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A model–independent approach to dark energy is here developed by considering the determination
of its equation of state as an inverse problem. The reconstruction of w(z) as a non–parametric
function using the current SNe Ia data is explored. It is investigated as well how results would
improve when considering other samples of cosmic distance indicators at higher redshift. This
approach reveals the lack of information in the present samples to conclude on the behavior of w(z)
at z > 0.6. At low level of significance a preference is found for w0 < –1 and w′(z) > 0 at z ∼ 0.2–0.3.
The solution of w(z) along redshift never departs more than 1.95 σ from the cosmological constant
w(z) = −1, and this only occurs when using various cosmic distance indicators. The determination
of w(z) as a function is readdressed considering samples of large number of SNe Ia as those to be
provided by SNAP. It is found an improvement in the resolution of w(z) when using those synthetic
samples, which is favored by adding data at very high z. The set of degenerate solutions compatible
with the data can be retrieved through this method.

I. INTRODUCTION

The acceleration of the rate of expansion of the Uni-
verse, first discovered through supernovae [1, 2] is be-
ing confirmed by new cosmological tests. The cosmic
microwave background measurements by the Wilkinson
Microwave Anisotropic Probe (WMAP) [3] and results
from the large scale distribution of galaxies [4] and galaxy
clusters [5] confirm that our universe is dominated by
negative pressure. The understanding of the accelerated
expansion of the cosmos might result in a change of the
framework in which gravity is to be described or in the
identification of unknown components of the cosmos. All
this seems most fundamental to physics and cosmology,
thus large samples of cosmological data and various pro-
cedures to analyse them are being examined.

In a descriptive way, the component or new physics
responsible for the acceleration of the expansion, the so
called “dark energy”, can be incorporated in the right–
hand side of the Friedmann–Robertson–Walker (FRW)
equations and be simply addressed as an additional term
for whom we intend to determine the barotropic index:
w(z) = p(z)/ρ(z).

The reconstruction of w(z) from a given sample of data
has been attempted proposing fitting functions or expan-
sion series of w(z) along z in ways to accomodate a wide
range of dark energy candidates [6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20]. There has been some debate
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on the effect that choosing particular models for those
functions or truncating the expansion series in z might
have in deriving possible evolution [14, 15, 20, 21, 22].

Here, we have developed an approach to obtain w(z)
without imposing any constraints on the form of the func-
tion. This is addressed through a generalized nonlinear
inverse approach. This method allows to examine the
resolution of the equation of state w(z) at various red-
shifts and through various samples. One can quantify
the improvement in information provided by increasing a
sample or by the addition of various sources. The inverse
approach formulated by Backus and Gilbert(1970)[23]
has been widely used in geophysics and solar structure
physics. In this approach, the mere fact that the contin-
uous functional has to be derived from a discrete number
of data implies a non–uniqueness of the answer. It has
also been shown that, even if the data were dense and
with no uncertainty, there would be more than one solu-
tion to many specific inverse problems such as the deter-
mination of the density structure of the earth from the
data on the local gravitational field at its surface, and
others. This lack of uniqueness comes from the way in
which the different equations reflect in the observables
used. The problem of the determination of dark energy
faces such degeneracy. In the luminosity distance along
z from supernovae and other cosmic distance indicators,
w(z) enters in an integral form, which limits the possi-
bility to access to w(z).

In earlier examinations of the degeneracy in w(z) ob-
tained through cosmic distance indicators a range of so-
lutions giving the same luminosity distance along z were
pointed out [24, 25]. As more data would constrain w(z)
at various redshifts, not only using the distance lumi-
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nosity, but other indicators as well, the reconstruction
should become more successful.
To compare with a significant body of work which

analyses the data using the expansion to first order
w(z) = w0 + waz/(1 + z), we will also formulate this
approach for the case of determination of discrete param-
eters. This allows to quantify the increase of information
among SNe Ia samples and samples of other distance in-
dicators. We examine from current data the possibility
of determining at present the values of w(z) and its first
derivative and compare with previous results [20, 28].

II. INVERSE PROBLEM

A. Non–parametric non–linear inversion

The inverse problem provides a powerful way to de-
termine the values of functional forms from a set of ob-
servables. This approach is useful when the information
along a certain coordinate, in our case information on
w(z), emerges in observables coupled with information at
all other z. We have a surface picture of w(z) in the lumi-
nosity distance at a given z, as the p–mode waves in the
Sun surface have on its internal structure. Dark energy
is here addressed using the non–linear non–parametric
inversion. Most frequently, when the parameters to be
determined are a set of discrete unknowns, the method
used is a least squares. But the continuos case, where
functional forms are to be determined, requires a general
inverse problem formulation. The inverse method used
here is a Bayesian approach to this generalization [29].
We consider a flat universe with only two dominant

constituents (at present): cold matter and dark energy.
Therefore we characterize the cosmological model by the
density of matter, ΩM , and by the index w(z) of the dark
energy equation of state,

w(z) =
p(z)

ρ(z)
(1)

The vector of unknowns M has then a discrete and a
continuous component,

M =

(

ΩM

w(z)

)

(2)

On the other hand, the observational data are mainly
SNe Ia magnitudes. We have a finite set ofN magnitudes,
mi, and consider the following theoretical equation, the
magnitude-redshift relation in a flat universe relating the
unknowns to the observational data:

mth(z,ΩM , w(z)) = M + 5 log[DL(z,ΩM , w(z))], (3)

where

M ≡ M − 5 logH0 + 25 (4)

and DL is the Hubble-free luminosity distance

DL(z,ΩM , w(z)) = c(1 + z)

∫ z

0

H0dz
′

H(z′,ΩM , w(z))
(5)

with

H(z′,ΩM , w(z)) = H0

√

ΩM (1 + z′)3 +ΩX(z′) (6)

ΩX(z) = ΩX exp

(

3

∫ z

0

dz′
1 + w(z′)

1 + z′

)

. (7)

In order to combine the results with other data we sub-
stitute the original SNe magnitudes by the dimensionless
distance coordinate y:

yi ≡
exp10((mi −M)/5)

c(1 + zi)
=

∫ zi

0

dz′
√

ΩM (1 + z′)3 +ΩX(z′)
,

(8)

σyi
=

ln 10

5
yi(σmi

+ σM). (9)

With this definition we deal directly with a function
y(ΩM , w(z)), the only part which depends on the cos-
mological model. To convert our mi data to yi, we can
adopt the value obtained from low redshift supernovae
and use M = −3.40 ± 0.05. Defined in this way, yi is
used in other analyses [9].
After the corresponding transformations, the observables
are now described by a vector of N components, yi, and
by a covariance matrix (Cy). This method can handle
correlated measurements, where non–diagonal elements
Cyiyj

are different from zero (observations i and j being
correlated). But, at present, those have not been esti-
mated for the composite samples of distance indicators.
We would then use:

Cy,ij = σ2
yij

δij (10)

The unknown vector of parameters is described by its a
priori value, M0, and the covariance matrix (C0). The
function describing w(z) should be smooth. This leads
to no null covariance between neighboring points in z for
w(z) (the smoothness of w(z) implies that if at z, the
value of w(z) has a deviation w(z) − w(z′) of a given
sign and magnitude, we want, at a neighboring point z′,
the deviation w(z) − w(z′) to have a similar sign and
magnitude.
Thus, the covariance matrix C0 has the form:

C0 =

(

σ2
ΩM

0
0 Cw(z),w(z′)

)

(11)
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where a choice is made for the non–null covariance be-
tween z and z′, Cw(z),w(z′). This choice is taken to be
as general as possible. It would define the smoothness
required in the solution by setting the correlation length
between errors in z and z′ (this gives the length scale
in which the function can fluctuate between redshifts).
The amplitude of the fluctuation of the function is given
by the dispersion σw at z. In the Gaussian choice for
Cw(z),w(z′), σw is the 1σ region where the solution is to
be found.
Thus for a Gaussian choice, Cw(z),w(z′) is described as:

Cw(z),w(z′) = σ2
w exp

(

−
(z − z′)2

2∆2
z

)

, (12)

which means that the variance at z equals σ2
w and that the

correlation length between errors is ∆z . Another possible
choice for Cw(z),w(z′) is an exponential of the type:

Cw(z),w(z′) = σ2
w exp

(

−
|z − z′|

∆z

)

, (13)

while no difference in the results is found by those differ-
ent choices of Cw(z),w(z′).
We are interested in determining the best estimator

M̃ for M. The probabilistic approach incorporates con-
straints from priors through the Bayes theorem, i.e, the a
posteriori probability density fpost(M/D) for the vector
M containing the unknown model parameters given the
observed data D, is linked to the likelihood function L
and the prior density function for the parameter vector
as:

fpost(M/D) αL(D/M) · fprior(M) (14)

The theoretical model described by the operator yth,
which connects the model parameters M with the pre-
dicted data Dpredicted = yth(M) is to agree as closely as
possible with the observed data y. Assuming that both
the prior probability and the errors in the data are dis-
tributed as Gaussian functions, the posterior distribution
becomes:

fpost(M/y)α exp[−
1

2
(y − yth(M))∗ C−1

y (y − yth(M))

−
1

2
(M−M0)

∗ C−1
0 (M−M0)]

(15)

where ∗ stands for the adjoint operator. The best esti-
mator for M, M̃, is the most probable value of M, given
the set of data y. The condition is reached by minimizing
the misfit function:

S ≡
1

2
(y − yth(M))∗ C−1

y (y − yth(M)) +

1

2
(M−M0)

∗ C−1
0 (M−M0), (16)

which is equivalent to maximize the Gaussian density of
probability when data and parameters are treated in the
same way. This Bayesian approach helps to regularize
the inversion.
Let us now define the operator G represented by the

matrix of partial derivatives of the dimensionless distance
coordinate, which will simplify subsequent notation. Its
kernel will be denoted by g.

G =













∂yth
1

∂ΩM

∂yth
1

∂w(z)
∂yth

2

∂ΩM

∂yth
2

∂w(z)

: :
∂yth

N

∂ΩM

∂yth
N

∂w(z)













(17)

with

∂ythi
∂ΩM

= −
1

2

∫ zi

0

(1 + z′)3dz′

H3(z′)

≡

∫ zi

0

gΩM
(z′)dz′, (18)

∂ythi
∂w(z)

= −
1

2

∫ zi

0

3ΩX(z′) ln(1 + z′)dz′

H3(z′)

≡

∫ zi

0

gw(z
′)dz′. (19)

As shown in Eq. 3 or equivalently Eq. 8, the inverse prob-
lem is nonlinear in the parameters, thus the solution is
reached iteratively in a gradient based search. To min-
imize S in Eq. 16, one demands stationarity. For the
non–linear case the solution has to be implemented as an
iterative procedure where [29]:

M̃[k+1] = M0 + C0 G∗
[k] (Cy +G[k]C0 G∗

[k])
−1

(y − yth(M̃[k]) + G[k] (M̃[k] −M0) ) (20)

The estimate of the dimensionless distance coordinates
in the iterations is given by:

ỹ[k+1] = y − Cy (Cy +G[k]C0 G∗
[k])

−1

(y − yth(M̃[k]) + G[k] (M̃[k] −M0) ) (21)

Since we are working in a Hilbert space with vectors con-
taining functional forms, the above operator products
give rise to scalar products of the functions integrated
over the domain of those functions. The expressions
transform into having the above products rewritten in
terms of the kernels of the operators [31].
We will indicate the scalar product by “ · ” and it is
defined as it can be seen from this example:

Cw ·
∂ythj
∂w(z)

=

∫ zj

0

dz′Cw(z, z
′)gw(z

′), (22)
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The components of the vector of unknowns M̃, which
in our case will be both ΩM and w(z), are then obtained
from:

M̃[k+1](z) = M0(z) +

N
∑

i=1

Wi[k]

∫ zi

0

C0(z, z
′)gi[k](z

′)dz′ (23)

where

Wi[k] =

N
∑

j=1

(

S−1
[k]

)

i,j
Vj[k] (24)

V = y + G (M−M0)− yth(M)

Vi[k] = yi +

∫ zi

0

gj[k](z)
(

M[k](z)−M0(z)
)

dz

− ythi (zi,ΩM , w(z)) (25)

S = Cy + G C0 G∗

Si,j[k] = (Cy)i,j +
∫ zj

0

∫ zi

0

gi[k](z)C0(z, z
′) gj[k](z

′) dz dz′

(26)

In the case of the dark energy equation of state and
the matter density the expressions reduce to

ΩM [k+1] = ΩMo + σ2
ΩM

N
∑

i=1

Wi [k]
∂ythi
∂ΩM [k]

(27)

w[k+1](z) = wo(z) +

N
∑

i=1

Wi [k]

∫ zi

0

Cw(z, z
′)gw(z

′)[k]dz
′

(28)
where Cw(z, z

′) ≡ Cw(z),w(z′)(z, z
′), Wi [k] is given by the

product (24) with:

Vi = yi +
∂ythi
∂ΩM

(ΩM − ΩM0
) +

∂ythi
∂w(z)

· (w − wo)

− ythi (zi,ΩM , w(z)) (29)

Si,j = δi,jσiσj +
∂ythi
∂ΩM

CΩM

∂ythj
∂ΩM

+

∂ythi
∂w(z)

·

(

Cw ·
∂ythj
∂w(z)

)

(30)

To test the accuracy of the inversion we use the a pos-
teriori covariance matrix. It can be shown (see [30, 31])

that for the linear inverse problem with Gaussian a priori
probability density function, the a posteriori probability
density function is also Gaussian with mean Eq. 20 and
covariance Eq. 31. Although its value is only exact in the
linear case it is a good approximation here, since the lu-
minosity distance is quite linear on the equation of state
w(z) at low redshift.

CM̃ = (G∗ C−1
y G + C−1

0 )−1 ≡ C0 −C0 G
∗ S−1 GC0

= ( I−C0 G
∗ S−1 G )C0 (31)

In an explicit form, the standard deviations from this
covariance read

σ̃ΩM
=
√

CΩ̃M
= (32)

= σΩM

√

√

√

√1−
∑

i,j

∂ythi
∂ΩM

(S−1)i,j
∂ythj
∂ΩM

σ2
ΩM

σ̃w(z)(z) =
√

Cw̃(z)(z) = (33)

=

√

√

√

√σ2
w(z) −

∑

i,j

Cw ·
∂ythi
∂w(z)

(S−1)i,j
∂ythj
∂w(z)

· Cw

where the symbols with tilde are the a posteriori values,
whereas the symbols without represent the a priori ones.
There are other parameters which help to interpret the

results. From the form of Eq. 31 we see that the operator
C0G

∗S−1G is related to the obtained resolution. This
is usually called the resolving kernel K(z, z′). The more
this term resembles the δ-function the smaller the a pos-

teriori covariance function is. In fact, in the linear case,
the resolving kernel represents how much the results of
the inversion differ from the true model. It equals to be
the filter between the true model and its estimated value
[23, 29]. In any applied case, it is a low band pass fil-
ter which depends on the data available and the details
requested from the model.
It can also be expressed in terms of the a priori and

the a posteriori covariance matrices:

K = I − CM̃ C−1
0 (34)

This expression will be evaluated numerically to quantify
the resolution and information generated in the inversion.
Another term of interest is the mean index, which is de-
rived from the resolving kernel:

I(z) =

∫

K(z, z′)dz′. (35)

The nearest I(z) to 1, the most restrictive are the data
to the model. For very low values, data do not improve
our prior knowledge on the parameters.
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FIG. 1: Reconstruction of w(z) using the 156 SNe from the
gold set of Riess et al.(2004) [28]. Cw(z),w(z′) is Gaussian
with σw = 1 and correlation length ∆z = 0.08. At high z,
the lack of enough data does not allow to improve the initial

knowledge, as seen in σ̃w(z)(z) =
√

Cw̃(z)(z). Low–resolution
inversions (as exemplified here with δz =0.3 at low z, and δz =
0.6 at high z) and high resolution ones (as with δz =0.06 in
Figure 2) give consistent results.

B. Discrete parameters

In the previous section we have obtained the results
for a set of a continuous function and a discrete param-
eter, but we can also consider the case of various dis-
crete parameters. It was pointed out that a succesful
parametrization for modeling a large variety of dark en-
ergy models is obtained by considering w(z) expanded
around the scale factor a. The earlier parametrization
to first order in z given by w(z) = w0 + w′z proved un-
physical for the CMB data and a poor approach to SN
data at z ∼ 1 [22]. For the case of moderate evolution in
the equation of state, the most simple (two–parameter)
description of w(z) so far proposed is [8, 26]:

w(z) = w0 + wa(1− a) (36)

where the scale factor a = (1+ z)−1 and w(z) turns out:

w(z) = w0 + wa

z

1 + z
. (37)

We use now this particular form for the function w(z)
commonly used to study the behaviour of dark energy to
solve iteratively for w0 and wa:

FIG. 2: Reconstruction of w(z) with 156 SNe from the
gold set of [28]. These results are obtained using Gaussian
a priori covariances with amplitude σw = 0.5 and ∆z =
0.08. This fine grid calculation uses δz = 0.06. The upper
panel shows w(z) (solid line) and the 1σ confidence interval
(dashed shadow). Below, the different resolving kernels at z
= 0, 0.24, 0.48, 0.84, 1.20 are shown. The resolving kernels at
high z show that there is no information to conclude on the
evolution of the equation of state at z>0.6.

w0[k+1] = w0
0 + σ2

w0

N
∑

i=1

Wi [k]
∂ythi
∂w0 [k]

(38)



6

FIG. 3: Reconstruction of w(z) (as in Figure 2) but with the
156 SNe from the gold set of [28] and 20 RG from [9].

wa[k+1] = w0
a + σ2

wa

N
∑

i=1

Wi [k]
∂ythi
∂wa [k]

(39)

where

∂ythi
∂w0

= −
1

2

∫ zi

0

3ΩX(z′) ln(1 + z′)dz′

H3(z′)
, (40)

∂ythi
∂wa

= −
1

2

∫ zi

0

3ΩX(z′)[ln(1 + z′)− z′

1+z′
]dz′

H3(z′)
. (41)

The a posteriori variance is for these parameters:

σ̃w0
=
√

Cw̃0
= σw0

√

√

√

√1−
∑

i,j

∂ythi
∂w0

(S−1)i,j
∂ythj
∂w0

σ2
w0

(42)

σ̃wa
=
√

Cw̃a
= σwa

√

√

√

√1−
∑

i,j

∂ythi
∂wa

(S−1)i,j
∂ythj
∂wa

σ2
wa

(43)
The equations for ΩM are those of section II (Eqs. 27, 18
and 32).

III. PRESENT AND FUTURE SAMPLES

We briefly introduce the various samples used here for
the exploration of dark energy and for measuring the
increase of information in w(z) along the last years. An
initial sample of SNeIa at high z was presented in 1999 by
the SCP (Supernova Cosmology Project)[1]. The set in-
cludes 16 low-redshift supernovae from the Calán/Tololo
survey and 38 high-redshift supernovae [1]. The new data
of this collaboration (low-extinction primary subset in
[27]) adds 11 high redshift SNe Ia observed with the Hub-
ble Space Telescope (HST). The third SNIa set examined
corresponds to the gold set buildt up with 7 SNeIa at z
> 1 by GOODS and a combination of different previous
samples revised to follow the same calibrations [28]. With
this last set it has been doubled the maximum redshift
and triplicated the number of data as compared with the
first one.
The SNIa samples available at present are still small,

and, therefore, we also use synthetic samples resem-
bling those to be acquired by the Supernova Accelera-
tion Probe (SNAP) [32]. To generate these samples we
assume the redshift distribution of 2000 SNeIa from [35].
For every supernova we calculate its magnitude given a
fiducial dark energy model. Our first model corresponds
to the cosmological constant in a universe with density
parameters ΩM = 0.3 and ΩΛ = 0.7 (this model has
w0 = −1 and wa = 0). We generate other synthetic
samples based on dark energy models inspired in super-
gravity theories [34]) with ΩM = 0.3, w0 negative and
positive wa. Various values of w0 and wa are tried (w0

range from –1.5 to –0.8 and wa range from 0.6 to 1).
Gaussian errors are added to the supernova data, tak-
ing into account the statistical error per supernova after
the corresponding calibrations (σst = 0.15). The level
of residual systematic error corresponds to the design of
SNAP [35], which should achieve 0.02 mag systematic er-
ror in redshifts bins of width ∆z = 0.1 with a dependence
in z, σsys = 0.02 z/zmax [35].
The error of the measurement in each z bin, is given by:

σbin =

√

∑

σ2
st

Nbin

+ σ2
sys (44)
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FIG. 4: Results with 2000 SNe from SNAP plus 300 SNe from
SNF. Gaussian covariance is as in Figure 2 an 3. In the upper
panel it is shown the deviation in luminosity distance between
model and the cosmological constant i.e. (dmL − dΛL)/d

Λ
L. The

recovered w(z) is shown in the middle panel and the resolv-
ing kernels in the low panel. The reconstruction, (shown in
solid line in the middle panel) clearly points out that at in-
termediate redshift the best model is not the cosmological
constant (dotted line), which served as prior. The inversion
recovers the shape of the true dark energy model w(z). The
dot–dashed line starting at w(0)= –1.5 is the fiducial dark
energy model with w(z) = −1.5 + 1.0z/(1 + z). The same
result is found with a wider prior. The fiducial model at z=
0 is below (dmL − dΛL)/d

Λ
L = 1 % and away of the prior at z=0,

but this does not preclude to obtain the slope of the function.

FIG. 5: Reconstruction of w(z) (as Figure 4), but now the
fiducial model (dot–dashed line) is w(z) = −1.2+0.8z/(1+z)
and is closer in luminosity distance to the prior (dotted line),
taken to be the cosmological constant. In the upper panel it is
shown the deviation in luminosity distance between models,
i.e. (dmL − dΛL)/d

Λ
L. The true model is recovered at redshifts

where the deviation is more than 1% (a relative difference of
1% in distance luminosity corresponds to a magnitude dif-
ference between models of ∼ 0.02 mag, which at high z is
the limiting factor to differentiate between models). This in-
version finds the best solution for models which depart at
intermediate z from the cosmological model at more than 1%
in dL. This result is independent of the width of the prior.
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FIG. 6: Low resolution reconstruction (5 points calculated
as in Figure 1) of w(z) with the SNAP data set simulated
and the fiducial model with w(z) = −1.5 + 1.0z/(1 + z). It
is shown how this model would be differentiated from the
cosmological constant at more than 2σ at intermediate z, in
agreement with what is discussed in Figure 4. These results
are obtained using much wider Gaussian a priori covariances
than in the high resolution case (σw = 2.0).

where Nbin is the number of supernovae in each bin. To
this distribution we also add 300 nearby SNe, as those
expected from the Nearby Supernova Factory [33]. A
total amount of 2300 SNeIa are used. As discussed in [36],
with a large data set, the irreducible systematic error is
putting the limit to our possibilities of recovering the
dark energy equation of state.

At the moment, the low numbers of SNe Ia found at z>
1, impact in the reconstruction of the equation of state.
Although SNe Ia are the best known calibrated candles at
high redshift, we can explore other luminous sources that
could be reliable distance indicators to study dark energy.
Among these, the Fanaroff–Riley type IIb radio galaxies
(FR IIb) are a group of galaxies quite homogeneous along
redshift [37]. Their angular size measured from the outer
edges of their lobes can be used to determine angular
distances up to high z. Their possible evolution along
z and selection effects have been studied [37]. We use
the 20 dimensionless coordinate distances to the FR IIb
radio galaxies available [9]. This sample extends to z
= 1.8, thus complements the gold set of SNe Ia [28] at
high redshift.

We also consider a third type of sources, compact ra-
dio sources (CRS). Extended objects of this kind have
not yet been fully tested for evolutionary effects. How-
ever, a sample of 330 sources is available and they provide
distances to high z [38]. Here we use the subset with spec-

tral index −0.38 ≤ α ≤ 0.18 and total radio luminosity
Lh2 ≥ 1026 W/Hz to minimize the possible dependences
in angular size-spectral index and linear size-luminosity
[38]. As done in this last reference and some other sub-
sequent analysis [39, 40], the 145 data have been binned
in 12 intervals with 12 or 13 sources each, from z = 0.52
to z = 3.6. In order to fit exclusively the parameters
appearing in the equation of state a value of the charac-
teristic length must be adopted. We use that obtained in
the best fit of [39] and [40], l = 22.64h−1pc.
Other kinds of objects such as core–collapse SNe [41]

or gamma ray bursts [42] have been proposed as cosmic
distance indicators observable up to very high z. Large
samples of those distance indicators with well studied
errors are lacking, and for those reasons they have not
been explored in this study of dark energy.

IV. DETERMINATION OF w(z)

We determine w(z) using the inverse approach de-
scribed above. Explicitly, one obtains the value of ΩM

and w at a given redshift with the equations of section II
(Eqs. 27, 28, 32 and 33).
The a priori model is arbitrary, but determines where

the solution is searched. In the situation where the data
are scarce with very wide priors in the function w(z),
the solution can iterate between saddle points and local
minima as few data do provide a landscape with no strong
minima. Fortunately, in our case, the sample available
for w(z) is large enough to allow to find the solution
with good reliability. The solution using the 156 gold
set [28] is shown in Figure 1. We tried different priors
and looked at the regions where w(z) could be found.
We found a solution in the area of negative w(z) and
no solution outside an area of σw = 1 around w(0)= –1.
Being a Gaussian prior with σw = 1, if there would have
been a solution peaking strongly towards positive w(z) at
intermediate z, it would have been found, as shown in our
exploration. We are very unrestrictive in how fast w(z)
can go with z as we keep a correlation length allowing for
fast changes of slope.
Other priors were tried to check for the stability of the

solution found. Our results are stable against the width
of prior. The solution with σw = 0.5 is found in Figure 2.
The black solid line indicates the evolution of the equa-
tion of state, whereas the shadowed region represents the
1σ interval. The low resolution results show the same
trend. Choosing a more peaked prior model (stronger
prior), allows to explore solutions in a narrower range
and recover them with more resolution. The solutions
found are similar independently of the choice of covari-
ance function. Various functional forms for the covari-
ance have been tried giving the same results (covariance
as in Eq. 13 or Gaussian give similar results). The num-
ber of iterations needed to converge, i.e, |wk−wk−1| < ǫ,
with ǫ of a few percent, is typically less than 10.
The results of Figure 1 and Figure 2 are compatible



9

with a cosmological constant already at about 1σ level.
The ascent of w(z) towards 0 at intermediate redshift
appears with SNe Ia and radiogalaxies, though not at a
high significance level. The two peaks in Figure 2 are only
seen in high resolution and are not significant as shown
by σ̃w(z). The resolving kernels (low panel of the Figure
2) indicate that the function is generally not well resolved
at individual redshifts, well beyond the redshift range z
∼ 0.5. At high redshift, z = 1.2 for example, we observe a
very wide and extremely flat K(z, 1.2), meaning that this
redshift is not resolved at all by the data. The reliability
of the inversion peaks in the range of z ∼ 0.2–0.5 where
the information is maximum.
Using the combination of SNe Ia and FR IIb radio-

galaxies implies to add 20 additional objects, but almost
all of them are located at high redshift. This translates
into a slightly better resolving kernels up to z ∼ 0.6 as it
can be seen in Figure 3. The equation of state still shows
the peak approaching to zero at intermediate redshifts.
However, from the data gathered up to now there is no
information to infer that the positive trend from w0 < –1
to an increase up to 0 at z ∼ 0.2–0.5 tentatively seen con-
tinues beyond z > 0.6. In our approach, at high redshift,
where there are no data, the method recovers the prior.
With this larger set of data, the cosmological constant is
at all z within the 2σ contour. We find similar results as
in [9, 13].
In our iterative procedure, χ2 is estimated at each it-

eration as [29]:

χ2
[k] = (y − yth(M[k]))

∗ C−1
y (y − yth(M[k])) (45)

A simple description of the goodness of the fit is given
by χ2

ν = χ2/Ndata, being close to 1 in a good fit. We have
at convergence for the SNeIa sample (Figures 1 and 2)
χ2
2=123, and χ2

ν = 0.72, while for the combined sample
of of SNeIa and radiogalaxies χ2=214 and χ2

ν = 1.21.
The power of the method and the facility to find the

best estimate for w(z) largely improves for samples such
as those to be gathered by SNAP, where the prior can be
set to be widely uninformative. We tested the method’s
capability to recover the equation of state using the syn-
thetic data of SNAP simulated samples. The method can
reconstruct solutions which are degenerate with the cos-
mological constant at some z, having a relative difference
in luminosity distance ∆dL(z) lower than 1%, but differ-
ing from it at other z. In Figure 4, we have plotted (short
dashed line) the equation of state of the fiducial dark en-
ergy model w(z) = −1.5 + 1.0z/(1+ z). The reconstruc-
tion has been overplotted together with 1σ uncertainties,
and it can be seen that we obtain an improvement of the
prior at intermediate redshift. The reconstruction dif-
fers from the cosmological constant at more than 2σ (see
also Fig 6 for an additional discussion). The resolving
kernels also show that the intermediate z is the best re-
solved redshift range. As it happens in all data sets, the
redshift z = 0 is worse determined than higher z. Mul-
tiple peaks appear in the resolving kernel and the kernel

is wide at some z, which results in a degree of degener-
acy of the function at those redshifts. This is a result to
be expected as the dependence between the equation of
state and the luminosity distance (w(z) is hidden within
a double integral in redshift, and thus, its variation with
redshift is smoothed) eludes the uniqueness of the result.
In Figure 5, our synthetic sample corresponds to an

equation of state w(z) = −1.2+ 0.8z/(z+1). The corre-
sponding difference in the luminosity distance between
both models is less than a 2%, and despite this, the
method is able to recover the real model at interme-
diate redshift, where the degree of information in w(z)
is higher but also where this luminosity distance differ-
ence is larger than 1%. At high redshift, where there
are fewer data and very small deviations in the lumi-
nosity distance, the prior is not improved. There, the
SNAP sample meets its systematic error of 0.02 mags,
and the limit of discernibility of the models is shown in
the impossibility to find variations in w(z) implying less
than 1% in ∆dL. However, we can discriminate models
against the cosmological constant which are 1% above de
discernibilty at some z, while they might fall below it at
other z. This result is found at all resolutions. Figure 6
is exactly the same case as Figure 4, but with the wider
prior (σw = 2.0).

V. INFORMATION ON w0 AND wa

The results for ΩM , w0 and wa for different a priori
models and for the SNe samples can be compared with
what is obtained in the non–parametric reconstruction of
w(z). A summary for the results using SNeIa samples is
given in Table I. The three discrete unknown parameters
are ΩM , w0 and wa. We apply uninformative priors, i.e.
large covariances.
The first sample, quoted as P99, corresponds to the

data used in the main fit of [1]. The second one, K03 rep-
resents the low-extinction primary subset of [27], whereas
R04 is the gold set of [28]. SNAPcc is the SNAP sim-
ulation for the CC model and SNAPsu corresponds to
the SUGRA model with w0 = −0.8, wa = +0.6. We use
Eqs. 27, 38 and 39 and make all the numerical calcula-
tions as in the previous section.
The mean index obtained in the determination of w0

and wa gives us an indication of the information con-
tained in each sample of data, and how much improve-
ment is obtained when adding more SNe Ia or other
distance indicators covering wider z ranges. It shows
whether the result is reliable (I ∼ 1), and whether is
highly dependent on the a priori model (I << 1).
Several situations are examined to size the effects of

our prior knowledge in the determination of wa. If we
would know independently w0, the derivative wa, would
be determined with high reliability. It is possible that
this could be done with some other method providing a
prior on w0. In the case of a complete ignorance of w0, a
good degree of knowledge of ΩM also helps to determine
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TABLE I: Priors and results for ΩM , w0 and wa. Values in
parentheses reflect the error of the parameter in the last digit.
To see the reliability of the result the mean index, I , is shown.
Imposing a prior –1(0) for w0 means that we force the result
to be cosmological constant now. Alternatively, a prior of
wa with value 0(0) forces no evolution. Certainly, the most
interesting case is when priors are wide: ΩM = 0.30(4), w0 =
–1(10) and wa = 0(10) and there are no restrictions (results
outlined in boldface).

ΩM IΩM
w0 Iw0

wa Iwa

Prior 0 .30 (0 ) - −1 (10 ) - 0 (0 ) -

P99 0.30(0) - −1.0(2) 0.999 0(0) -
K03 0.30(0) - −1.1(1) 0.999 0(0) -
R04 0.30(0) - −1.0(1) 0.999 0(0) -

SNAPcc 0.30(0) - −1.00(4) 0.999 0(0) -
SNAPsu 0.30(0) - −0.69(3) 0.999 0(0) -

Prior 0 .30 (4 ) - −1 (10 ) - 0 (0 ) -

P99 0.30(3) 0.245 −1.0(2) 0.999 0(0) -
K03 0.31(3) 0.316 −1.1(2) 0.999 0(0) -
R04 0.29(3) 0.540 −1.0(2) 0.999 0(0) -

SNAPcc 0.30(3) 0.344 −1.0(1) 0.999 0(0) -
SNAPsu 0.28(3) 0.432 −0.7(1) 0.999 0(0) -

Prior 0 .30 (4 ) - −1 (10 ) - 0 (10 ) -

P99 0.30(4) 0.193 -1.5(7) 0.995 +4(5) 0.739
K03 0.31(3) 0.254 -1.1(7) 0.995 +0(5) 0.774
R04 0.31(3) 0.495 -1.3(4) 0.998 +2(2) 0.951

SNAPcc 0.30(3) 0.334 -1.0(3) 0.999 +0(1) 0.987
SNAPsu 0.30(3) 0.314 -0.8(2) 0.999 +0.6(9) 0.991

Prior 0 .30 (4 ) - −1 (0 ) - 0 (10 ) -

P99 0.29(3) 0.383 −1(0) - +0(2) 0.975
K03 0.30(3) 0.460 −1(0) - −1(2) 0.974
R04 0.27(2) 0.669 −1(0) - +0.6(8) 0.994

SNAPcc 0.30(2) 0.645 −1(0) - +0.0(7) 0.999
SNAPsu 0.35(2) 0.721 −1(0) - +1.2(5) 0.997

wa. The error decreases by a factor 2 when we go from
σΩM

= 0.04 to σΩM
= 0.

The mean index obtained for w0 and wa is relatively
high and increasing with the large SNAP sample. The
low mean index found for ΩM just indicates that we had
from the beginning a good knowledge on the parame-
ter and the data can not improve a lot its uncertainty
although the fit is good.
The linear expansion in w(z) = w0 + w′z is used in

Riess et al. (2004) [28]. In our inversion, we found that
a linear expansion in w(z) = w0 + w′z produces low re-
liability indexes as it incorporates very poorly the high
redshift information. High reliability indexes are found
in the expansion in terms of w0 and wa. With the inverse
method, we find: w0 = −1.3±0.4 and wa = 2±2. When
using FRIIb and SNe Ia, we have a similar result with
half the error wa = 2 ± 1, in consistency with what is
found in the non–parametric analysis.

TABLE II: The same as Table I but now priors and results are
for models of evolving CC with parameters ΩM (= 1−ΩΛ) and
(1/ρ0c)dΛ/dz|0.

ΩM IΩM

1
ρc

dΛ
dz

∣

∣

0
IdΛ

Prior 0 .30 (4 ) - 0 (10 ) -

P99 0.30(3) 0.262 0.0(4) 0.998
K03 0.31(3) 0.352 -0.2(3) 0.998
R04 0.29(3) 0.555 0.0(3) 0.999

SNAPcc 0.30(3) 0.389 -0.0(2) 0.999
SNAPsu 0.29(3) 0.371 +0.7(3) 0.999

Prior 0 .30 (10 .0 ) - 0 (10 ) -

P99 0.28(7) 0.999 +0.1(7) 0.995
K03 0.32(5) 0.999 −0.4(5) 0.997
R04 0.29(4) 0.999 +0.1(4) 0.998

SNAPcc 0.30(5) 0.999 −0.0(4) 0.998
SNAPsu 0.28(5) 0.999 +0.8(4) 0.998

Some models of dark energy are not well parameter-
ized using an equation of state with w0 and wa. Here
we investigate how this inverse approach works for the
varying cosmological constant models. The background
of those models is that quantum effects near the Planck
scale would cause the evolution of the CC (see [43, 44]).
The best way to parameterize the dark energy density
along z representing all this branch of models is through:

ΩX(z) = Ω0
Λ +

1

ρ0c

dΛ

dz

∣

∣

∣

∣

0

z (46)

Thus, we have implemented the inverse approach for
this branch of models and find the results for the two
discrete parameters that are to first order describing this
dark energy candidate. Those are ΩM (= 1 − ΩΛ) and
(1/ρ0c)dΛ/dz|0. Results are shown in Table II. Although
present-day data are consistent with a non-variation of
the CC, a small running is allowed. These results can be
compared with those from [44], where similar conclusions
were reached through a χ2-test analysis.
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The simulation using a SUGRA fiducial model with
w0 = −0.8 and wa = +0.6 as observed by SNAP, shows
that the data set is degenerate with a Λ–varying model
with (1/ρ0c)dΛ/dz|0 = +0.7. A Λ–varying model such as
those proposed [43] results in observables that, if inter-
preted through w0 and wa, might suggest a model with
quite different physics.
Overall, degeneracies found in the solution of w(z) and

the existence of models apparently indicating an evolving
w(z) but reflecting other physics, will make necessary
to analyse the set of possible theories compatible with
SNAP observations.

TABLE III: Priors, results and mean index for ΩM , w0 and wa

but for different kinds of sources: SNeIa gold set (SN), FR
IIb radio galaxies (RG), compact radio sources (CRS) and
combinations among them.

ΩM IΩM
w0 Iw0

wa Iwa

Prior 0 .30 (4 ) - −1 (10 ) - 0 (10 ) -

SN 0.31(3) 0.495 -1.3(4) 0.998 +2(2) 0.951
RG 0.30(4) 0.193 0(1) 0.988 -6(7) 0.492
CRS 0.30(4) 0.015 0(1) 0.984 -3(7) 0.518

SN+RG 0.28(2) 0.640 -1.3(3) 0.999 +2(1) 0.979
SN+CRS 0.28(2) 0.642 -1.4(3) 0.999 +2(1) 0.982

all 0.27(2) 0.647 -1.3(3) 0.999 +2(1) 0.984

Combining SNe Ia with the other sources introduced in
section III will increase considerably the number of data
at very high redshift.
As can be seen in Table III, using the three kinds of

cosmic distance indicators reduces the uncertainty in the
first derivative of the equation of state wa by 50% in re-
spect to the use of SNeIa. Although data from CRS ex-
tend to z = 3.6, we obtain similar results by only adding
20 FRIIb radiogalaxies which reach up to z = 1.8.
As a difference with the gold set of [28] (results in

Table I) we observe a positive evolution of the equation
of state (wa > 0) at almost 2σ level when more than
a set of data is considered. This might bring again the
need to look for constraints in w(z) at very high z, and to
examine closely the systematic effects of cosmic distance
indicators. Different samples of distance indicators might
favor slightly different results. As seen in Fig. 2 and
Fig. 3, evolution is only tentatively suggested at z ∼ 0.3–
0.5. Moreover, trends of evolution at high z can not be
determined with the available samples. Those redshifts
are very poorly determined.

VI. SUMMARY AND DISCUSSION

We introduce here an Inverse Problem approach to
determine w(z) as a continuos function in a model–

independent and non–parametric way. The method re-
trieves w(z) without imposing any constraints in the form
of the function. The method uses Bayesian information
such as the area where this solution is to be found, which
can be quite unrestrictive, as shown with simulations us-
ing synthetic SNe Ia samples of the size and systematic
errors of SNAP. In a situation with low amount of data,
the algorithm can become unstable if the solution is to
be found through a very large area. Constraining then
the a priori information, helps to stabilize the solution,
but a careful exploration for the presence of other solu-
tions changing the prior should be done. In fact, lower-
ing the covariance of the prior in w(z) in our method is
equivalent to dropping “small eigenvalues” in a principal
component analysis. Both methods have in common the
possibility to obtain the shape of the function w(z) and
are expected to provide good reconstructions with large
samples. The approach explored here enables to see the
filter that we are placing between the true model and the
estimated one, when asking questions about w(z) given
a certain sample.

The exploration of w(z) applying this method to the
present sample helps to answer the question on whether
there is evidence in the evolution of w(z) along z. We
find that the highest degree of information on w(z) from
present samples is at z ∼ 0.2–0.5. The current SNe Ia
data indicate a tendency towards w = 0 at those inter-
mediate redshifts. However, though this feature is con-
sistently found in the analysis when adding other cos-
mic distance indicators, the cosmological constant is still
within the 2σ level contours of the solution of w(z).
Moreover, it is found that there is no information on
w(z) at z > 0.6 to imply any possible evolution of w(z)
at high z. Adding the data set of FR IIb radiogalaxies
to SNe Ia enhances the significance level of the peak to-
wards w(z) = 0 in the continuos reconstruction as well as
in a discrete one which shows the present value of w(z)
(w0) and its first derivative (wa).

Retrieving w(z) will improve when using a large sam-
ple of SNeIa data contributed by SNAP and other cos-
mological probes at z > 1. This approach helps to ex-
plore the possibility of recovering a wide variety of dark
energy models, and differentiate them from the cosmo-
logical constant.
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