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Abstract

A new approach of the QCD sum rule is proposed in which positive and

negative-parity baryons couple with each other. With positive and negative-

parity states explicitly taken into account, sum rules are derived by means

of the dispersion relation in energy. The method is applied to the nucleon

channel and the parity splitting of the nucleon resonance states is studied.

It is found that the obtained sum rules have a very good Borel stability.

This suggests that the ansatz for the spectral function in the present sum

rule approximates the physical spectrum better than the usual lowest pole

plus continuum ansatz. The predicted masses of the positive and negative

nucleons reproduce the experimental ones fairly well. Especially, the mass
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difference is extremely close to the experimental value.
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I. INTRODUCTION

The QCD sum rule invented by Shifman, Vainshtein, and Zakharov [1] provides us with

a way to relate hadron properties to vacuum condensates of quark-gluon composite fields

which characterize the structure of QCD vacuum. The first very successful application of

the QCD sum rule has been in mesonic channels [1,2]. Especially for the vector meson

states, the predictions of the masses and decay constants are extremely good. Then the

application has been extended to baryonic channels [3,4]. The approach has been improved

and expanded to various baryons [5–9]. In baryon channels, however, the application has

not been so successful as in meson channels.

In the application of the QCD sum rule, the time-ordered correlation function,

Π(p) = −i
∫

d4xeipx〈0|T (η(x)η̄(0))|0〉, (1)

is considered, where η is the baryon interpolating field. The interpolating field whose in-

trinsic parity is positive couples not only to the positive-parity baryon states but also to

the negative-parity baryon states. Therefore, the contamination from the negative-parity

baryons might be the cause of the unsuccessfulness of the QCD sum rule in the baryon

channel. In Ref. [6] Chung et al. studied the property of the negative-parity nucleon as well

as the positive-parity nucleon. They constructed the interpolating fields without derivatives

which couple strongly to the positive and negative-parity nucleon, respectively, through the

positivity condition of the spectral functions. Their sum rule, however, does not show a

stable plateau which is a necessary condition for the sum rule to be reliable. In Ref. [9] Jido

et al. proposed to use the “old-fashioned” correlation function,

Πold(p) = −i
∫

d4xeipxθ(x0)〈0|η(x)η̄(0)|0〉, (2)

in order to separate the terms of negative-parity baryons from those of positive-parity

baryons by operating the projection operators. They constructed sum rules for positive and

negative-parity baryons, respectively, in which they claim to obtain the operator product
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expansion (OPE) of the “old-fashioned” correlation function from the time-ordered correla-

tion function. We, however, believe that the OPE of the “old-fashioned” correlation function

cannot be obtained from that of the time-ordered correlation function as we will explain. As

long as one uses the OPE of the time-ordered correlation function, the positive and negative

baryon states inevitably couple with each other. Therefore, in our opinion their sum rules

do not correctly take into account the coupling of the positive and negative-parity states.

In this paper we propose a new approach of the sum rule in which positive and negative-

parity baryons couple with each other. In the approach we use the dispersion relation in the

variable of energy and derive sum rules. We then apply the method to the nucleon channel

and investigate the parity splitting between the positive and negative nucleon states. We will

show that the prediction of the present sum rule is much better than that of the previous

works not only for the positive-parity state but also for the negative-parity state. This

suggests that the coupling of the positive and negative-parity states is important in the

application of the QCD sum rule to baryon channels. It is found that once this coupling is

taken into account the application of the QCD sum rule for the nucleon can be as successful

as for the vector meson. The paper is organized as follows. In Sec. II we explain the

derivation of the sum rule in which the positive and negative-parity baryons couple with

each other. We then present the results of the application of the sum rule to the nucleon in

Sec. III. Finally, we summarize the paper in Sec. IV.

II. QCD SUM RULE WITH PARITY COUPLING

The interpolating field of the baryon, η, is usually constructed as the product of three

quark fields, : qqq :. The field, η, couples to positive and negative-parity resonance states,

|Bn
+〉 and |Bn

−〉, respectively, as

〈0|η(x)|Bn
+(p, s)〉 = λn

+uBn

+
(p, s)e−ipx,

〈0|η(x)|Bn
−(p, s)〉 = λn

−γ5uBn

−
(p, s)e−ipx, (3)
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where uB(p, s) is a positive energy solution of the free Dirac equation of the baryon [6].

Therefore, in the zero-width approximation the correlation function can be expressed as

Π(p) =
∑

n

{

|λn
+|

2
/p+mn

+

p2 −mn
+
2
+ |λn

−|
2
/p−mn

−

p2 −mn
−
2

}

, (4)

where mn
± is the mass of the n-th resonance [9]. Then, we obtain the spectral function,

ρ(p0) = −ImΠ(p0 + iǫ)/π, in the rest frame, p = 0, as

ρ(p0) = P+

∑

n

{

|λn
+|

2δ(p0 −mn
+) + |λn

−|
2δ(p0 +mn

−)
}

+P−

∑

n

{

|λn
+|

2δ(p0 +mn
+) + |λn

−|
2δ(p0 −mn

−)
}

, (5)

where P± = (γ0±1)/2. Strictly speaking, ρ is the imaginary part of the retarded correlation

function since we approach the real energy axis from the above in the complex energy plain

when we take the imaginary part of the correlation function.

One can obtain the QCD sum rule by using the analyticity of the correlation function

and replacing the correlation function, Π, by that in the OPE, ΠOPE in the deep Euclid

region, p20 → −∞, as

∫ ∞

−∞
dp0ρ

OPE(p0)W (p0) =
∫ ∞

−∞
dp0ρ(p0)W (p0). (6)

Now, let us consider the projected spectral function,

ρ±(p0) =
1

4
Tr [P±ρ(p0)] , ρ±

OPE(p0) =
1

4
Tr

[

P±ρ
OPE(p0)

]

, (7)

where ρ±(p0) = ρ∓(−p0) and ρ±
OPE(p0) = ρ∓

OPE(−p0). We approximate each of the positive

and negative-parity contributions in the projected spectral function by the lowest pole plus

continuum ansatz. Namely, we parameterize the projected spectral function as,

ρ±(p0) = |λ±|
2δ(p0 −m±) + |λ∓|

2δ(p0 +m∓) + [θ(p0 − ω±) + θ(−p0 − ω∓)]ρ
OPE
± (p0), (8)

where ω+ and ω− denote the effective continuum thresholds for positive and negative-parity

channels, respectively. Therefore, the anzatz of Eq. (8) is expected to approximate the

physical spectrum better than the usual lowest pole plus continuum model where only the
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lowest energy state of either positive or negative parity is taken into account as a pole and

the rest is included in the common continuum term. Substituting Eq. (8) to the right-hand

side in Eq. (6) and using the Borel weight, W (p0) = pn0 exp(−p20/M
2), we obtain the Borel

sum rule,

Πn
±(M,ω+, ω−) ≡

∫ ω±

−ω∓

dp0ρ
OPE
± (p0)p

n
0 exp(−

p20
M2

)

= m±
n|λ±|

2 exp(−
m±

2

M2
) + (−m∓)

n|λ∓|
2 exp(−

m∓
2

M2
), (9)

where the parameter of the weight function, M , is called the Borel mass. The projected

correlation function defined by Eq. (9) satisfies a relation,

Πn
±(M,ω+, ω−) = (−1)nΠn

∓(M,ω+, ω−). (10)

It should be noted that in Eq. (9) the positive and negative-parity baryons couple with each

other. Combining Πn
+ (Πn

−) defined by Eq. (9) with different n, we can eliminate λ± and

express m+ (m−) by m− (m+) as

m+ =
m−Π

k+1
+ (M,ω+, ω−) + Πk+2

+ (M,ω+, ω−)

m−Π
k
+(M,ω+, ω−) + Πk+1

+ (M,ω+, ω−)
,

m− =
m+Π

l+1
− (M,ω+, ω−) + Πl+2

− (M,ω+, ω−)

m+Πl
−(M,ω+, ω−) + Πl+1

− (M,ω+, ω−)
. (11)

Taking l 6= k in Eq. (11), we can solve for m± as

m± =

[

√

(Πk
+Π

l+2
− − Πk+2

+ Πl
−)2 + 4(Πk

+Π
l+1
− +Πk+1

+ Πl
−)(Π

k+1
+ Πl+2

− +Πk+2
+ Πl+1

− )

∓(Πk
+Π

l+2
− − Πk+2

+ Πl
−)

]

/

2(Πk
+Π

l+1
− +Πk+1

+ Πl
−) (l 6= k). (12)

For the ansatz Eq. (8) to be reasonable, Eq. (9) must satisfy the condition,

Π2n
± (M,ω+, ω−) > 0, (13)

since |λ±|
2 must be positive.

Comments on the difference of the present sum rule and the previous sum rules are in

order here. The authors of Ref. [6] studied the positive and negative-parity baryons in the

QCD sum rule. They derived sum rules using the dispersion relation in the variable p2 as
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Πi(p
2) =

∫ ∞

0

ρi(s)

p2 − s
ds, (14)

where Π(p) = /pΠ1(p
2) + Π2(p

2). Then the spectral functions are given by

ρ1(p
2) =

∑

n

{

|λn
+|

2δ
(

p2 −mn
+

2
)

+ |λn
−|

2δ
(

p2 −mn
−
2
)}

,

ρ2(p
2) =

∑

n

{

|λn
+|

2mn
+δ

(

p2 −mn
+

2
)

− |λn
−|

2mn
−δ

(

p2 −mn
−
2
)}

. (15)

In order to extract the mass of the positive(negative)-parity baryon, they constructed the

interpolating field in such a way that the contribution of |λn
+|

2 (|λn
−|

2) becomes as large as

possible and just neglected the contribution from negative(positive)-parity baryon. There-

fore, the neglected contribution of the negative(positive)-parity baryon might contaminate

the sum for the positive(negative)-parity baryon. In particular, the sum rule for the negative-

parity baryon is dangerous because the energy of the lowest negative-parity state is expected

to be above the threshold of the positive-parity continuum. Actually, they did not find a

Borel stability in their sum rule for the mass of the negative-parity nucleon. On the other

hand, in the present sum rule we approximate each of the positive and negative-parity

contributions in the projected spectral function by the lowest pole plus continuum ansatz.

Therefore, we can separately control the continuum thresholds of the positive and negative-

parity states so that the assumed spectral function is expected to a better approximation

to the physical spectrum. The authors of Ref. [9] proposed to use the “old-fashioned” cor-

relation function in order to separate the terms of negative-parity baryons from those of

positive-parity baryons by operating the projection operators. Here, we would like to point

out the difficulty in deriving sum rules using the “old-fashioned” correlation function. The

spectral function for the “old-fashioned” correlation function is given by

ρold(p0) = P+

∑

n

|λn
+|

2δ(p0 −mn
+) + P−

∑

n

|λn
−|

2δ(p0 −mn
−), (16)

which is obviously related to ρ(p0), Eq. (5), as ρold(p0) = θ(p0)ρ(p0). Formally, the OPE of

the spectral functions are given for the time-ordered correlation function by

ρOPE(p0) = P+

∑

n

{(

|λn
+|

2 + |λn
−|

2
)

δ(p0) +
(

−|λn
+|

2mn
+ + |λn

−|
2mn

−

)

δ′(p0) + · · ·
}
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+P−

∑

n

{(

|λn
+|

2 + |λn
−|

2
)

δ(p0) +
(

|λn
+|

2mn
+ − |λn

−|
2mn

−

)

δ′(p0) + · · ·
}

, (17)

and for the “old-fashioned” correlation function by

ρOPE
old (p0) = P+

∑

n

{

|λn
+|

2δ(p0)− |λn
+|

2mn
+δ

′(p0) + · · ·
}

+P−

∑

n

{

|λn
−|

2δ(p0)− |λn
−|

2mn
−δ

′(p0) + · · ·
}

, (18)

(It should be noted here that we exchanged the expansion in 1/p0 and the sum over poles.

That is why we obtain only terms of the delta function and its derivatives but not of the

theta function. But in the following discussion the existence of the delta function and its

derivatives is essential and the lack of the theta function is unimportant.) Clearly, one

cannot obtain ρOPE
old (p0) from ρOPE(p0) by the relation, ρold(p0) = θ(p0)ρ(p0). The terms,

which include the delta function or its derivatives, do not keep track on whether they are

from the positive energy part or the negative energy part, while the terms with θ(p0) and

θ(−p0) obviously originate from the positive energy part and the negative energy part of

the spectral function, respectively. Thus, there is no way to determine the OPE of the “old

fashioned” correlation function from that of the time ordered correlation function.

III. APPLICATION TO NUCLEON CHANNEL

The general expression of the nucleon interpolating field without derivatives [3,8,10] is

given by

ηN = ǫabc[(uaCdb)γ5uc + t(uaCγ5db)uc], (19)

where u and d are field operators of up and down quarks, respectively, C denotes the charge

conjugation operator and a, b and c are color indices. In Eq. (19), t can be considered the

tangent of a mixing angle and is called the mixing parameter in the following. In the OPE of

the nucleon correlation function, Wilson coefficients have been calculated in Ref. [8] for all

the operators up to dimension 4 and the four-quark operator of dimension 6. The coefficient
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for the quark-gluon mixed operator of dimension 5 has also been calculated in Ref [9]. The

OPE of the nucleon spectral function including these operators is given by

ρ(p0) = γ0{
5 + 2t+ 5t2

211π4
p50[θ(p0)− θ(−p0)]

+
5 + 2t+ 5t2

210π2
〈
αs

π
GµνG

µν〉p0[θ(p0)− θ(−p0)]

+
7t2 − 2t− 5

24
〈q̄q〉2δ(p0)}

−
7t2 − 2t− 5

64π2
p20〈q̄q〉[θ(p0)− θ(−p0)]

+
3(t2 − 1)

64π2
〈gq̄σµνG

µνq〉[θ(p0)− θ(−p0)], (20)

where we adopt the factorization hypothesis for the four-quark condensate. In Eq. (20),

αs = g2/4π with g being the strong coupling constant and Gµν = Ga
µνλ

a/2 where Ga
µν is the

gluon field tensor and λa is the usual Gell-Mann SU(3) matrix.

Now we study the predictability of the present sum rule. Substituting Eq. (20) into

the integral in Eq. (9) we derive the Borel sum rules for the positive and negative-parity

nucleons. In the following demonstration, we choose ω+ = 1.44 GeV and ω− = 1.65 GeV

for the effective continuum threshold which correspond to the masses of N(1440) P11 and

N(1650) S11 resonance states, respectively. For the QCD parameters we choose the standard

values:

〈q̄q〉 = −(0.23 GeV)3, 〈
αs

π
GµνG

µν〉 = (0.33 GeV)4, m2
0 ≡

〈gq̄σµνG
µνq〉

〈q̄q〉
= 0.8 GeV2. (21)

The gluon condensate is extracted from the charmonium sum rules in Ref. [11] and m2
0 from

the baryon sum rules in Refs. [5,12]. We find the optimal choice of the Borel weight, k and

l in Eq. (12), to be l = 0 and k = 2 (l = 2 and k = 0) by investigating the Borel stability of

the sum rules for 0 ≤ k, l ≤ 5. Finally we obtain

m± =

√

((Π2
+)2 − Π0

+Π
4
+)2 − 4(Π1

+Π
2
+ −Π0

+Π
3
+)(Π

2
+Π

3
+ − Π1

+Π
4
+)± ((Π2

+)
2 − Π0

+Π
4
+)

2(Π1
+Π

2
+ −Π0

+Π
3
+)

, (22)

where we use the relation (10). From Eq. (22) we determine the masses of the positive

and negative-parity nucleons. The mixing parameter, t, is determined by the following

procedure. From the condition (13) we restrict the mixing parameter to be t < −0.5 or
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0.6 < t in the region of M > 0.8 GeV. Performing the Borel stability analysis in the region

of 0.8 GeV < M < 1.8 GeV, we find the optimal value for the mixing parameter. Figures 1

and 2 display how sensitive the Borel stability is to the mixing parameter. Figs. 1 and 2

show mN+ and mN−, respectively, vs. the Borel mass for t = −0.6, −0.7 and −0.8. One

sees that the Borel stability is sensitive to the mixing parameter and that the most stable

plateau as a function of the Borel mass appears when t = −0.7 both for mN+ and mN− have.

For this optimal choice of the mixing parameter the positive and negative-parity nucleon

masses vary little in the region from M ≈ 0.8 GeV to 1.8 GeV. Actually, varying the Borel

mass from 0.8 GeV to 1.2 GeV (from M = 1.4 GeV to 1.8 GeV) changes mN+ (mN−) by less

than 3% (1%). It should be noted that there appears a rather stable plateau also for t ∼ 0.9

but the stability is worse than that for t ∼ −0.7. From the Borel curves with t = −0.7 we

obtain the masses of the positive and negative-parity nucleons as

mN+ = 1.0 GeV, mN− = 1.6 GeV. (23)

The calculated values are a bit greater than the experimental values, mN+ = 0.939 GeV

and mN− = 1.535 GeV. It is, however, remarkable that the calculated mass difference,

mN− −mN+ = 0.6 GeV, is very close to the experimental one, 0.596 GeV. The uncertainties

of 〈q̄q〉, 〈αs

π
GµνG

µν〉 and m2
0 are 40%, 30% and 10%, respectively. These errors change the

positive and negative-parity nucleon masses by ±0.13 GeV and ±0.10 GeV, respectively.

Now, we check how sensitive the calculated masses are to the effective continuum thresh-

olds. Varying ω+ from 1.26 GeV to 1.62 GeV, which corresponds to shifting the Roper res-

onance mass by the Breit-Wigner width, changes the positive and negative-parity nucleon

masses by ±0.04 GeV and ±0.32 GeV, respectively. Similarly, varying ω− from 1.57 GeV

to 1.73 GeV, which corresponds to shifting the N(1650) S11 resonance mass by the width,

changes them by less than a few percent. Thus we find that the negative-parity nucleon

mass is very sensitive to the continuum threshold, ω+, while the positive-parity nucleon mass

is not so sensitive to the continuum thresholds. This is natural because the positive-parity

nucleon is the lowest of all positive and negative-parity states, while the negative-parity
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nucleon is above the positive-parity continuum threshold.

IV. SUMMARY

We have proposed a new approach of the QCD sum rule in which positive and negative-

parity baryons couple with each other. Since the baryon interpolating field couples to neg-

ative as well as positive-parity baryon states, the time-ordered correlation function include

both contributions. Explicitly taking account of positive and negative-parity states, we have

derived sum rules by means of the dispersion relation in energy. Then, we have applied the

method to the nucleon channel and investigated the parity splitting of the nucleons. The

obtained sum rules turn out to have a very good Borel stability. This implies that the ansatz

for the spectral function in the present sum rule approximates the physical spectrum better

than the usual lowest pole plus continuum ansatz. The predicted masses of the positive

and negative nucleons reproduce the experimental ones fairly well. Especially, the mass

difference is extremely close to the experimental value.

It is well known that for the vector meson states the application of the QCD sum rule

has been quite successful where the Borel curves have almost perfectly stable plateaus [1,2].

In the sum rule for the nucleon mass, however, the stability of the Borel curve is not so

good when we take a simple lowest pole plus continuum ansatz for the spectral function.

In the present approach once we take positive and negative-parity states explicitly into

account, the Borel stability has been drastically improved not only for the positive-parity

nucleon but also for the negative-parity nucleon as we have demonstrated in Sec. III. We

should, however, mention that another possibility of improving the Borel stability has been

previously proposed by Dorokhov and Kochelev [13] and Forkel and Banerjee [14] in which

they have taken account of the effects of direct instantons in the correlation functions.

The present results suggest that the parity splitting of baryons can be studied in the

framework of the QCD sum rule once the coupling of positive and negative-parity states

is appropriately taken into account. Therefore, it is a future problem to apply the present
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approach to the parity splitting of various baryons. In particular, it is extremely interesting

to investigate the pentaquark baryon since its parity, which is not experimentally determined,

is crucial to understand the existence of the pentaquark baryon.
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FIG. 1. Mass of the positive-parity nucleon as a function of Borel mass with the mixing pa-

rameters t = −0.6 (solid line), −0.7 (dashed line) and −0.9 (dotted line).
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FIG. 2. Mass of the negative-parity nucleon as a function of Borel mass with the mixing

parameters t = −0.6 (solid line), −0.7 (dashed line) and −0.9 (dotted line).
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