part related to the decay rate

Γ. Upon calculating the one-loop correction to the inflaton potential, these contributions

related to the decay rate lead to dissipative effects. In the adiabatic-Markovian limit,

satisfied for φ̇/φ < H < Γ, this can be described by an effective friction term Υ in the

inflaton equation of motion [45]

S̈ + (3H +Υ)Ṡ +
∂V

∂S
= 0. (55)

In hybrid inflation inflaton decay is kinematically forbidden. However, the heaviest Higgs

field χ+ = (φ+ + φ−)/
√
2 can decay into its fermionic superpartner χ̃+ and an inflatino.

4The 10% bounds implies g < 10−3 which differs from result g < 10−4 quoted in [19]. This difference

can be traced back to the different y values used: y = 3 in our case and y = 9 in [19]
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Since the masses of χ+ and χ̃+ are close together, this decay is phase space suppressed.

As shown in Ref. [20] its effects can be neglected during inflation. Dissipation can only

be important if the inflaton sector couples to light particles. We consider the coupling

W = λφ+NN. (56)

If hybrid inflation is embedded in a grand unified theory, and the U(1) broken at the end

of inflation corresponds to baryon−lepton number, the above term naturally arises as a

mass term for the right handed neutrino Ñ .

Physically, what happens is that during inflation the slowly changing inflaton field can

excite the Higgs field φ+, which can decay into massless N fields. Through this channel,

the inflaton sector dissipates radiation: ρ̇γ + 4Hργ = ΥṠ2.

One can distinguish three regimes, depending on the strength of the effective damping

term Υ and on the temperature T ∼ ρ
1/4
γ of the radiation bath.

1. Υ, T < H . This is the regime of cold inflation where dissipation is negligible small.

The Hubble parameter sets the friction term in the inflaton equation of motion, as

well as the scale of inflaton perturbations δS2 ∝ H2.

2. H < T < Υ. Warm inflation in the weak dissipative regime. The friction term is

dominated by the Hubble constant, i.e., by the expansion of the universe, but the

perturbations are dominated by thermal effects and δS2 ∝ HT .

3. H < Υ. Warm inflation in the strong dissipative regime. The damping of the

inflaton field is dominated by Υ, i.e., by dissipative effects. Moreover, fluctuations

are thermal with δS2 ∝
√
HΥT .

Warm inflation, which occurs for sufficiently large couplings κ, λ, lowers the scale M

for a given κ compared to cold inflation. The reason is that the fluctuations δS are larger

by a factor
√

T/H(1 + (Υ/H)1/4), so that a smaller M is required to obtain the right

temperature anisotropy. In the strong dissipative regime there is the additional effect

that the inflaton is stronger damped as compared to cold inflation, and the inflaton value

when observable scales leave the horizon, SQ, is lowered.

We will list here the important formulas governing the density perturbations; more

details can be found in [20, 45]. The decay rate for the process φ+ → NN is Γ =

28



λ2m+/(16π), with m2
+ = κ2(|S|2 + M2) and λ the coupling in Eq. (56). We can define

the ratio r ≡ Υ/(3H) which is given by

r(x) =
κ2

128
√
3π

(

λ2

16π

)

x2

√
1 + x2

mp

M
(57)

The dissipative effects parametrized by r(xQ) are maximized in the limit κ, λ → 1 large,

as this maximizes the decay rate. The formulas for the density parameters then generalize

as follows. The number of e-folds is

NQ =

∫ σQ

σend

1

m2
p

V

V ′
(1 + r)dσ. (58)

The slow roll parameters change to ǫΥ = ǫ/(1 + r)2 , ηΥ = η/(1 + r)2, with ǫ, η given in

Eq. (27). In addition a third slow roll parameter can be defined ǭΥ = βΥr/(1 + r)3 with

βΥ = m2
p

V ′

V

Υ′

Υ
. (59)

Inflation ends when one of the slow roll parameters exceeds unity, or when the energy

inflaton decay products ργ becomes larger than V0, with

ργ
H4

=
9

2

rǫ

(1 + r)2κ2

(mp

M

)4

(60)

One can define a corresponding temperature T ≈ ρ
1/4
γ . The density perturbations gener-

alize to
(

δT

T

)

φ

=
1

12
√
5πm3

p

V 3/2

V ′

(

1 +

√

T

H

)(

1 +

(

πΥ

4H

)1/4
)

(61)

In the limit r → 0 (and thus also Υ → 0, T → 0) all above formulas reduce to those of

standard cold inflation, where dissipative effects are negligible small. Finally, we give the

spectral index in the various regimes

ns − 1 =















−6ǫ+ 2η, for Υ, T < H

−17
4
ǫ+ 3

2
η − 1

4
βΥ, for Υ < H < T

(−9
4
ǫ+ 3

2
η − 9

4
βΥ)(1 + r)−1, for H < Υ, T

(62)

In Fig. 12 we show the effects of dissipation for different values of λ = 1, 0.1, 0.01, 0

and N = 1. As expected dissipation is only important for large κ and λ, and the scale

of inflation is lowered. For λ & 0.1 all bounds are evaded. For smaller coupling the

importance of the dissipative effects diminishes, e.g. for λ & 0.01 the bound is only
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Figure 12: M vs. κ for λ = 1, 0.1, 0.01, 0 and N = 1. Also shown are, from top to bottom,

the non-Gaussianity bound, the 10% bound, and the pulsar bound.

slightly improved. The spectral index for the same parameters is shown in Fig. 13. The

spectrum is scale invariant over the whole κ range consistent with CMB data. For λ ∼ 1

there is a discontinuity in the spectral index, which corresponds to the transition from

the weak to the strong dissipative regime; it is merely an artifact of the approximation

used in Eq. (62).

Fig. 14 shows the mass scale M as a function of κ, now for λ = 1, 0.5, 0.1, 0 and

N = 16. The effect of dissipation is smaller than for N = 1. Only for larger, order one,

couplings are all bounds evaded. Already for λ = 0.1 there is no enlargement of parameter

space.

Lastly, we show in Fig. 15 the effects of dissipation for the Bogomolny strings arising

in F -term P -inflation, for which ǫ(β) = 1. Plotted is M vs. κ for λ = 1, 0.1, 0.01, 0. Just

as for GUT strings with N = 1 are the bounds considerably improved for λ < 0.1.

7 Conclusions

Cosmic strings form at the end of standard hybrid inflation. Both the string and inflaton

contribution to the CMB are proportional to the same symmetry treaking scale M . This
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Figure 13: n vs. κ for λ = 1, 0.1, 0.01, 0and N = 1 .
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Figure 14: M vs. κ for λ = 1, 0.5, 0.1, 0 and N = 16. Also shown are, from top to bottom,

the non-Gaussianity bound, the 10% bound, and the pulsar bound.
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Figure 15: M vs. κ for λ = 1, 0.1, 0.01, 0 and N = 1. Also shown are, from top to bottom,

the non-Gaussianity bound, the 10% bound, and the pulsar bound.

makes hybrid inflation testable via CMB experiments. In this paper we have determined

the parameter space for which standard F -term hybrid inflation is compatible with the

CMB data. We considered both GUT F -term inflation and P -term F -inflation.

We pointed out that cosmic strings forming at the end of GUT F -inflation are not in

the Bogomolny limit. The string tension depends on the ratio of the masses of the Higgs

and gauge fields, and decreases in the limit of small quartic coupling constant. This is why

the bounds on M are relaxed compared to P -term models where the strings do satisfy

the Bogomolny bound.

We studied the inflationary scalar potential including all possible soft and dissipative

terms. Supergravity corrections are calculated assuming general expectation values in the

hidden sector. The one-loop potential and the non-renormalisable terms are general, and

independent of the SUSY breaking mechanism in the true vacuum. The inflaton mass and

linear A-term, on the other hand, depend sensitively on the SUSY breaking mechanism.

These terms are large in a canonical gravity mediated SUSY breaking scheme, in conflict

with the CMB data. In order to evade the bounds, either these terms must be tuned, or

low energy SUSY breaking should take place after inflation, or gauge mediation should

be assumed.
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Knowledge of the scalar potential of F -inflation allows for a calculation of the pertur-

bation spectrum. We have derived analytical formulas for the symmetry breaking scale M

as a function of the superpotential coupling κ in the limit that one term dominates the po-

tential. These results agree well with our numerical calculations. The string tension, and

thus the SSB scale M , is bounded by the data. We used three different bounds, the 10%

bound, the Kaiser-Stebbins bound and the pulsar bound (we believe the Kaiser-Stebbins

bound should be taken most seriously as the theoretical uncertainties are smallest). For

GUT strings, we find that the relevant coupling 10−7/N . κ . 10−2/N , with N the

dimension of the Higgs-representation, is still compatible with the data.5. The bounds

are stronger for the strings formed in P -inflation: 10−7 < κ < 10−4.

Finally we considered ways to ameliorate the CMB bounds. In the curvaton or inho-

mogeneous reheat scenario not the inflaton but some other scalar field is responsible to

the density perturbations. Lowering the contribution of the inflaton to the CMB, even by

only 10%, immediately evades all bounds. Warm inflation can occur if the Higgs field is

coupled to light fields with a large, order one, coupling. This opens up parameter space

for large superpotential couplings.
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