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A prelude to Neutron Stars: The phase diagram of the strong interactions at finite

density
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We consider strong interactions at finite density in mean field theory, through an effective la-
grangian that can describe both nuclear matter and quark matter. This lagrangian has three cou-
plings that are all fixed by experiment and no other parameters. With increasing baryon density
we then find the following hierarchy. At nuclear density and above we have nuclear matter with
chiral spontaneous symmetry breaking (SSB), followed by the pion condensed quark matter, again
with chiral SSB, albeit with a different realization and finally a transition to the diquark CFL state
which also has chiral SSB (and colour SSB), with yet another realization. To one’s surprise at zero
temperature (in mean field theory), at any finite density chiral symmetry is never restored!

We find another remarkable feature and this is that the tree level mass of the sigma particle,
that is set by experiment to about 800 MeV, has a crucial and unexpected influence on the physics.
Strange quark matter and strange stars are ruled out for a sigma mass above 700 MeV and neutron
stars with magnetic pion condensed cores, that could provide magnetic fields of neutron stars, exist
only for a small interval, between 750–850 MeV, for the sigma mass.

I. INTRODUCTION

Neutron stars have been a subject of abiding inter-
est for several decades, almost since Landau suggested
their existence, shortly after the discovery of the neu-
tron. There are a variety of astrophysical phenomena
that arise from the physics of neutron stars. The su-
pernova explosion through which the star is born, is a
spectacular luminous event. Many neutron stars work
as pulsars, which generate beamed radiation in their in-
tense magnetic fields. Neutron stars in binary systems
may accrete matter from their companions, giving rise
to some of the brightest X-ray sources in the sky. Some
neutron stars with super-strong magnetic fields produce
occassional strong bursts of gamma rays (Soft Gamma
Repeaters). Most of these phenomena require us to un-
derstand the physics of matter at very high density, which
govern the mass and the size of neutron stars. In other
words, one needs to have a clear understanding of the
equation of state of the ground state of superdense mat-
ter. Although much effort has gone into this enterprise
over the last four decades it still remains poorly under-
stood. Why?
Central densities of neutron stars are high, ∼5 to 10

times nuclear density ρnuc = 0.17 fm−3. For a single
species, neutrons, this naively translates into a fermi gas
with typical fermi momentum, kNf ∼ 700 MeV. On the
other hand nucleons have structure and a typical size of
the order of a fermi (200 MeV)−1. It is clear that at such
high densities nucleons (neutrons) cannot be treated as
elementary. They are composite and resolved. They are
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colour singlet bound states of three valence quarks. At
such high densities, therefore, treating nucleons as point
particles interacting via two body (or more) forces will be
inadequate. Yet most available equations of state adopt
this approach and therefore fail to capture the correct
physics.
On the other hand, if we use quarks as the elementary

degrees of freedom, we are presently bound by the fact
that only perturbative calculations can be done for QCD.
This implies that calculations can be done in QCD only
at very high density when the theory is approximately in
an Asymptotically Free (AF) phase. However, at inter-
mediate and low density (close to nuclear density), where
a nucleonic description is valid, we cannot use perturba-
tive QCD as the coupling becomes strong and the physics
non perturbative. This is the dilemma.
There are attempts to model the physics by a

two phase structure – a quark matter core with a
hadronic/nucleonic exterior shell and crust. Since there
is no simple way to link the two phases without using
separate parameters for both, this description is some-
what arbitrary. Further, the nature of the quark matter
state is not clear – for example, is it in a spontaneous
chiral symmetry broken state.
Can we find a theory that can describe both these do-

mains? We present, here, an Effective Chiral Intermedi-
ate Lagrangian, L, that has quarks, gluons and a chiral
multiplet of [~π, σ] that flavor-couples only to the quarks
[1, 2, 3, 4, 5, 6].
This yields the nucleon as quark soliton – a bound state

of quarks in a solitonic background of scalar/pseudoscalar
field expectation values (EV-s) that follow from the spon-
taneous breaking of chiral symmetry [1, 2]. In this way
we can generate nucleon matter from these nucleons at
low density with a transition to quark matter at high
density but with the same effective Lagrangian covering
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both domains. Such a unified description has not been
given before and depends just on the coupling constants
of the theory and not on any parameters.
To begin with let us consider the two main features of

the strong interactions at low energy. These are i) that
quarks are confined as hadrons and ii) chiral symmetry
is spontaneously broken (SSB) with the pion as an ap-
proximate Goldstone boson. There is no specific reason
that these two phenomena should occur at an identical
temperature scale, though QCD lattice simulations show
that for SU2(L)×SU2(R) they are close. The problem in
giving an unequivocal answer to this question is that we
are yet to find a solution to the non-perturbative aspects
of QCD.
Let us consider QCD with a two flavour SU2(L) ×

SU2(R) chiral symmetry. First let us address the ques-
tion of what occurs at a lower energy scale, confinement
or chiral symmetry breaking. The problem is that though
there is a bonafide order parameter for chiral symmetry
breaking – the mass of the constituent quark, the Wilson
loop is no longer an order parameter for confinement, in
the presence of dynamical quarks. However, by looking
at the energy density or specific heat we can get a fair
idea of the change in the number of operational degrees
of freedom or particle modes. Such lattice calculations
indicate that the change from the large number of degrees
of freedom in the quark matter phase to few degrees of

freedom in the hadronic one takes place in one broad step
in temperature, indicating that the two transitions may
be close for SU2(L)× SU2(R) .
Also, if the chiral symmetry restoration (en-

ergy/temperature) scale was lower than the confinement
scale we would expect hadrons to show parity doubling
below the confinement scale but above the chiral SSB
scale. This is not seen in finite temperature lattice sim-
ulations.
Actually, QCD can have multiple scales [5]. Apart

from a confinement scale and a chiral symmetry restora-
tion scale we also have a compositeness scale for the pion.
The above considerations suggest these scales are respec-
tively in ascending order in energy (temperature).
Let us consider the interacting fermi liquid of nucle-

ons – nuclear matter. As the baryon density is raised
beyond overlap, we expect a transition to quark matter.
An interesting question arises: Is the quark matter in a
chiral SSB state with constituent quarks or is it, as is
usually assumed, in a chirally restored state with current
quarks? As we will see the Lagrangian L, given below,
answers this question [6, 7].
On the other hand there is some evidence for this in-

termediate Chiral Lagrangian that has simultaneously no
confinement but chiral SSB. Such an effective Lagrangian
has quarks, gluons and a chiral multiplet of [~π, σ] that
flavor couples only to the quarks.

L = −1

4
Ga

µνG
a
µν −

∑

ψ (D/+ gy(σ + iγ5~τ .~π))ψ − 1

2
(∂µσ)

2 − 1

2
(∂µ~π)

2 − 1

2
µ2(σ2 + ~π2)− λ2

4
(σ2 + ~π2)2 + const (1)

The masses of the scalar (psuedoscalar) and fermions fol-
low from the minimization of the potentials above. This
minimization yields

µ2 = −λ2 < σ >2 (2)

It follows that

m2
σ = 2λ2 < σ >2 (3)

Experimentally, < σ >= fπ, the pion decay constant.
This theory is an extension of QCD by additionally
coupling the quarks to a chiral multiplet, (~π and σ)
[1, 2, 3, 4].
This Lagrangian has produced some interesting physics

at the mean field level [4, 8]
(i) It provides a quark soliton model for the nucleon

in which the nucleon is realized as a soliton with quarks
being bound in a skyrmion configuration for the chiral
field expectation values (EV) [1, 4, 8].
(ii) Such a model gives a natural explanation for the

‘Proton spin puzzle’. This is because the quarks in the
background fields are in a spin-isospin singlet state in
which the quark spin operator averages to zero. On the

collective quantization of this soliton to give states of
good spin and isospin the quark spin operator acquires a
small non zero contribution [9].
(iii) Such a Lagrangian also seems to naturally produce

the Gottfried sum rule [10].
(iv) Such a nucleon can also yield from first principles

(but with some drastic QCD evolution), structure func-
tions for the nucleon which is close to the experimental
ones [11].
(v) In a finite temperature field theory such an effec-

tive Lagrangian also yields screening masses that match
with those of a finite temperature QCD simulation with
dynamical quarks [12]. This work also does not show any
parity doubling for the hadronic states.
(vi) This Lagrangian also gives a consistent equation

of state for strongly interacting matter at all density [4,
7, 13].
This L has a single dimensional parameter, fπ, that

is the pion decay constant, and three couplings, g3, the
QCD coupling, gy, the Yukawa coupling between quarks
and mesons, that will be determined from the nucleon
mass and the meson-meson coupling, λ, which, for this
model, can be determined from meson meson scattering
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[14]. No further phenomenological input will be used. As
it stands, there is no confinement in this model, but may
be dynamically generated as in QCD.
Since this is posited as an effective Lagrangian, we

should have an appoximate idea of its range of valid-
ity. We find, somewhat in analogy with the top quark
(large Yukawa coupling) composite higgs picture, that
we can get a compositeness scale for the scalars in this
model by using Renormalisation Group (RNG) evolution.
We find that the wavefunction renormalisation for the
scalars is inversely proportional to the running Yukawa
coupling and thus naively vanishes when the Yukawa cou-
pling blows up. For our theory such a ballpark scale falls
between 700–800 MeV [15].
An independent and quite general approach in setting

a limit to the range of validity of non asmptotically free
(e.g. Yukawa) theories is the vacuum instability to small
length scale fluctuations (or large momenta in quantum
loop corrections) that plagues these theories, discovered
and analytically proved by one of us [16]. The scale at
which this occurs is of the same order as above. This is
not very surprising since it is connected to non-AF char-
acter of the Yukawa coupling [16, 17]. This underscores
the impossibility of doing loop calculations, unless we in-
troduce a cut off, even though our L is renormalizable!
Given these facts we shall use this theory at the Mean

Field level to look at different phases of this field theory.
To do this we must first establish the ground state of
the Baryon Number B=1 sector of this theory, i.e. the
nucleon.
The plan of the paper is as follows, In Sec. 2 we review

the description of the nucleon in this model, which fixes
gy. This is followed in Sec. 3 by a pedagogical description

of how we may look upon nuclear matter at density above
nucleon overlap. We then look at some phases of 2 flavour
quark matter in Sec. 4 and point out that the phase with
lowest ground state energy is the pion condensed phase
with chiral SSB. In Sec. 5 these results are generalized
to 3 flavours. In Sec. 6 we review and compare the pion
condensed phase with the diquark condensed colour su-
percondcting phase. We end this section with a review
of the phase diagram of QCD at all density. In Sec. 7
we remark on the phases to be used in constructing neu-
tron stars in a following paper and discuss the validity of
Mean Field Theory (MFT).

II. THE NUCLEON IN THE CHIRAL LINEAR
SIGMA MODEL WITH QUARKS

The basic fields are the three component (isospin) pion
fields, ~π(r), the scalar field, σ(r), which together form a
real 4 component chiral multiplet that transforms as a
representation of O(4), the rotation group in four dimen-
sions. The fermionic fields are the quarks which trans-
form as a fundamental representation SUL(L)×SUR(R)
which is isomorphic to O(4). In this we ignore the gluon
fields which are vector and therefore not expected to
carry expectation values in MFT. However, corrections
due to one-gluon exchange interactions between quarks
can be included, but we shall not do so below, as their
effect is small. We also neglect the pion mass corrections.
The Hamiltonian [1] which is invariant under the above
group transformations then reads

H =

∫

d3x

[

1

2
(∂i~π)

2 +
1

2
(∂iσ)

2 + V (σ, ~π) +
∑

ψ† (−i∂iαi + βgy(σ + iγ5~τ.~π))ψ

]

+O(mπ) (4)

The term V (σ, ~π) = λ2

4 (σ2 + ~π2 − f2
π)

2 is the potential
functional. For the vacuum sector (no fermions) this is
the quantity to be minimized. The minimum of V (σ, ~π)
occurs at σ2+~π2 = f2

π . This is the equation of a 3 sphere
and thus allows for a continuous degeneracy. However,
normally the choice, < σ >= fπ, < ~π >= 0 is made,
which is consistent with the pseudoscalar, < ~π >, having
a zero Vacuum Expectation Value (VEV) to avoid spon-
taneously violating parity in hadronic scattering. Also,
with this choice the goldstone pseudoscalar excitations
about the ground state are the right ones – the psue-
doscalar pions. Once this choice for the vacuum state
is made, it is clear that the vacuum state spontaneously
violates the chiral symmetry, it changes under a O(4)
rotation, even though H does not.

We now move to the description of the ground state
for the the baryon number B = 1 sector.
1) The usual pattern of symmetry breaking is the space

uniform VEV corresponding to the choice above.

< σ >= fπ, < ~π >= 0 (5)

This choice gives a spontaneous or Yukawa mass to the
quark, mq = g < σ >.
The lowest energy for B = 1 sector, which corresponds

to the quantum numbers of the nucleon, is M = 3mq =
3gfπ – simply the mass of three quarks.
2) Let us now consider the case when a fermion bound

state can arise from a time independent expectation value
(EV) that is locally space dependent. Clearly, to have fi-
nite energy for this state requires that asymptotically (far
away from the localized fermion source), the EV revert
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back to the VEV above. We now move on to the so called
skyrme hedgehog configuration,

< σ >= fπ cos θ(r), < ~π >= r̂fπ sin θ(r) (6)

where θ(r → ∞) = 0, from the finite energy condition
and θ(r → 0) = −π, for the pion field to be well defined
at the origin.
It may be pointed out that we have chosen σ2 + ~π2 =

f2
π . More generally, we need not fix this magnitude and
vary σ and ~π independently. Given such a configuration,
we solve the Dirac eigenvalue equation for the quark in
the background field, θ(r). Due to the linking of space

with internal isospace, neither the angular momentum, ~J ,

nor the isospin, ~I, commute with the Dirac Hamiltonian

but only the sum ~K = ~J+ ~I does. K can then be used to
label the eigenstates. The lowest, K = 0, valence state
is a spin isopin singlet of the form

ψK=0 = ψ0(r)|K = 0〉 (7)

where,

|K = 0〉 = 1√
2
(|+1/2〉|↑〉 − |−1/2〉| ↓〉) (8)

the arrows designate spin and the halves the isospin. The
eigenvalue equation is

(−i∂iαi + βgy(σ + iγ5~τ .~π))ψK=0 = ǫ0ψK=0 (9)

The |K = 0〉 state is a bound state, where R has the
interpretation of the width of the potential. For a partic-
ular profile, θ(r) = −π(1−r/R), for r < R, and θ(r) = 0,
for r > R, the eigenvalue dependence on R is sketched in
[1](a),[4].
The nucleon may then be obtained as a bound state of

three coloured quarks. Notice that the only degeneracy
of the K = 0 state is in colour, since this state is a
spin isospin singlet and in making the nucleon we have
exhausted this degeneracy, yielding a colour singlet. The
energy of the nucleon state is given by

EB=1[θ(r)] = 3ǫ0[θ(r)] +

∫

d3x
1

2
[(∂i~π)

2 + (∂iσ)
2] (10)

in terms of a general profile, θ(r). This must be mini-
mized with respect to variations of θ(r) to get the ground
state energy, Emin. Finally, since we have eigenstates of
K, this quark soliton must be projected into good states
of spin and isospin. The mass, M , of this soliton with
quark bound states which has the quantum numbers of
the nucleon depends just on fπ, gy and λ. The depen-
dence on λ is marginal, so the only parameter that is free
is the Yukawa coupling, gy. We fix, M =Mnucleon.
Actually, for such a nucleon, which is a colour singlet

bound state of three valence quarks in a skyrme back-
ground, in a linear sigma model, a generally accepted
value for gy = 5.4 [1](b). This is when the π and σ fields
are varied independently, without making any ansatz,

and the quark soliton so obtained is projected to give
a nucleon with good spin and isospin.
Let us now compare this to the energy of 3 free quarks

in the uniform phase. We find that,

M/(3gyfπ) < 1

indicating that in our sigma model the nucleon is indeed
a soliton with quark bound states. This analysis makes
a further significant point. The threshold value of gy at
whichM/(3gyfπ) is first less than 1, is gy = 4. Therefore,
for values of gy greater than 4, the quark soliton is always
of lower energy than three free quarks and is thus bound.
Besides the mass of this nucleon falls with increasing gy,
as this controls the strength of the attractive potential in
which the quarks bind. The conclusion, therefore, is that
there is a maximum mass [18] for the fermion in such a
theory.
Here we remark that we now have a determination for

all parameters of our L: fπ, g3 and gy, leaving only one
parameter, λ to be set. As we shall show this can be de-
termined from low energy meson-meson scattering data.
Recently, Schechter et al [14] made a fit to scalar chan-

nel scattering data to see how it may be fitted with in-
creasing

√
s (centre of mass energy), using chiral per-

turbation theory and several resonances. They further
looked at this channel using just a linear sigma model.
Their results indicate that for

√
s < 800 MeV, a reason-

able fit to the data can be made using the linear sigma
model with a tree level sigma mass above but close to
800 MeV. This sets the value of λ.
This completes the determination of all the parameters

of our L, which is able to describe both nucleon and quark
phases of dense matter.

III. PHASES AT FINITE DENSITY

We now move to the main theme of this work, which
is to look at ground state of strongly interacting mat-
ter at finite density. In our model all the phases con-
sidered are characterised simply by different patterns of
spontaneous symmetry breaking. As we shall see i) the
nucleonic phase is characterised by the pattern of SSB
in skyrmions ii) the Lee-Wick phase has space uniform
SSB, with only the sigma field expectation value and iii)
the pion condensed phase is characterised by a stationary
wave, with a space dependent periodic variation in the
sigma and neutral pion field expectation values.

A. The nucleon or nuclear phase

In this phase, as the name suggests, the quarks are to
be found as bound states in nucleons.
We found that the single isolated solitonic nucleon has

lower energy than the three free valence quarks. Thus
at low density we have a fermi gas of interacting nucle-
ons. Long range potentials like pion exchange and tensor
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exchange can be found by the appropriate two nucleon
ansatz, in analogy to the two-skyrmion problem. These
match well with the usual nuclear physics two-nucleon
potentials [19]. It is then more reasonable to solve the
nucleon many body problem by mapping on to the nu-
clear many body calculation – since it is very difficult to
solve a many body quark soliton problem!
We know quite well the ground state of nuclear matter

till, say, roughly two times nuclear density. From there on
we can only model this phase at higher density, when the
solitons start to overlap and their motion is obstructed,
as a ‘crystal lattice’ of solitons [13]. We can then use
the Wigner-Seitz approximation to convert the problem
to a single cell problem. Scaling the size of the single cell
scales the baryon density, since we have one nucleon per
cell.
It is appropriate to note that with such simplifying ap-

proximations it is not fair to expect a realistic description
but a pedagogically useful one.

The Wigner Seitz approximation

The crystal ansatz implies a picture where the solitons sit
in a close packed hexagonal configuration. Each soliton
is in a skyrmion chiral symmetry broken configuration
for the [σ, ~π] fields that acts as a potential that supports
a single bound state with a colour degeneracy of 3. The
|K = 0〉 bound state is saturated for each soliton making
the soliton into a colour singlet baryon. It is clear that
when the solitons are close packed, the quark wavefunc-
tion will leak out so as to minimize the energy. From the
Kronig-Penny model it is expected that bound states will
form a band with the number of states in the band being
3N , where N is the number of baryons stacked together.
It is further known that the band will splay evenly about
the single bound state energy, with the bottom of the

band below and the top above the single soliton ( ~K = 0)
bound state energy. Due to the saturation of the bound
state, the band will be completely occupied and a good
approximation to the median energy of the band is the
bound state energy of the single soliton above of radius
R. Thus the energy per baryon can be approximated in
the crystal configuration by the single soliton energy but
with the parameter R setting the volume occupied by a
single soliton. Clearly, the baryon density is set by R.

nb =
6

R3
(11)

At finite density the VEV becomes an EV and we can
allow for

< σ >2 + < π >2= F 2 (12)

where F is now a variational parameter to be set by min-
imizing the free energy. It is clear that this ansatz is
rather restrictive.
Note that at finite density there is just one constraint,

namely

i) < ~π > must vanish at the origin of the soliton for
the pion field to be well defined.

However, only for calculational simplicity we also main-
tain ii) and iii), below:

ii) F is space independent

iii) < σ >= −F at r = 0, or
< σ >= F at r = R, or
< ~π >= 0 at r = R

We choose a simple profile function, θ(r) = π(1 − r
R
),

where R is the half-length of the cell.
We may now calculate the Wigner-Seitz single soliton

energy by calculating the quark energy eigenvalue ǫ0, me-
son gradient energy (second term in eq. (13)) and sym-
metry (condensation) energy (third term in eq. (13)) in
this background:

Eb = 3ǫ0(θ(R))+2πF 2R

(

1 +
π2

3

)

+
1

3
πλ2(F 2−f2

π)
2R3

(13)
The additional complexity is that we must now minimize
Eb for the single soliton energy with respect to F for each
R or at each density.
Further relaxing of constraints or solving the full set

of Euler-Lagrange equations for each field is somewhat
laborious, so this is as far as we go. This is so because
this Wigner-Seitz approximation has other uncertainties.
We refer the reader to a more sophisticated treatment of
this problem [20].
This section, as stated earlier, is to be seen as peda-

gogical. It does not yield a realistic equation of state.
Clearly the energy eigenvalue goes up as R (width of

the potential) is decreased, till, at some lowest value of
R, a bound state solution cannot be supported and this
phase is lost.

Remarks

i) The Equation of State (EOS) with the above vari-
ational ansatz is obviously inadequate to produce
the single soliton/nucleon with arbitrary variations
of < σ > and < π >. The exact solution fits the
nucleon for a value of gy = 5.4. This will not be
the case here. We will need a larger coupling, gy,
to fit the nucleon in this approximation. Clearly,
the minimum of Eb vs R, at Rmin, is the energy of
a single isolated soliton.

ii) The nucleon may be obtained by projection of the

soliton into good spin isospin states, ~J = ~I = 1
2 .

The soliton is largely a wave packet, a linear su-

perposition of all ~J = ~I = (n + 1
2 ) states. The

maximum weight comes from the lowest, ~J = ~I
states. We make the approximation that it is an
equal linear superposition of the Nucleon (N) and
∆ states and set the soliton energy to be midway
between MN and M∆.

Eb,min =Msoliton =MN +
1

2
(M∆ −MN) (14)
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iii) Even with this approximation we find that to fit
Eb,min, so as to produce a nucleon with MN =
940 MeV requires gy ∼ 6.3.

iv) Furthermore, there is a zero point quantum me-
chanical energy of localization associated with the
localized nucleon states that make up the crystal
that may be estimated from the Uncertainty Prin-
ciple.

v) Another correction is that due to one gluon ex-
change interaction between the quarks.

We leave out the last two corrections and others as we
shall be using a more realistic EOS anyhow (see below).
Figure 1 shows the energy per baryon, Eb versus the

baryon density nb in this phase. In this, the minimization
of Eb with respect to the variational parameter F has
been carried out.
As we have pointed out, to construct the exact ground

state of the crystal is, to say the least, a formidable ex-
ercise. We have tried to employ an educated variational
ansatz in the hope that it provides a good approximation.
The EOS this yields has many correct qualitative features
but nevertheless is much stiffer than most known EOS –
it may not be unfair to say that it is almost arthiritic. In
this instance it may be more judicious to use a well worn
nuclear equation of state, like the APR98 EOS [21], for
the entire nuclear phase, provided the density at which
the transition to quark matter takes place is not much
above twice nuclear density. A comparison between our
stiff EOS and the APR98 is provided in Figure (1).
The net result is that the nucleon is a soliton, the nu-

cleons interact with each other to produce binding at
around nuclear density. We then expect to have a Fermi
liquid of interacting nucleons till the nucleons begin to
overlap. As the density increases the Eb increases due
to topological repulsion, we expect that the nucleons are
no longer free to move around and get localized into a
crystal (of nucleons) like configuration analysed above.
This solitonic phase then dissolves into quark matter.

IV. TWO FLAVOUR QUARK MATTER

We shall now consider in Mean Field Theory the phases
of two-flavour quark matter in the SU(2)L×SU(2)R chi-
ral model above.
We shall then extend the model to three flavours (u,

d, s).

A. The space uniform phase

We now turn to the phase in which the pattern of sym-
metry breaking is such that the expectation values of the
meson fields are uniform. At zero density they are just
the VEVs.

< σ > = fπ (15)

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

E
b 

( 
M

eV
 )

nb ( fm–3 )

Equation of State: Nuclear phase

Soliton Crystal

APR98

FIG. 1: Energy per baryon as a function of baryon density in
the Wigner-Seitz quark soliton crystal as a model of nuclear
state (solid line). The dashed line shows the corresponding
relation in the APR98 [21] equation of state for beta-stable
matter, obtained using A18+δv+UIX interaction model.

< ~π > = 0 (16)

For arbitrary density we allow the expectation value to
change in magnitude, as it becomes a variational param-
eter that is determined by energy minimization at each
density.

< σ > = F (17)

< ~π > = 0 (18)

Such a pattern of symmetry breaking simply provides a
constituent mass to the quark m = gy < σ >= gyF and
the quarks are in plane wave states as opposed to the
bound states in the nucleonic phase [13].
The mean field description of this phase is simple. The

energy density is

ǫρ =
∑

u,d

1

(2π)3
γ

∫

d3k
√

m2 + k2 +
λ2

4
(< σ2 > −f2

π)
2

(19)
where m = gy < σ >= gyF and the degeneracy γ = 6.
We shall use gy = 5.4 as determined from fixing the nu-
cleon mass in this model at 938 MeV [5, 6]. The integral
above runs up to the ‘u’ and ‘d’ fermi momenta.
For neutron matter (without β equilibrium) we have

the relations

kfu = (π2nu)
1

3 = (π2nb)
1

3 (20)

kfd = (2π2nb)
1

3 (21)

Eb =
ǫρ
nb

(22)

where nb is the baryon density.
At any density the ground state follows from minimis-

ing free energy, with respect to < σ >= F . As shown in
the figures of [4, 7, 13], this phase begins at nb = 0, with
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Eb = 3gfπ, which then falls till chiral restoration occurs
at some nX . After this, as the density is increased, Eb

continues to drop, goes to a minimum and then starts
rising corresponding to a massless quark fermi gas.
In the chirally restored phase the EOS is very simple

and parallels the MIT bag description of [22]:

nb > nX (23)

ǫρ =

(

3

4π2

)

π2nb

4

3α+
λ2

4
f4
π (24)

The last term above is just the bag energy density, and

α = (1 + 2
4

3 ) (25)

This phase has two features, a) chiral restoration at nX

followed, with increasing density, by b) an absolute min-
imum in Eb, at a nC > nX .
From the comparison of this phase with the nucleon

and nucleonic ‘phase’ arising from the same model (see
[4, 13]), it is clear that the nucleonic phase is always
of lower energy than the uniform phase above, upto a
density of roughly 3 times nuclear density, which is above
the chiral restoration density in the uniform phase.

B. The Pion Condensed phase

Here we shall consider another realization of the expec-
tation value of < σ > and < ~π > corresponding to pion
condensation. This phenomenon was first considered in
the context of nuclear matter.
Such a phenomenon also occurs with our quark based

chiral σ model and was first considered at the Mean Field
Level by Kutschera and Broniowski in an important pa-
per [7]. Working in the chiral limit they found the pion
condensed state has lower energy than the uniform, sym-
metry breaking state (phase 2) we have just considered,
at densities of interest. This is expected as the ansatz for
the PC phase is more general than for phase 2.
The expectation values now carry a particular space

dependence

< σ > = F cos (~q.~r) (26)

< π3 > = F sin (~q.~r) (27)

< π1 > = 0 (28)

< π2 > = 0 (29)

Note that when |~q| goes to zero, we recover the uniform
phase (2). The Dirac Equation in this background is
solved in [13] and reduces to

Hχ(k) = (~α.~k − 1

2
~q.~αγ5τ3 + βm)χ(k) = E(k)χ(k) (30)

where m = gyF . The interaction term has been recast in
terms of the relativistic spin operator, ~αγ5. It is evident
that if spin is parallel to ~q and τ3 = +1 (up quark) then
this term is negative and if τ3 = −1 (down quark) then it

is positive. For spin antiparallel to ~q the signs for τ3 = +1
and −1 are reversed.
The spectrum for the hamiltonian is the quasi particle

spectrum and can be found to be

E(−)(k) =

√

m2 + k2 +
1

4
q2 −

√

m2q2 + (~q.~k)2(31)

E(+)(k) =

√

m2 + k2 +
1

4
q2 +

√

m2q2 + (~q.~k)2(32)

The lower energy eigenvalue E(−) has spin along ~q for
τ3 = 1, or has spin opposite to ~q for τ3 = −1. The higher
energy eigenvalue E(+) has spin along ~q and τ3 = −1, or
has spin opposite to ~q and τ3 = +1.
In this background the fermi sea is spin polarized into

the states above. The quasi particles are, however, good
states of τ3.
First we fill up all the lower energy, E(−)(k), states

and then we have a gap and start filling up the E(+)(k)

states till we get to Ei
F , the fermi energy corresponding

to a given density for each flavour.

ni =
1

(2π)3
γ

(
∫

d3kΘ(Ei
F − E(−)(k))

+

∫

d3kΘ(Ei
F − E(+)(k))

)

(33)

nb = (nu + nd)/3 (34)

ǫi =
1

(2π)3
γ

(
∫

d3kE(−)(k)Θ(Ei
F − E(−)(k))

+

∫

d3kE(+)(k)Θ(Ei
F − E(+)(k))

)

(35)

ǫρ = ǫu + ǫd +
1

2
F 2q2 +

λ2

4
(F 2 − f2

π)
2 (36)

We can now write down the equation of state as in [7].
It is found that the PC state is lower in energy than the
uniform phase 2 for densities of interest. For the explicit
numbers and figures we refer the reader to [7].
We briefly remark on some features of this phase.

1. The reason that the PC phase has energy lower
than the uniform < σ > condensate is perhaps
best understood in the language of quarks and anti
quarks. To make a condenste a quark and anti-
quark must make a bound state and condense. For
a uniform < σ > condensate the q and q̄ must have
equal and opposite momentum. Therefore, as the
quark density goes up the system can only couple
a quark with k > kf and a q̄ with the opposite mo-
mentum. This costs much energy so the condensate
can only occur if kf is small, at low density. On the
other hand, the pion condensed state is not uni-
form. So at finite density, if we take a quark with

k = kf the q̄ can have momentum k = |~kf − ~q|,
which is a much smaller energy cost

2. Since the pion condensate is a chirally broken
phase, the chiral restoration shifts from very low
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density in the uniform phase to very high density,
∼ 10ρnuc. This is a signature of this phase.

3. Since this phase is lower in energy than the uniform
phase for all densities of interest we go directly from
the nucleonic phase to the PC phase completely by-
passing the uniform phase showing that all the ‘in-
teresting’ features and conjectures for the uniform
phase are never realized.

4. Another feature of this π0 condensate is that since
we have a spin isospin polarization we can get a
net magnetic moment in the ground state, as the

magnetic moments of the u and d quarks add.

V. THE THREE FLAVOUR STATE

The extension to three flavours or SU(3) chiral sym-
metry needs some clarification.
The generalized Dirac Equation for the SU(3) case is

considerably more complicated and involves a singlet ξ0
and an SU(3) octet ξa of scalar fields and a singlet φ0 and
an SU(3) octet φa of pseudoscalar fields, that interact
with the quarks as shown in [23].

Hψ(k) = (−i~α.~∂ − gyβ(
√

2/3(ξ0 + iφ0γ5) + λa(ξa + iφaγ5)))ψ = Eψ (37)

In the chiral limit, the spontaneous symmetry breaking
pattern is not unique. We choose the pattern in which
the SU(3)L×SU(3)R chiral symmetry breaks down to a
vector SU(3). For the uniform case, we have

< ξ0 > =
√

3/2fπ (38)

< ξa > = 0 (39)

< φ0 > = 0 (40)

< φa > = 0 (41)

This gives a constituent mass m = gyfπ for all (u, d and
s) quarks. The explicit symmetry breaking strange quark
mass term with current mass ms, is then added to H .
The strange quark mass, Ms, then, turns out to be the
sum of the constituent and explicit mass,Ms = gyfπ+ms

Here we run into a puzzle of sorts. The mass term now
has two components, an explicit or current mass, ms and
a constituent mass, gy < σ >= gyfπ. However, it does
not disturb any relation (e.g. the GT relation), whether
we choose, < σ >= + or −fπ. This raises an ambiguity
about the relative sign of the two mass terms. It would
seem that the choice of opposite signs for the two terms
is optimal since it gives the lowest mass or ground state
energy for the one fermion sector.
When the strange quark gets a large explicit mass

ms about 150 MeV (the u and d quarks have negligi-
ble explicit masses), this question becomes very relevant.
However, experimentally the strange baryons have larger
masses than the non strange ones suggesting that the
relative sign is plus. Georgi, in his book [24], finds that
the success of the non relativistic quark model, partic-
ularly for the masses and the magnetic moments of the
baryons, follows from taking constituent masses of about
350 MeV for the u and d quarks and a total mass of
about 550 MeV for the strange quark. Clearly, the larger
mass of strange baryons suggests the same. Thus, exper-
imentally, the relative sign, plus, is selected. We shall
therefore continue to use this.

A. The three-flavour Pion Condensed phase

For describing strange quark matter we use the 3-
flavour Pion Condensed state [6]. This is a more ver-
satile state than the one used in [22] (3 flavour Chirally
Restored Quark Matter – CRQM), the latter being a sub-
set of the former.
Next, we formulate the symmetry breaking in the pres-

ence of the pion condensate. This is given as follows,

< ξ0 > =
√

3/2F (1 + 2 cos (~q.~r))/3 (42)

< ξ8 > = −
√
3F (1− cos (~q.~r))/3 (43)

< φ0 > = 0 (44)

< φ3 > = F (sin (~q.~r)) (45)

while all other fields have zero expectation value.
This gives exactly the PC hamiltonian equation for the

u, d sector and continues to give the simple mass relation
for the strange quark, Ms = gyF +ms. When q = 0 and
ms = 0 we recover the chiral limit above.
We may now simply add the two-flavour PC results

for the energy density and density derived above to the
strange quark energy density which arises from the single
particle relation,

Es =
√

M2
s + k2

The strange quark energy density is given by Baym (eqn.
8.20) [25]

ǫs =
3

8π2
M4

s (xsns(2x
2
s + 1)− ln(xs + ns)) (46)

where xs = kfs /Ms and ns =
√

1 + x2s, k
f
s being the fermi

momentum of the strange quarks.
The total energy density of the quarks for the 3 flavour

PC is given by

ǫρ = ǫu + ǫd + ǫs +
1

2
F 2q2 +

λ21
4
(F 2 − (f2

π))
2 (47)
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From the effective potential given in [6, 23] for the SU(3)
case, there is an extra factor of 3/2 that multiplies the
last term. This can be absorbed, as we have done, by a
redefinition, λ1 = Aλ, where A =

√

3/2.
The correction due to one gluon exchange interaction

can also be incorporated in the evaluation of ǫu, ǫd and
ǫs above. We have discussed this in some detail in [6].
In this paper we follow the prescription of Baym [25], as
done in [6], to calculate the interaction contribution to
quark energy densities.

B. β-equilibrium in the PC phase

We have the following general chemical potential rela-
tions for quark matter

Eu
F = µu (48)

Ed
F = µd = µs (49)

µe = µd − µu (50)

ne =
µ3
e

3π2
(51)

The charge neutrality condition below further reduces the
number of independent chemical potentials to one.

2nu(µu, q, F )− nd(µd, q, F )− ns(µs)

3
− ne = 0 (52)

The baryon density is

nb =
nu(µu, q, F ) + nd(µd, q, F ) + ns(µs)

3
(53)

ns = (kfs )
3/(π2) (54)

For matter in β equilibrium we need to add the electron
energy density to the quark energy density above

ǫe = (1/4π2)µ4
e

The total energy density is

ǫ = ǫρ + ǫe

The energy per baryon, Eb = ǫ/nb, then follows.
For the pion condensed state, the ground state energy

and the baryon density depend on the variational pa-
rameters, the order parameter or the expectation value,
F =

√
< ~π >2 + < σ >2 and the condensate momentum,

|~q|. To define the free energy at a fixed baryon density
then requires some care.
We go about this by defining a baryon chemical po-

tential to go with a baryon density. We have obtained
both the baryon density and the energy density of the
PC in terms of the u,d,s quark fermi energies/chemical
potentials. First we construct the free energy

Ω = ǫ− nbµb = ǫρ + ǫe − nbµb (55)

TABLE I: Charge neutral, 3-flavour, beta-equilibrium pion
condensed phase with mσ = 800 MeV. The columns are: u-
quark chemical potential (µu in MeV), baryon density (nb in
fm−3), energy per baryon (Eb in MeV), electron density (ne

in fm−3), ratio of densities of d-quark and u-quark (nd/nu),
that of s-quark and u-quark (ns/nu), the order parameter (F
in MeV) and magnitude of the vector q.

µu nb Eb ne nd/nu ns/nu F q

280.0 0.2972 984.94 .2303E-02 1.916 .0318 37.0406 2.5945

300.0 0.3645 981.48 .1602E-02 1.731 .2269 31.9655 2.6149

320.0 0.4591 994.07 .1141E-02 1.599 .3640 28.6471 2.9703

340.0 0.5409 1008.88 .1173E-02 1.564 .4004 30.4335 3.0216

360.0 0.6700 1043.21 .9455E-03 1.499 .4672 28.8195 3.6217

380.0 0.7628 1062.14 .1063E-02 1.482 .4847 31.6743 3.4574

400.0 0.8967 1104.94 .4413E-03 1.345 .6245 23.6066 3.9497

420.0 1.0472 1134.64 .1283E-02 1.463 .5040 36.1496 3.9839

440.0 1.1774 1168.76 .4890E-03 1.317 .6529 26.8871 4.0720

460.0 1.3225 1216.52 .1794E-03 1.218 .7529 19.3370 4.3125

480.0 1.5149 1246.21 .3896E-03 1.267 .7033 26.9453 4.3670

500.0 1.6900 1290.81 .2212E-03 1.211 .7597 23.0806 4.4865

The baryon chemical potential is defined as

µb = ∂ǫ/∂nb (56)

After meeting all the neutrality and equilibrium condi-
tions above for fixed F and q, we can write all the above
variables as a function of a single variable, µu. We then
minimize Ω independently with respect to F and q. The
Eb etc then follow.
The results are presented in the tables below and in

Figure 2a. Fig 2b gives the the EOS for all the phases
considered so far.

VI. THE PHASE DIAGRAM AND THE
EQUATION OF STATE

The starting point for the phase diagram of QCD at fi-
nite density is as such: At very low density we know that
there is chiral SSB, with the pion as the Goldstone bo-
son - this breaks chiral symmetry spontaneously, leaving
colour symmetry unbroken. At very high density we have
a colour SC pairing instability for the quarks and of the
many pairings investigated [26] the CFL (colour flavour
locked) pairing is favoured – this spontaneously breaks
colour and chiral symmetry. In between these limits the
issue of the ground state is open.
We approach this problem, from the low density end,

by the effective lagrangian L that can access both, nu-
clear and quark matter states, with or without chiral
SSB. We have argued that this L has validity upto en-
ergy scales of about 800 MeV. The advantage of this L is
that it has only 3 couplings and no other free parameters.
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FIG. 2: (a) Upper panel: energy per baryon vs baryon num-
ber density for 3-flavour pion-condensed phase for three val-
ues of assumed tree-level mass of the scalar meson σ. Charge
neutrality and beta equilibrium are imposed. One-gluon ex-
change interaction is included using the prescription of Baym
[25]. (b) Lower panel: comparison of the equations of state of
the 3-flavour space uniform phase and pion-condensed phase
for mσ = 800 MeV, with APR98 [21].

These can all be determined from experiment. However,
at the mean field level, this L is good for investigating
chiral condensates but not colour condensates.

If we start at the high density end, as done by the
several authors who practice diquark colour supercon-
ductivity, one knows the ground state at very high den-
sity, when asymptotically free QCD makes calculation
reliable. However, for intermediate density phenomeno-
logical four fermion interactions have to be introduced.
This is equivalent to introducing a given value for the
gap parameter, ∆ [26]. Also, another phenomenological
input is the bag parameter, B. Uncertainty attends these
parameters. It is not clear how this ground state transits
into the low density chiral SSB state.

We start with saturation nuclear matter at nuclear
density and this persists till the nuclear matter gets
squeezed into quark matter at moderately higher den-
sity, when a pion condensed state takes over [13]. In
all these phases, as we have found, chiral symmetry is

spontaneously broken – though the patterns of symme-
try breaking keep changing with baryon density. Since
we have not investigated all other possible condensates,
we cannot vouch for our neutral pion condensate being
the best ground state.
It is, however, to be noted from the lecture notes of

Baym [25], that the neutral pion condensate is preferred
over the charged pion condensate for charge neutral nu-
clear matter, in the non relativistic limit (particularly if
we put the axial coupling constant gA = 1). We have
found that this is the case for charge neutral quark mat-
ter as well [27]. It is worth pointing out that all these
states that have lower energy than the chirally restored
CRQM state, are chiral symmetry broken states.
At even higher density the most likely state is a diquark

condensate - a colour flavour locked (CFL) [23] state -
which can persist till arbitrarily high density. Such a
ground state spontaneously breaks both chiral and colour
symmetry. Diquark condensates are unlikely at moder-
ately high density as they depend on the quark density of
states and so the pion condensate is most likely at such
densities.
There is an important issue that arises here and that

is the comparison between the diquark condensate state
and the pion condensed state. In this case the starting
point is a chiral symmetric four fermion interaction which
can accommodate both chiral (quark-antiquark colour
singlet) condensates and diquark condensates. Such a
comparison has already been done by Sadzikowski [28]
in the context of a NJL chiral symmetric model, for the
case of 2 flavours – SU(2)L × SU(2)R. What is done is
at the level of mean field theory. The NJL model has
four fermion interactions in terms of the quark bilinears
corresponding to the σ and π field quantum numbers,
with a common dimensional coupling, G. If we are in-
terested in a ground state carrying sigma and/or pion
condensates we can replace these quark bilinears by the
corresponding σ and π EV’s in the MFT. This yields
the ground state energy of the space uniform SSB and
the PC states. Alternatively, this NJL can be mapped
to our linear sigma model and the ground state thereof,
which has been considered earlier.
To get to the diquark condensate state we have to Fierz

transform this NJL chiral, L, and look for its projection
into the diquark condensate channel and follow the same
procedure of MFT. This projection gives the diquark con-
densate lagrangian used by [26, 28], with a four fermion

coupling, G
′

= G/4 [28].
Working with simultaneous MF condensates, corre-

sponding to space uniform chiral SSB (which generates a
spontaneous mass for the quarks (no PC)) and diquark
SC (which gives rise to colour SC), they [28] find that for

the above value of the two G
′

s, that follow from the Fierz
projection, the chiral condensate is always the preferred
state up till the limit of validity of this model.
However, they find that with arbitrary (higher) val-

ues of G
′

, it is possible to have a phase transition from a
space uniform chiral SSB to a diquark condensate at some
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large density. In particular, they consider, G
′

= G, and
find that from a pure chiral SSB state, with m = gyfπ
= 301 MeV, there is a continuous phase transition to a
mixed chiral SSB with a small admixture of diquark con-
densate state at a quark chemical potential of about 0.33
GeV. For the higher value of, m = 500 MeV we employ,
this is expected to occur at a higher value of µ. This is
followed by a first order phase transition at slightly higher
µ, to also a dominantly diquark condensate mixed state.
This state then evolves to an almost entirely diquark

condensate.
Till now we have not cosidered the PC state. The

PC state always has lower energy (free energy) than the
uniform chiral SSB state. It would then be reasonable to
expect that the PC state and not the uniform state would
be the preferred state of chiral SSB. Since chiral SSB
persists till much higher density (µ) in the PC state we
expect that with the inclusion of this state the transition
to the colour SC state will be pushed to higher density
(µ).
A following work by the same author addresses this

matter by considering simultaneous MF condensates of
the, PC, and the diquark condensate [29]. It is found
that the first order transition does shift to higher density
(µ = 400 MeV). This is considered only for the partic-

ular case G
′

= G/2, and for m = 301 MeV. For our
larger value of m this is expected to occur at larger µ.
Furthermore, in this case it seems after the first order
transition occurs, the chiral SSB order parameter, M ,
goes to zero, indicating that this state has no chiral SSB
but only colour SSB. Of course, this is so as these works
deal with the two-flavour case – where the colour diquark
condensate is a chiral singlet.
Realistically, we must consider 3 flavours, since the

quark chemical potential is much greater than the strange
quark mass. In this case we are very likely to have the
CFL state as the lowest energy state. The criterion for
this is given in [30] and is ∆ > m2

s/4µ, which is easily
satisfied. Furthermore, in this case the diquark conden-
sate is a colour-flavour condensate which has both chiral
SSB and colour SSB, albeit in a manner different to the
PC.
The deciding question is then what effective L is to be

used. There is no derivation of the exact effective L from
QCD at arbitrary scales. There are many four fermion
type (or higher order) interactions derived or rather mo-
tivated from various points of view, e.g. instantons, gluon
exchange etc. However, there is no unique L that is de-
rived as such. It is therefore necessary to have an ar-
gument to decide this issue. See also [34] for a related
discussion.
Since the NJL chiral L identifies with our linear sigma

model, and this latter model is what we have used as a
valid model till centre of mass energies/scales of less than
800 MeV, the right procedure would be to take this model
to describe physics upto this scale. In this case, as we
have argued, the PC is the preferred ground state, till the
scale of validity of our effective L (this is for G

′

= G/4).

Even if we relax this to larger G
′

we have a three-flavour
PC, till µ well above 400 MeV, followed by a CFL state,
with increasing density. As the tables suggest such values
of, µ, correspond to baryon density 5–6 times nuclear
density. This makes the PC as likely state in neutron
star cores.
With increasing baryon density we then find the fol-

lowing hierarchy. At nuclear density and above we have
nuclear matter with chiral SSB, followed by the pion con-
densed quark matter, again with chiral SSB, albeit with
a different realization and finally a transition to the di-
quark CFL state which also has chiral SSB (and colour
SSB), with yet another realization. A point to note is
that CRQM or free fermi seas are unstable. To one’s
surprise at zero temperature, at any finite density chi-
ral symmetry is never restored! A similar result has also
been obtained in 1+1 dimension [35].

VII. DISCUSSION AND IMPLICATIONS FOR
NEUTRON/STRANGE STARS

A. Stars

We have used the quark based linear sigma model for
this analysis, where the tree level sigma mass was set
to be around 800 MeV as indicated by the analysis of
Schechter et al [14], by matching the results for meson-
meson scattering from this model, with experiment.
Such a tree level sigma mass also ruled against conven-

tional SQM being the ground state of matter [6]. Strange
stars require the absolute stability of SQM. Since this has
been shown to be highly implausible so is then the exis-
tence of strange stars.
Independently, we find (Bhattacharya and Soni, in

preparation) that realistic Neutron stars with PC cores
occur only when the tree level sigma mass in this model
is in a small window, 750 - 850 MeV.
This can be seen from Eb vs 1/nb diagram for the

phases we have considered (Fig 3). The negative slope
in this figure gives the pressure and the intercept on the
vertical axis the baryon chemical potential. The Maxwell
contruction of a common tangent to these curves gives
the pressure and baryon chemical potential at which the
transition occurs with a density discontinuity.
We find that at mσ = 800 MeV we get a transition

with a relatively small pressure and a small density dis-
continuity. This permits us to have a well developed PC
core in a neutron star. The small density jump, besides,
reassures us that a mixed [31] phase would give results
that would be very similar. Of course, with the APR98
[21] EOS that we use, we do not have analytical expres-
sions for all variables, which precludes a mixed phase
calculation.
At mσ = 850 MeV, the transition moves to higher

density and higher pressure with a larger density jump,
so much so that there there is no PC core for the star – as
the maximum mass instability for the star occurs before
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FIG. 3: The Maxwell construction: Energy per baryon plot-
ted against the reciprocal of the baryon number density for
APR98 equation of state (dashed line) and the 3-flavour pion-
condensed (PC) phase, for three different values of mσ (solid
lines). A common tangent between the PC phase and the
APR98 phase in this diagram gives the phase transition be-
tween them. The slope of a tangent gives the negative of the
pressure at that point, and its intercept gives the chemical po-
tential. As this figure indicates, the transition pressure moves
up with increasing mσ, and at mσ below ∼ 750 MeV a com-
mon tangent between these two phases cannot be obtained.

a core can form.
On the other side, atmσ = 750 MeV, the curves for the

two phases do not permit a common tangent construction
any more – so again a star with a PC core is ruled out. Is
this a coincidence that a single parameter in our effective
L, the mass of the sigma or λ, plays a crucial role? Is it
fortuitous that the tree level sigma mass set by scattering
experiments sits in a small window that simultaneously
rules out SQM as the absolute ground state of matter
and also can provide us with neutron stars that can have
pulsar range magnetic PC cores?
The problem in sustaining a PC core with a nuclear

exterior is that we have a stiff exterior with a soft interior
– a rather unstable situation. It is thus not so surprising
that very particular conditions must obtain for this to
occur.

B. The Effective Lagrangian and Mean Field
Theory

The question of the validity of our effective L is of
the essence. Furthermore, since we do not go any further
than MFT, the question of the validity of MFT is another
equally important question. Linked to this is the question
of QCD corrections.

1. Meson sector

Let us begin with the part of the Lagrangian that de-
scribes the meson sector. As we have said earlier the
justification for this, its range of validity and the value of

the coupling λ or the sigma mass have been very clearly
spelt out in [14]. It will be useful to review this. As
stated in this work it is the tree level Lagrangian that
is used to describe π-π scattering in the scalar channel.
This tree-level amplitude is then improved by unitarising
the K matrix. A very good fit to scattering data in this
channel follows if we choose the sigma mass in the tree
level L to be 800–850 MeV. The validity of this vis a vis
the data is upto

√
s < 800 MeV.

The actual mass and width of the sigma can then be
gleaned by looking at the pole in this K unitarized am-
plitude and is found to be 460–600 MeV.
We have used this to fix the tree level coupling/sigma

mass for our L. Since we work only in MFT (tree level),
this also perhaps tells us that we may be off the mark by
about 30%.
Another cautionary point is that the above results are

based only on scalar channel scattering and may not ap-
ply generally. It is also possible to fit the data with chiral
perturbation theory (infinite mσ) and the ρ resonance.
It is possible that by excluding the ρ we may be miss-
ing some short-distance repulsion, which might result in
making our PC EOS too soft.

2. Quark sector

For obvious reasons one cannot find an analagous scat-
tering experiment for the quark meson sector. However,
there is other indirect evidence in this sector.

i) The quark soliton nucleon that we have used to fix
the coupling, gy, satisfies the Goldberger Triemann
relation exactly [32] in accord with chiral symme-
try. As stated in the introduction several indepen-
dent properties of this nucleon, for example, mag-
netic moments compare well with experiment.

ii) In the large Nc expansion, the soliton (and other
physics) receives 1/Nc corrections from loops.

iii) Goksch [12] finds that the finite temperature
screening masses of mesons computed in lattice
QCD compare very favorably with those calculated
using finite temperature MFT for precisely our L
(without including gluons). However, the couplings
used are slightly different to ours, gy = 3.3 and
sigma mass of 600 MeV.

Georgi and Manohar [3] use a non linear sigma model
version of the above L to do effective cutoff field the-
ory and argue for larger energy scale of chiral symmetry
breaking vis a vis confinement. Using this scale for the
cutoff, they are able to naively but consistently include
arbitrary meson/quark loops. Further, they heuristically
argue that the QCD coupling is weak for the chiral SSB
vacuum and thus gluon loops may be ignored.
Actually, as we have stated in the introduction, QCD

can have multiple scales [5] - a confinement scale, a chi-
ral symmetry restoration scale and a compositeness scale
for the pion. We would like to point out that the argu-
ments of [3] would go through if the compositeness scale
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was substituted for the chiral restoration scale, since this
scale is used for a momentum cutoff. This will allow the
chiral restoration scale to fall anywhere in between the
confinement and compositeness scale – a likely possibility
suggested by the lattice.
Parenthetically, we remark that the non-perturbative

input of a finite mass sigma particle/resonance may do
the same job. This is also supported by observations in
Ref. [14] and references therein. This also supports our
effective L, which is built on the premise that the chi-
ral SSB energy scale is larger than than the confinement
scale.

3. QCD sector

We have no evident justification for neglecting this strong
sector or at most doing simply one gluon exchange cor-
rections.
Ref. [3] makes the heuristic argument that the gluon

coupling becomes strong to precipitate chiral SSB, after
which it is expected to be perturbative in the new bro-
ken vacuum. They also argue, that from the colour and
electromagnetic hyperfine splittings in the baryon sec-
tor of the non relativistic quark model one may infer an
αs = 0.28.
At finite density, there is screening in quark matter.

The correct expansion parameter is then the screened
charge and not the usual running coupling constant writ-
ten as a function of the quark chemical potential which
is commonly used. Such a screened charge has been for-
mally constructed by one of us [33] and is clearly much
smaller than the usual running coupling. This makes a
perturbative expansion in this coupling more plausible
for dense quark matter.
Further, the ground state of quark matter, the pion

condensate, has spin-charge ordering. Long range forces
like one gluon exchange then inhibit any change in the
ground state and stabilize it against fluctuations as in
many condensed matter situations where the coulomb
forces are operative. In this case MFT may be valid.
All the calculations referred to above for quark matter

states have been carried out in MFT. We have tried to
give some justification for its use. However, we cannot
provide any rigorous proof for the validity of MFT. It
is also the simplest thing to do and works well in many
cases even if the coupling is strong.
Since we began this work with an eye to neutron stars

it may be appropriate to present our finding. We expect
that the density profile of the star will start with the
nucleonic EOS on the outside and go to a pion condensate
in the interior and could well go to a colour flavor locked
state at the centre if the density there is large enough;
though, this is unlikely if we have a pion condensate as
its softness may result in a smaller maximum mass.
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