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Abstract

We present a first numerical evidence for the existence of a novel magnetic
condensate proposed recently by one of the authors in SU(2) Yang-Mills theory.
In our framework, the spontaneously generated color magnetic field identified
with the Savvidy vacuum has the microscopic origin and is a consequence of the
intrinsic dynamics of the Yang-Mills theory. It strongly suggests the Nielsen–
Olesen instability of the Savvidy vacuum disappears and the stability is restored
without the need of the Copenhagen vacuum. The implications to the Skyrme–
Faddeev model are also discussed. These results are obtained through the first
implementation of the Cho–Faddeev–Niemi decomposition of the Yang-Mills
field on a lattice.
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1 Introduction

In the SU(2) Yang-Mills theory, Savvidy [1] has discovered according to the renormal-
ization group equation that a non-perturbative vacuum with dynamically generated
color magnetic field H has lower vacuum energy density than the perturbative vac-
uum. This is possible only for the non-Abelian gauge theory with asymptotic freedom.
Immediately after this discovery, however, Nielsen and Olesen [2] have pointed out
that the effective potential V (H) of the color magnetic field H , when calculated ex-
plicitly at one-loop level, develops a pure imaginary part; The real part of V (H) has
an absolute minimum at H = H0 6= 0 away from H = 0 and satisfies the renormaliza-
tion group equation in agreement with the Savvidy argument, while the non-vanishing
imaginary part also satisfies the renormalization group equation without the renor-
malization scale µ dependence. The presence of the pure imaginary part implies
that the Savvidy vacuum becomes unstable due to gluon–antigluon pair annihilation.
Since the energy eigenvalue En of the massless off-diagonal gluons with spin S = 1
and Sz = ±1, in the constant external magnetic field Hz := H12 is given by

E±
n =

√

k2
z + 2gHz(n+ 1/2) + 2gHzSz (n = 0, 1, 2, · · · ), (1.1)

the Nielsen–Olesen instability is also understood as originating from the tachyon mode
n = 0, Sz = −1, i.e., the lowest Landau level with antiparallel spin to the external
magnetic field,

E−
0 =

√

k2
z − gHz. (1.2)

In fact, E−
0 becomes pure imaginary in the low-energy region k2

z < gH .
On the other hand, it is well known that in QED without asymptotic freedom,

the non-zero magnetic field does not lower the vacuum energy and hence no magnetic
condensation is expected to occur. Incidentally, external electric field always desta-
bilizes the vacuum by causing electron-positron pair creation in QED and gluon pair
annihilation in Yang-Mills theory. Therefore, no spontaneous generation of electric
field is expected in both Abelian and non-Abelian gauge theories.

The Nielsen–Olesen instability of the Savvidy vacuum was derived based on the
one-loop calculation of the effective potential. Therefore, some people consider it as
indicating unreliability of the lowest-order loop calculation, i.e., artifact of the ap-
proximation. However, there have been published a huge amount of papers dealing
with the problem of the unstable modes since the Nielsen-Olesen paper, including the
stabilization by higher order terms [3]. Moreover, the same problem exists also in
the supersymmetric Yang-Mills theory in which the higher-order loop corrections are
absent, because the covariantly constant background field strength is not supersym-
metric [4].

A way to circumvent the instability of the Savvidy vacuum is to introduce the
magnetic domains with a finite extension into the Yang-Mills vacuum, in each of
which the tachyon mode does not appear as far as k2

z > gHz. This resolution is called
the Copenhagen vacuum. However, the Copenhagen vacuum breaks the Lorentz
invariance and color invariance explicitly. This issue has been re-examined recently
by Cho and his collaborators [5].

What type of vacuum is allowed and preferred in the Yang-Mills theory is an
important question related to the physical picture of quark confinement. Can the
instability be resolved even in the one-loop level by a new mechanism?

1



First, it is instructive to recall the assumptions taken in Nielsen and Olesen [2].

1. The color magnetic field ~H has a uniform magnitude | ~H| in spacetime and a
specific direction H12 = Hz (The direction is identified with the quantization
axis of the off-diagonal gluon spin).

2. A background gauge is taken as a gauge fixing condition. (Note that the back-
ground gauge is exactly the same as the Maximal Abelian gauge [7] which has
been adopted in recent investigations on quark confinement based on the dual
superconductor picture [8].)

3. The off-diagonal gluons are treated as massless throughout the analysis.

Now we would like to remind you of the facts which have been obtained by the
recent investigations on quark confinement since 1990:

1. In the Maximal Abelian gauge, infrared Abelian dominance [9, 10] and mag-
netic monopole dominance are observed, as first confirmed [11] in the numerical
simulations on the lattice, see [12] for reviews.

2. The off-diagonal gluons acquire the mass M which is much larger than the
diagonal gluon mass [13, 14]. The off-diagonal gluon mass M measured on a
lattice is M ∼= 1.2GeV. See Ref. [15–21] for analytical works.

In the previous work [6], the stability of the Savvidy vacuum has been re-examined
by taking into account these facts and a scenario of eliminating the Nielsen–Olesen
instability has been proposed to recover the stability of the vacuum: A novel type
of color magnetic condensation originating from magnetic monopoles can occur and
provides the mass of off-diagonal gluons in the Yang-Mills theory. Moreover, a novel
magnetic condensation removes the tachyon mode of the off-diagonal gluon and the
Nielsen–Olesen instability of Savvidy vacuum disappears to restore the stability of
the magnetic vacuum, if the magnetic condensation is sufficiently large.

The dynamical mass generation for the off-diagonal gluons enables us to explain
the infrared Abelian dominance and monopole dominance by way of a non-Abelian
Stokes theorem. These are quite natural and consistent results for understanding
quark confinement, since the condensation of magnetic monopoles is the key concept
in the dual superconductor picture. Therefore, quark confinement can be compati-
ble with the stability of the Savvidy vacuum without resorting to the Copenhagen
vacuum.

The above claims were confirmed at least to one-loop order in the continuum
theory by calculating the effective potential [6]. As a technical device, we have applied
the Cho–Faddeev–Niemi (CFN) [22,23] decomposition to SU(2) Yang-Mills theory to
extract the magnetic monopole degrees of freedom explicitly from the non-Abelian
gauge potential.

The purpose of this paper is to go beyond the previous analytical calculations and
to confirm some of the above claims by using the numerical simulations on a lattice.
This paper is organized as follows. In section 2, we review the CFN decomposition
which plays a crucial role in this paper and summarize the analytical results and some
predictions obtained in the previous papers [6]. In section 3, we argue how the CFN
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variables on a lattice are defined to perform the numerical simulations on a lattice.
Our definition of the CFN decomposition on a lattice reproduces the expressions
of the continuum formulation from the lattice counterparts, in the naive continuum
limit of the lattice spacing going to zero. Moreover, we simulate the lattice Yang-Mills
theory without breaking the global SU(2) symmetry respected by the CFN variable.
This section constitutes a crucial step to discriminate our approach from the other
works which are apparently similar to ours. In section 4, we present the first results
of numerical simulations based on the lattice gauge theory using the lattice CFN
variables set up in the previous section. The first numerical evidence is obtained for
the existence of two types of vacuum condensates, which supports the recovery of
the stability in the Savvidy vacuum as claimed in [6]. The final section is devoted to
conclusion and discussion.

In Appendix A, we show how the gauge invariance of the Yang-Mills theory is
expressed in terms of the CFN variables. Then we discuss how the gauge fixing
is performed to eliminate the gauge degrees of freedom, especially in the Maximal
Abelian gauge. In Appendix B, we summarize the relationship between the gauge
fixing on a lattice and the continuum limit. It is shown explicitly that the gauge fixing
procedures on a lattice which is actually used in the numerical simulations reduce to
those known in the continuum formulation [6, 22, 23] in the naive continuum limit.

2 Results and predictions from analytical works

2.1 CFN decomposition in the continuum

We adopt the Cho-Faddeev-Niemi (CFN) decomposition for the non-Abelian gauge
field [22–25]: By introducing a unit vector field n(x) with three components, i.e.,
n(x) · n(x) := nA(x)nA(x) = 1 (A = 1, 2, 3), the non-Abelian gauge field Aµ(x) in
the SU(2) Yang-Mills theory is decomposed as

Aµ(x) =

Vµ(x)
︷ ︸︸ ︷

cµ(x)n(x)
︸ ︷︷ ︸

Cµ(x)

+ g−1∂µn(x)× n(x)
︸ ︷︷ ︸

Bµ(x)

+Xµ(x), (2.1)

where we have used the notation: Cµ(x) := cµ(x)n(x), Bµ(x) := g−1∂µn(x) × n(x)
and Vµ(x) := Cµ(x) + Bµ(x). By definition, Cµ(x) is parallel to n(x), while Bµ(x) is
orthogonal to n(x). We require Xµ(x) to be orthogonal to n(x), i.e., n(x) · Xµ(x) =
0. We call Cµ(x) the restricted potential, while Xµ(x) is called the gauge-covariant
potential and Bµ(x) is called the non-Abelian magnetic potential. In the naive Abelian
projection, Cµ(x) corresponds to the diagonal component, while Xµ(x) corresponds
to the off-diagonal component, apart from the vanishing magnetic part Bµ(x).

Accordingly, the non-Abelian field strength Fµν(x) is decomposed as

Fµν := ∂µAν − ∂νAµ + gAµ × Aν = Eµν +Hµν + D̂µXν − D̂νXµ + gXµ × Xν , (2.2)

where we have introduced the covariant derivative in the background field Vµ by

D̂µ[V] ≡ D̂µ := ∂µ + gVµ×, and defined the two kinds of field strength:

Eµν =Eµνn, Eµν := ∂µcν − ∂νcµ, (2.3)

Hµν =∂µBν − ∂νBµ + gBµ × Bν . (2.4)
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Due to the special definition of Bµ, the magnetic field strength Hµν is rewritten as

Hµν = −gBµ × Bν = −g−1(∂µn× ∂νn) = Hµνn, (2.5)

Hµν := −g−1n · (∂µn× ∂νn). (2.6)

where we have used a fact that Hµν is parallel to n. Moreover, Hµν is shown to be
locally closed and hence it can be exact locally. In other words, we can introduce the
Abelian magnetic potential hµ for Hµν :

Hµν := −g−1n · (∂µn× ∂νn) = ∂µhν − ∂νhµ. (2.7)

Thus we can introduce two kinds of Abelian potential cµ and hµ and the corresponding
Abelian field strength Eµν = ∂µcν − ∂νcµ and Hµν = ∂µhν − ∂νhµ. We call cµ the
(Abelian) electric potential and hµ the (Abelian) magnetic potential (partial duality),
becauseHµν represents the color magnetic field generated by magnetic monopoles [16].
The CFN decomposition is useful to extract the topological configurations explicitly,
such as a magnetic monopole (of Wu-Yang type), one instanton (of BPST type), and
multi-instantons (of Witten type). The gauge invariance of the Yang-Mills theory in
terms of the CFN variable is discussed in Appendix A.

2.2 Advantages of our method using the CFN decomposition

We enumerate some advantages and and characteristics in our treatment of the mag-
netic vacuum using the CFN decomposition. (Some of them have already been em-
phasized by Cho [5].)

1. In our approach using the CFN decomposition, the direction of the color mag-
netic field Hµν(x) = Hµν(x)n(x) can be chosen arbitrary at every spacetime
point x by using a unit vector n(x) indicating the color direction. The Lorentz
symmetry and color (global gauge) symmetry are not broken by considering

‖H‖ :=
√

Hµν ·Hµν ≡ g−1
√

(n · (∂µn× ∂νn))2. It is invariant also under the

color reflection, n(x) → −n(x).

2. This formalism enables us to specify the physical origin of magnetic conden-
sation as arising from the magnetic monopole through the relation, Hµν(x) :=
−g−1n(x) · (∂µn(x)× ∂νn(x)). This gives a microscopic description of the dy-
namically generated color magnetic field Hµν which is not necessarily uniform
in spacetime, in contrast to the Savvidy, Nielsen and Olesen.

3. We can discuss the implications to the Skyrme-Faddeev model [26] which is
supposed to be a low-energy effective theory of Yang-Mills theory. This model
is expected to describe glueballs as knot solitons.

4. The non-Abelian Wilson loop operator can be rewritten in terms of the CFN
variables through the Diakonov–Petrov version of the non-Abelian Stokes theo-
rem [17,27]. Hence we can separate the contribution from the magnetic variables
in the Wilson loop average to examine the magnetic monopole dominance.
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2.3 Predictions

In the previous work [6] the following issues have been discussed.

1. A novel type of vacuum condensation 〈Bµ · Bµ〉 > 0 can occur in addition to

the magnetic condensation 〈‖H‖〉 :=
〈√

(Bµ × Bν)2
〉

> 0. Here 〈Bµ · Bµ〉 >

0, is called the magnetic condensation of mass dimension two and 〈‖H‖〉 >
0 represents the spontaneous or dynamical generation of color magnetic field
corresponding to the Savvidy vacuum. They are caused by gluonic interactions
due to magnetic monopole degrees of freedom which are extracted by the CFN
decomposition and are expressed through n, i.e.,

g2Bµ · Bµ = (∂ρn)
2, (2.8)

‖H‖ :=
√

Hµν ·Hµν ≡
√

(gBµ × Bν)2 = g−1
√

(∂µn× ∂νn)2. (2.9)

2. If a novel type of magnetic condensation occurs 〈Bµ · Bµ〉 > 0, then the off-
diagonal gluons Xµ acquire their mass MX through the relationship M2

X =
g2〈Bµ · Bµ〉 > 0. Then the infrared Abelian dominance and the magnetic
monopole dominance follows immediately from this fact, supporting the dual
superconductor picture for quark confinement.

3. The energy level (spectrum) of the off-diagonal gluons is shifted by M2
X , i.e.,

E−
0 →

√

k2 +M2
X − gH0. If the off-diagonal gluon mass MX obtained in this

way is sufficiently large so that

M2
X = g2〈Bµ · Bµ〉 > 〈g‖H‖〉, (2.10)

the tachyon mode is eliminated and the stability of the Savvidy vacuum is
restored. Therefore, a criterion of stability restoration is given by

r :=
M2

X

g‖H‖ =
g2〈Bρ · Bρ〉
g〈‖H‖〉 =

〈(∂ρn)2〉
〈√

(∂µn× ∂νn)2
〉 > 1. (2.11)

In fact, the above statements are supported from analytical works as follows.
Even in the massive case, the existence of a magnetic condensation has been shown
〈g‖H‖〉 > 0, based on the effective potential in the one-loop level (improved by the
renormalization group) [6] where the Maximal Abelian gauge written in terms of the
CFN variables,

χ := Dµ[V]Xµ = 0, (2.12)

is adopted.
Then, the existence of another magnetic condensation, g2〈Bµ · Bµ〉 > 0, can be

shown [6] based on a simple mathematical identity (Bµ×Bν) ·(Bµ×Bν) = (Bµ ·Bµ)
2−

(Bµ·Bν)(Bµ·Bν),which yields a lower bound on Bµ·Bµ, (Bµ·Bµ)
2−(Bµ×Bν)·(Bµ×Bν) =

(Bµ ·Bν)(Bµ ·Bν) ≥ 0, i.e., g2〈Bµ ·Bµ〉 ≥ 〈g‖H‖〉, leading to a lower bound of the ratio

r ≥ 1. (2.13)
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Then the tachyon mode is removed. But the possible zero mode can not be excluded
by this bound. A stronger bound is obtained [6] by using the Faddeev–Niemi variable
[28], g2〈Bµ · Bµ〉 ≥

√
2〈g‖H‖〉, which yields a better lower bound on the ratio,

r ≥
√
2. (2.14)

This bound is also obtained by another method, see e.g. [29]. Thus the tachyon mode
and the zero mode are removed. In fact, the effective potential V (‖H‖) is real-valued
for r ≥ 1. In particular, the r ↓ 0 limit reproduces the Nielsen-Olesen pure imaginary
part, i.e., instability.

For the above arguments to work in the rigorous sense, the existence of the mag-
netic condensation g〈‖H‖〉 > 0 must be shown in the full non-perturbative level
beyond the loop calculation. This automatically leads to the existence of a novel
magnetic condensation g2〈Bµ · Bµ〉, if such a vacuum is stable. The precise value of
the ratio r is not yet determined. In fact, there is no theoretical upper bound on r,
while the lower bound r ≥

√
2 is known. Hence, we perform Monte Carlo simulations

on a lattice to attack these issues.

3 CFN decomposition on a lattice and n field en-

semble

We denote by the CFN-Yang–Mills theory the Yang-Mills theory written in terms
of the CFN variables. The CFN-Yang–Mills theory has the local gauge symmetry
SU(2)ωlocal× [SU(2)/U(1)]θlocal larger than the original Yang-Mills theory, since we can
rotate the CFN variable n(x) by angle θ⊥(x) independently of the gauge transforma-
tion parameter ω(x) of Aµ(x), see Appendix A and [30] for more details. In order to
fix the whole local gauge symmetry, therefore, we must impose sufficient number of
gauge fixing conditions. Recently, it has been clarified [30] how the CFN-Yang–Mills
theory can be equivalent to the original Yang-Mills theory after the gauge fixing of
the local gauge invariance in the continuum formulation. This idea is implemented
on a lattice as follows.

Now we discuss how to perform the CFN decomposition on a lattice and define
the unit vector field nx to generate the ensemble of n-fields. In the whole of this
paper, we restrict the gauge group to SU(2).

3.1 LLG and new MAG

First of all, we generate the configurations of SU(2) link variables {Ux,µ},

Ux,µ = exp[−iǫgAµ(x)], (3.1)

using the standard Wilson action based on the heat bath method [31] where ǫ is the
lattice spacing and g is the coupling constant.1 We use the continuum notation only
for the Lie-algebra valued field variables, e.g., Aµ(x).

1It is possible to adopt different relationships between the link variable and the gauge potential,
e.g., Ux,µ = exp[−iǫgAµ(x + 1

2
ǫµ̂)]. However, the difference appears only in higher order terms in

the lattice spacing ǫ. They do not affect our main results and hence the difference is neglected in
what follows.
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Next, we introduce the functional,

FLLG[U ; Ω] =
∑

x,µ

tr(1− ΩUx,µ) →
1

4

∫

d4x [(Aµ)
Ω(x)]2 (ǫ → 0), (3.2)

where ΩUx,µ denotes the gauge-transformed link variable defined by ΩUx,µ := ΩxUx,µΩ
†
x+µ

with a gauge group element Ωx being an SU(2) matrix defined on a site x, and
(Aµ)

Ω(x) denotes the gauge-transformed potential defined by (Aµ)
Ω(x) = Ω(x)[Aµ(x)+

ig−1∂µ]Ω
†(x) = Aµ(x) + Dµ[A ]ω(x) + O(ω2) for Ω(x) = eigω(x). Here the arrow in-

dicates the naive continuum limit ǫ → 0 of the lattice spacing ǫ going to zero, see
Appendix B. Then we impose the Lorentz-Landau gauge or Lattice Landau gauge
(LLG) by minimizing the function FLLG[U ; Ω] with respect to the gauge transforma-
tion Ωx for the given link configurations {Ux,µ}, i.e.,

minimizingΩFLLG[U ; Ω] → minimizingΩ

∫

d4x [(Aµ)
Ω(x)]2. (3.3)

In the continuum formulation, this is equivalent to imposing the gauge fixing condition
∂µAµ(x) = 0. Thus this procedure determines a set of gauge-rotation matrices {Ωx}.
Note that the LLG fixes the local gauge symmetry SU(2)ωlocal, while the LLG leaves
the global symmetry SU(2)ωglobal intact. See Appendix A.

Gauge invariant

Orbit

generated 

configuration

MAG

Configuration update

LLG
Gauge 

Transformation G

n=n=GG+σσ3GG

Figure 1: Lattice CFN decomposition obtained by imposing nMAG and LLG.

Subsequently, we impose the new Maximal Abelian gauge2 (nMAG) by minimizing
the functional FMAG[Ũ ;G], Ũx,µ := ΩUx,µ defined by

FMAG[Ũ ;G] =
∑

x,µ

tr(1− σ3
GŨx,µ σ3

GŨ †
x,µ) →

∫

d4x [(Aa
µ)

G(x)]2, (3.4)

2This procedure is the same as the usual MAG. However, the meaning is totally different from
the usual MAG, as shown in [30].
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with respect to the gauge transformation Gx, i.e.,

minimizingGFMAG[Ũ ;G] → minimizingG

∫

d4x [(Aa
µ)

G(x)]2, (3.5)

where G(x) = eigθ(x). Here the Cartan decomposition for Aµ(x) has been used,

Ũx,µ = exp{−iǫgAµ(x)} = exp{−iǫg[aµ(x)T
3 + Aa

µ(x)T
a]}, (3.6)

where aµ is called the diagonal gauge field and Aa
µ(a = 1, 2) is called the off-diagonal

gauge fields with the SU(2) generators TA = σA/2(A = 1, 2, 3).
The nMAG breaks the local gauge symmetry [SU(2)/U(1)]θglobal and leaves the

local U(1)θ symmetry and the global U(1)θ symmetry intact. The superscript θ
indicates that this U(1) is not a subgroup of the SU(2) gauge group for the original
Yang-Mills variable Aµ. See Appendix A. Note that the nMAG breaks also the global

symmetry [SU(2)/U(1)]θ 6=ω
global, while it does not break SU(2)ω=θ

global.
The ensemble of n-fields is constructed as follows. See Fig. 1. It is shown in

Appendix B that the minimization procedure of the nMAG leads to the construction
of n according to

nx := G†
xσ3Gx = nA

x σ
A,

(

nA
x =

1

2
tr[σAG

†
xσ3Gx]

)

. (3.7)

This is because this MAG leads to the gauge fixing for the CFN variables as

FMAG[Ũ ;G] =
∑

x,µ

tr(1− nxŨx,µnx+µŨ
†
x,µ) := F̃MAG[Ũ ;n] →

∫

d4x [(Xµ)(x)]
2, (3.8)

if we identify the link variable as

Ũx,µ = exp{−iǫg[Cµ(x) + Bµ(x) + Xµ(x)]} = ΩUx,µ, (3.9)

which we call the lattice CFN decomposition. Here F̃MAG[Ũ ;n] implies that MAG is
also realized as the minimization with respect to nx. Even if the initial configurations
Ux,µ (or Aµ(x)) are the same, the CFN variables Cµ(x),Bµ(x),Xµ(x) are not neces-
sarily the same if a different nx is adopted. Therefore,

∫

d4x [(Xµ)(x)]
2 changes the

value depending on the choice of nx or Gx, although it has no explicit dependence on
them. 3

By imposing simultaneously the LLG and the nMAG in this way, we can com-
pletely fix the whole local gauge invariance SU(2)ωlocal×[SU(2)/U(1)]θlocal of the lattice
CFN-Yang–Mills theory. The global symmetry SU(2)ω=θ

global is unbroken.
Here we distinguish two cases related to the global symmetry SU(2)global.

3A different interpretation is as follows. The different MAG functional is obtained for the CFN
variable as

FMAG[Ũ ;G] =
∑

x,µ

tr(1 − nxŨx,µnx+µŨ
†
x,µ) := FMAG[Ũ ;n] →

∫

d4x [(Xµ)
Ω(x)]2, (3.10)

if we identify the link variable with the CFN decomposition,

Ux,µ = exp{−iǫg[Cµ(x) + Bµ(x) + Xµ(x)]}. (3.11)

Even in this case, the same gauge fixing condition is obtained, Dµ[V]Xµ = 0, apart from the
exceptional case ω = θ, see Appendix A.
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3.1.1 SU(2)global-breaking case

If the numerical simulations are performed in such a way that LLG and MAG are
close to each other [32], in the sense that the matrices G connecting LLG and MAG
are on average close to the unit ones, i.e., GA

x
∼= 0 (A = 1, 2, 3), i.e., Gx

∼= G0
xI, for

the parameterization of SU(2) matrices,

Gx = G0
xI + iGA

x σ
A, G0

x, G
A
x ∈ R,

3∑

µ=0

(Gµ
x)

2 = 1. (3.12)

then we observe that nx
∼= σ3 or nA

x
∼= (0, 0, 1), namely, nx are aligned in the positive

3-direction and hence the non-vanishing vacuum expectation value is observed as

〈

nA
x

〉

= MδA3. (3.13)

This implies that the global SU(2) symmetry is broken explicitly to a global U(1),
SU(2)global → U(1)global. In the two-point correlation functions, the exponential decay
is observed for the parallel propagator

〈

n3
xn

3
0

〉

∼
〈

n3
0

〉 〈

n3
0

〉

+ ce−m|x| = M2 + ce−m|x|, (3.14)

and for the perpendicular propagator

1

2

2∑

a=1

〈na
xn

a
0〉 ∼ c′e−m′|x|, (3.15)

but m and m′ are slightly different, but nearly equal to 0.9GeV. This result was
reported by [32] and confirmed also by our preliminary simulations [33].

3.1.2 SU(2)global-invariant case

Our main numerical simulations are performed as follows. In the continuum for-
mulation, the CFN variables were introduced as a change of variables which does
not break the global gauge symmetry SU(2)global or ”color symmetry”, which has a
correspondence with the local gauge symmetry SU(2)local in the original Yang-Mills
theory. Hence the nMAG can be imposed in terms of the CFN variables without
breaking the color symmetry. This is a crucial difference between the nMAG based
on the CFN decomposition and the conventional MAG based on the ordinary Cartan
decomposition which breaks the SU(2)global explicitly. See Appendix A. Therefore,
we must perform the numerical simulations so as to preserve the color symmetry as
much as possible.4 This is in fact possible as follows.

Remember that the MAG on a lattice is achieved by repeatedly performing the
gauge transformations. In order to preserve the global SU(2) symmetry, we adopt
a random gauge transformation only in the first sweep among the whole sweeps of
gauge transformations in the standard iterative gauge fixing procedure for the MAG.
This procedure moves an ensemble of unit vectors nx to a random ensemble of nx

4Whether the color symmetry is spontaneously broken or not is another issue to be investigated
separately.
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which is far away from nx = (0, 0, 1), although this procedure might increase the
functional FMAG. Then we search for the local minima around this configuration
of nx by performing the successive gauge transformations. The first random gauge
transformation as well as the subsequent gauge transformations are accumulated to
obtain the gauge transformation matrix G by which n is constructed. Beginning with
the LLG and ending with the MAG in this way, we can impose both LLG and MAG
simultaneously.

Our numerical simulations are performed by using the standard Wilson action and
periodic boundary conditions under the following conditions. After the thermalization
of 3000 sweeps starting with cold initial condition, we have obtained 50 samples of
configurations at 100 sweep intervals. For LLG and MAG, we have used the over
relaxation algorithm.

The data of numerical simulations in Table 1 show the vanishing vacuum expec-
tation value

〈

nA
x

〉

= 0 (A = 1, 2, 3). (3.16)

Table 1: The magnetization < nA
x > on the 164 lattice at β = 2.4.

Mean value Jack knife error(JKbin=2)
< n1 > -0.0069695 ± 0.010294
< n2 > 0.011511 ± 0.015366
< n3 > 0.0014141 ± 0.013791

Moreover, we have measured the two-point correlation functions defined byGA(x) :=
〈

nA
xn

A
0

〉

(no summation over A). The two-point correlation functions exhibit almost

the same behavior in all the directions (A = 1, 2, 3), see Fig. 2.
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Figure 2: The plots of two-point correlation functions
〈

nA
x n

A
0

〉

for A = 1, 2, 3 along the

lattice axis on the 164 lattice at β = 2.4.

These results indicate that the global SU(2) symmetry (color symmetry) is unbro-
ken in our main simulations, in contrast to [32]. This is a crucial point.
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Table 2: Fitted parameters on the 164 lattice at β = 2.4.

a(1) a(2) a(3)
G1 0.0254 0.2719 -0.2462
G2 0.0241 0.2745 -0.0213
G3 0.0284 0.2604 -0.0271

The data suggest the exponential decay,

GA(x) ≡
〈

nA
xn

A
0

〉

∼ ce−m|x| (A = 1, 2, 3). (3.17)

The exponential decay implies that there exists the mass gap in the theory. This is
confirmed as follows. In Table 2, we have given the values of three fitting parameters
a(1), a(2), a(3) when G3(x) is fitted to the cosh-function: G3(x) = a(1) ∗ cosh(a(2) ∗
(x − 8)) + a(3). Here a(2) corresponds to the mass gap. Since the physical scale
ǫ(β = 2.4) is 0.26784 in unit of the string tension σ, the mass gap reads mphys =

a(2)/ǫ(β) = 0.27/(0.26784
√
σ
−1/2

) = 1.008 × 440MeV = 440MeV. This should be
compared with the SU(2) mass gap, M ∼= 1.5GeV, which could be regarded as the
lowest glueball mass [34].

3.2 Imposing LLG as preconditioning before MAG

Finally, we explain why the LLG is imposed before taking the MAG. From the be-
ginning, we could have imposed the MAG by minimizing the functional,

FMAG[U ;G′] =
∑

x,µ

tr(1− σ3
G′

Ux,µ σ3
G′

U †
x,µ) →

1

4

∫

d4x [(Aa
µ)

G′

(x)]2, (3.18)

with respect to the gauge transformation G′
x, once the link variable configurations

{Ux,µ}, Ux,µ = exp[−iǫgAµ(x)] are generated using the Wilson action based on the

heat bath method. This is equivalent to minimizing F̃MAG[U ;n] with respect to nx:

FMAG[U ;G′] =
∑

x,µ

tr(1− nxUx,µnx+µU
†
x,µ) := F̃MAG[U ;n] →

∫

d4x [(Xµ)(x)]
2,

(3.19)

where the following identifications are made:

nx := G′†
xσ3G

′
x = nA

x σ
A,

(

nA
x =

1

2
tr[σAG

′†
xσ3G

′
x]
)

, (3.20)

and

Ux,µ = exp{−iǫg[Cµ(x) + Bµ(x) + Xµ(x)]}. (3.21)

However, it is observed that the resulting ensemble of nx becomes random as
characterized by the specific two-point correlation function

〈

nA
xn

B
y

〉

=
1

3
δABδx,y, i.e., = 0 (x 6= y) or

1

3
δAB (x = y), (3.22)
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and the vanishing vacuum expectation value
〈

nA
x

〉

= 0. (3.23)

There is no correlation among the field nx on the different sites. This is because the
original link variables {Ux,µ} are generated due to the gauge invariant original action
and are distributed randomly along their gauge orbits. Therefore, the transformation
matrix G′

x becomes random in bringing the original gauge field configurations to the
gauge fixing hypersurface. See Fig. 1.

From the technical viewpoint, this difficulty is avoided if we begin with the ordered
link variables {Ux,µ} by a preconditioning which eliminates the randomness. From this
viewpoint, the LLG could be regarded as a preconditioning [32,36]. As we explained
in the above, however, the LLG in our approach plays a more essential and a totally
different role of specifying the CFN decomposition by combining LLG with the MAG,
rather than merely removing the randomness, as emphasized in [30].

3.3 Discriminating our approach from the others

Although the technique of constructing the unit vector field nx given above has
already appeared, e.g., in [32,35,36], there is a crucial difference between our approach
and others. In [32, 35], the unit vector field nx was regarded as the field variable of
the Skyrme–Faddeev model which is conjectured to be a low-energy effective theory
of Yang-Mills theory. However, the precise relationship between the Skyrme–Faddeev
model and the original Yang-Mills theory is still under debate. (The paper [32]
concluded with the negative answer.) In contrast, our approach can identify the
lattice field nx as a lattice version of the CFN field variable n(x) obtained by the
CFN decomposition of the original gauge potential Aµ(x) in Yang-Mills theory. In
fact, the naive continuum limit of the MAG on the lattice agrees with the MAG for
the CFN variable [6], see Appendix B. To the best of our knowledge, such an explicit
relationship has not been elucidated in the previous works including [32,35,36]. We do
not assume any model written in terms of the unit vector field nx, which is regarded
as an effective theory of Yang-Mills theory.

In [32], it is studied whether the identification of the Skyrme–Faddeev (or Faddeev-
Niemi) model as a low-energy effective theory of Yang-Mills theory is efficient or not.
The Skyrme–Faddeev model can have the same pattern of spontaneous symmetry
breaking SU(2) → U(1) as the nonlinear sigma model. Therefore, if such sponta-
neous breaking of the global SU(2) symmetry occurs, two massless Nambu-Goldstone
bosons appear and the mass gap disappears. This is because in the Skyrme–Faddeev
model there are no gauge fields into which the massless Nambu-Goldstone bosons
are absorbed through the Higgs mechanism. To avoid this unpleasant situation, the
global SU(2) symmetry was explicitly broken in [32] by choosing the configuration in
the neighborhood of n = (0, 0, 1) among a large number of local minima. This view-
point is consistent with adopting the ensemble of nx aligned in a specific direction,
since the nx in [32] is the field variable of describing the Skyrme–Faddeev model,
which is not necessarily the CFN variable nx. On the contrary, the variable nx in
our approach always denotes the CFN variable of the original Yang-Mills gauge field,
without referring to the Skyrme–Faddeev model. This viewpoint does not lead to the
immediate contradiction. The relationship of the Skyrme–Faddeev model and the
Yang-Mills theory is discussed in the final section in our framework.
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4 Numerical results: magnetic condensations

We present the first numerical evidence for the existence of two vacuum condensates
〈g‖H‖〉 and 〈g2Bµ · Bµ〉, indicating the recovery of stability in the Savvidy vacuum.

4.1 Setting up the simulations

We define the lattice derivative [35] by

∆µn(x) := n(x+ µ)− γ(x)n(x) := sµ(x), (4.1)

which guarantees automatically the orthogonality condition n(x) ·∆µn(x) = n(x) ·
s(x) = 0 on a lattice by choosing γ(x) as

γ(x) = n(x) · n(x+ µ). (4.2)

This is not the case for the naive lattice derivative ∂L
µn(x) := n(x+µ)−n(x). Then

Bµ(x) on a lattice is defined by

gBµ(x) := sµ(x)× n(x) = ∆µn(x)× n(x) = n(x+ µ)× n(x). (4.3)

The squared g2B2
µ(x) agrees with sµ(x)

2 just as in the continuum case:

g2B2
µ(x) = (sµ(x)× n(x))2 = 1− (γµ(x))

2 = sµ(x)
2 = (∆µn(x))

2. (4.4)

A simple calculation shows that

n(x)× (sµ(x)× sν(x)) = 0. (4.5)

This implies that sµ(x)×sν(x) is parallel to n(x) and does not have the components
perpendicular to n(x). Therefore, it is natural to define gHµν(x) and gHµν(x) on a
lattice by

gHµν(x) := −(sµ(x)× sν(x)) = gHµν(x)n(x). (4.6)

and

gHµν(x) = gn(x) ·Hµν(x) := −n(x) · (sµ(x)× sν(x)). (4.7)

This implies the equality of the squared quantities:

g2H2
µν(x) = (sµ(x)× sν(x))

2 = [n(x) · (sµ(x)× sν(x))]
2 = g2H2

µν(x). (4.8)

Our numerical simulations are performed on the lattice with the lattice size 124,
244, 364 by using the standard Wilson action for the gauge coupling β = 2.1 ∼ 2.7 and
periodic boundary conditions. Staring with cold initial condition and thermalizing
50*100 sweeps, we have obtained 200 configurations (samples) for 124, 364 lattice and
500 samples for 244 lattice at intervals of 100 sweeps. For LLG and MAG, we have
used the over relaxation algorithm.
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Figure 3: The Savvidy-like magnetic condensation: 〈g‖H‖〉 := 〈g√Hµν ·Hµν〉 =
〈√

(∆µn×∆νn)2
〉

versus β = 2.0 ∼ 2.7 on 124, 244, 364 lattices.

4.2 Savvidy-like magnetic condensation

We have measured the magnetic condensation

〈g‖H(x)‖〉 := 〈g
√

Hµν(x) ·Hµν(x)〉 =
〈√

(∆µn(x)×∆νn(x))2
〉

.

by changing β on the lattices with different sizes. This corresponds to the Savvidy-
like magnetic condensation, but it has microscopic origin written in terms of the field
n(x) as a part of the gauge potential Aµ. See Fig. 3 for the numerical values of the
dimensionless magnetic condensation versus β = 2.0 ∼ 2.7 on 124, 244, 364 lattices.

We have also measured the squared magnetic condensation

〈g2‖H(x)‖2〉 := 〈g2Hµν(x) ·Hµν(x)〉 =
〈

(∆µn(x)×∆νn(x))
2
〉

.

See Fig. 4. We can estimate the variance, 〈(‖H(x)‖ − 〈‖H(x)‖〉)2〉 = 〈‖H(x)‖2〉 −
〈‖H(x)‖〉2, and the standard deviation σ :=

√

〈(‖H(x)‖ − 〈‖H(x)‖〉)2〉, as discussed
in the effective potential.

4.3 A novel magnetic condensation

A novel magnetic condensation predicted in [6]

〈g2Bµ(x) · Bµ(x)〉 =
〈

(∆ρn(x))
2
〉

.

has been measured as shown in Fig. 5. The value is larger than the Savvidy-like
magnetic condensation, as suggested by the analytical lower bound mentioned before.

All data of two magnetic condensations are collected in Fig. 6 where they are mea-

sured in units of the string tension by way of the lattice spacing ǫ(β) =
√

σ(β)/σphys,

as a function β (Fig. 7) where σphys = (440MeV)2 is the physical string tension
and σ(β) is the (dimensionless) lattice string tension (determined by the magnetic
monopole part of the Abelian Wilson loop), see [37] for details.
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Figure 4: The squared Savvidy-like magnetic condensation: 〈g2‖H‖2〉 := 〈g2Hµν · Hµν〉 =
〈(∆µn×∆νn)

2〉 versus β = 2.0 ∼ 2.7 on 124, 244, 364 lattices.
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Figure 5: A novel magnetic condensation 〈g2Bµ · Bµ〉 := 〈(∆ρn)
2〉 versus β = 2.0 ∼ 2.7 on
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The numerical value M(β) measured on the lattice for the quantity of mass di-
mension one is translated into the physical value Mphys through the relation M(β) =
Mphys · ǫ(β),

Mphys =
M(β)

ǫ(β)
=

M(β)
√

σ(β)/σphys

=
M(β)
√

σ(β)

√
σphys. (4.9)

The magnetic condensations of mass dimension two are translated as

〈

(∂ρn(x))
2
〉

phys
=

〈(∆ρn(x))
2〉 (β)

ǫ2(β)
=

〈(∆ρn(x))
2〉 (β)

σ(β)
σphys. (4.10)

Both magnetic condensations of mass dimension two increase monotonically as
the lattice spacing ǫ decreases (or β increases).
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Figure 7: Lattice spacing ǫ versus β (inverse gauge coupling) in units of the physical string
tension σphys, reproduced from [37].

4.4 The ratio

The precise ratio r := 〈g2B2〉 / 〈g‖H‖〉 between two magnetic condensations is plotted
in Fig. 8. Although the respective condensation changes considerably with decreasing
in the lattice spacing ǫ (or increasing β), the ratio converges to a value r ∼ 1.8 in the
continuum limit ǫ ↓ 0. The obtained value of the ratio r ∼ 1.8 supports the recovery
of stability of the Savvidy vacuum according to the argument [6].

The fact that the increase of two vacuum condensates and the constancy of the
ratio with respect to β suggests that the composite operators g2B2 and g‖H‖ besides
the field n have non-zero anomalous dimensions which are nearly equal to each other.
The anomalous dimension of the field n is obtained by calculating the correlation

function
〈

nA(x)nB(y)
〉

in the short distance |x−y| or high energy-momentum region,

just as obtained in the non-linear sigma model in two dimensions which has the
asymptotic freedom [38,39]. The numerical determination of the anomalous dimension
of the composite operator is possible in principle. However, this is still beyond the
ability of our numerical calculations and to be reserved as a future problem.
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Figure 8: The ratio r :=
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g2B2

〉
/ 〈g‖H‖〉 of two condensates versus the lattice spacing ǫ on

124, 244, 364 lattices.

4.5 Lattice effective potential

The probability distribution of the local operator Φ(x) is obtained by calculating the
expectation value

〈δ(ϕ− Φ(x))〉 . (4.11)

The effective potential is obtained from this distribution by taking the logarithm and
changing the signature [40],

Veff(ϕ) = − ln 〈δ(ϕ− Φ(x))〉 . (4.12)

The effective constraint potential [41] is defined for the averaged operator Φ̄ :=
V −1∑

x∈V Φ(x) over the four-volume V by

Veff(ϕ) = − ln

〈

δ

(

ϕ− V −1
∑

x∈V

Φ(x)

)〉

. (4.13)

The value of the composite field, at which the potential has a minimum or the field
distribution is maximum, is equal to the value of the vacuum condensate. This
argument can be easily extended to a number of operators, Φ1,Φ2, · · · and the effective
potential Veff(ϕ1, ϕ2, · · · ).

In our case, we can define two effective potentials written in terms of the values
of two composite operators:

Veff(φB2 , φH) = − ln
〈

δ(φB2 − g2B2(x))δ(φH − g‖H(x)‖)
〉

, (4.14)

and

Veff(φB2 , φH) =− ln

〈

δ

(

φB2 − V −1
∑

x∈V

g2B2(x)

)

δ

(

φH − V −1
∑

x∈V

g‖H(x)‖
)〉

.

(4.15)
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(left panel) the probability distribution independent of x: exp[−Veff (φB2 , φH)] , and (right
panel) the effective potential Veff (φB2 , φH), at β = 2.3 on 244 lattice for 500 samples.
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See Fig. 9 and Fig. 10 for the effective potentials obtained in the LLG and SU(2)global-
invariant MAG. Our simulations have shown that the local potential (4.14) is indepen-
dent of the point x and hence the spacetime average of the local potential is plotted
in Fig. 9.

The numerical calculations show that the support of Veff (φB2 , φH) and the dis-
tribution are contained in the allowed region g2B2 > g‖H‖ and that the minimum of
Veff (φB2, φH) and the maximum of the distribution are indeed shifted from zero in
the allowed region. These results clearly indicate the simultaneous existence of two
vacuum condensates, although two operators B2 and ‖H‖ are always greater than or
equal to zero.5 In the deconfinement phase, the minimum is expected to be at the
zero value of the composite operators B2 and ‖H‖.

Thus the numerical results obtained in this paper confirm the qualitative result
obtained by analytical calculations to the one-loop level in the previous paper [6].

4.6 Lorentz invariance on a lattice
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Figure 11: Check of Lorentz invariance. Plots of (left panel) V −1∑

x∈V

〈

BA
x,µ

〉

for µ =

1, 2, 3, 4 and A = 1, 2, 3, (right panel) V −1∑

x∈V 〈Hx,µν〉 for µ, ν = 1, 2, 3, 4, on 244 lattice
at β = 2.3 using 100, 300 and 500 samplings.

The magnetic condensations measured so far are defined in the Lorentz invariant
way from the beginning. On the lattice, the Lorentz invariance (Euclidean rotational
invariance) is inevitably broken due to a non-zero lattice spacing. However, the
rotation invariance by angle π/2 exists even on the isotropic lattice. To see this
discrete rotation invariance, we have measured the vacuum expectation values of a

component of the Lorentz vector
〈

BA
x,µ

〉

and the Lorentz tensor 〈Hx,µν〉 = 〈nx ·Hx,µν〉
on a lattice, see Fig. 11. What they vanish is a necessary condition for the full

Lorentz invariance of the continuum theory
〈

BA
µ (x)

〉

= 0 and 〈Hµν(x)〉 = 0. The

vacuum expectation values
〈

BA
x,µ

〉

and 〈Hx,µν〉 on a lattice should be zero reflecting the

discrete rotation invariance. In fact, Fig. 11 indicates that the respective component is

5We can see that the distribution of ‖H‖ in Fig. 9 is consistent with the value of the stan-
dard deviation σ calculated from date of Fig. 4 according to σ :=

√

〈(‖gH‖ − 〈‖gH‖〉)2〉 =
√

〈‖gH‖2〉 − 〈‖gH‖〉2, e.g., σ ∼=
√
1.028− 0.8672 ∼= 0.526 at β = 2.3.

19



0.8

1

1.2

1.4

1.6

1.8

2

-1 0 1 2 3 4 5 6 7 8
# of random gauge transformation

’M’
’H’

’ratio’

Figure 12: The effect of lattice Gribov copies: r,
〈
g2B2

〉
and 〈g‖H‖〉 (from up to down)

versus the number of how many times the random gauge transformations are performed for
the original configurations, at β=2.35 with the lattice size L = 84 for thermalization=3000,
iteration=100, number of configurations=30.

extremely small compared to the relevant vacuum condensates
〈

B2
x,µ

〉

and
〈√

Hx,µν
2
〉

defined in the Lorentz invariant (and global gauge invariant) way. Moreover, it is
observed that the absolute value with the error are decreasing monotonically, as the
number of samplings is increasing, as expected.

Thus we conclude that the magnetic condensations and the dynamical generation
of color magnetic field presented in this paper do not mean the violation of the Lorentz
invariance in the Yang-Mills theory. This result is in sharp contrast with the original
Savvidy and Copenhagen vacuum.

4.7 Lattice Gribov copies

In our calculations of magnetic condensations, we have also estimated the effect of
lattice Gribov copies due to the program of performing the gauge fixing on a lattice
[42,43]. We have used a standard iterative gauge fixing procedure for MAG and LLG.
In such a case, gauge fixing sweeps may be stuck for some local minima of a gauge
fixing functional. Different local minima give rise to different gauge transformations,
but they can not be distinguished from the viewpoint of the iterative gauge fixing
procedure. These are the lattice Gribov copies. To check the effect of copies to the
magnetic condensations, we generate 30 of SU(2) configurations {Ux,µ} on 84 lattice
at β = 2.35. Then, we generate 4 of gauge equivalent configurations (i.e., copies) via
a random gauge transformation before performing the LLG. Using these gauge copies,

we estimated the novel type of vacuum condensation
〈

B2
µ

〉

, the magnetic condensation

〈||H||〉 and the index for the stability restoration r =
〈

g2B2
µ

〉

/ 〈g||H||〉. Fig. 12 shows

the ratio r,
〈

g2B2
µ

〉

,and 〈g||H||〉. The horizontal axis show the number of times of a

random gauge transformation.
This result shows that the ratio is stable, although the respective condensation is

a little affected by Gribov copies. Therefore, qualitative analyses given in this section
will not be affected by Gribov copies.
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4.8 Anatomy of dimension two condensates

We define the spacetime average of the vacuum expectation value for the local oper-
ator O(x) by

〈〈O〉〉 := 1

Ω

∫

Ω
d4x 〈O(x)〉 . (4.16)

Using the CFN variable, Aµ(x) = Vµ(x) + Xµ(x) = Cµ(x) + Bµ(x) + Xµ(x), the
squared potential 〈〈A 2

µ 〉〉 is decomposed as

〈〈A 2
µ 〉〉 = 〈〈V2

µ〉〉+ 2〈〈V · X〉〉+ 〈〈X2
µ〉〉

= 〈〈C2
µ〉〉+ 〈〈B2

µ〉〉+ 2〈〈B · X〉〉+ 〈〈X2
µ〉〉. (4.17)

Following Zakharov et al. [44], the minimum of the squared potential 〈〈A 2
µ 〉〉 with

respect to the gauge transformation is gauge invariant. It should be remarked that the
operator X2

µ is gauge invariant under the SU(2) local gauge transformation II, see [30].

Therefore, the difference 〈〈A 2
µ 〉〉 − 〈〈X2

µ〉〉 could have a gauge invariant meaning. 6
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Figure 13: Anatomy of dimension two condensates. From top to down, positive 〈〈ǫ2g2A 2
µ 〉〉,

〈〈ǫ2g2X2
µ〉〉, 〈〈ǫ2g2C2

µ〉〉, 〈〈ǫ2g2B2
µ〉〉, and negative 〈〈ǫ2g2Xµ ·Bµ〉〉. (Left panel) the bare values

measured on a lattice, (Right panel) the ratio of the respective dimension two condensate
〈〈O2〉〉 to the original dimension two condensate 〈〈A 2

µ 〉〉. The presented values are raw
data, i.e., bare values without any renormalizations. In the simulations, the gauge potential
Aµ(x) is extracted from the link variable Ux,µ using the linear definition, i.e, ǫgAµ(x) =
i
2 (Ux,µ−U †

x,µ). The simulations are performed on the 244 lattice under the same conditions
as in the other simulations.

Note that the cross term 〈〈V ·X〉〉 = 〈〈B ·X〉〉 is eliminated by a special choice of
the gauge transformation II, ω′ = ω‖n (residual U(1) invariance) even after the nMA
gauge is imposed, and hence 〈〈A 2

µ 〉〉 → 〈〈c2µ〉〉 + 〈〈B2
µ〉〉 + 〈〈X2

µ〉〉 = 〈〈V2
µ〉〉 + 〈〈X2

µ〉〉.
However, it does no longer hold in general after the complete gauge fixing.

6Recently, there appeared many papers [19,44–46,48–50] discussing the gauge invariance for the
spacetime average of mass dimension two condensate 〈A 2

µ 〉 i.e., 〈〈A 2
µ 〉〉. Among them, Slavnov

[48–50] claims a stronger statement that 〈〈A 2
µ 〉〉 can be gauge invariant and can have the same value

independent of the gauge fixing adopted.
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It is pointed out in [6] that the off-diagonal gluon condensation of mass dimension
two 〈〈X2

µ〉〉 6= 0 leads to the Skyrme–Faddeev model as a low-energy effective theory
of Yang-Mills theory. The existence was also assumed as a key ingredient in the
studies [28, 51].

In view of these, we have measured various dimension two condensates constructed
from the CFN variables, including the off-diagonal gluon condensation 〈〈X2

µ〉〉 6= 0,
for the first time, see Fig. 13. Here we have performed the CFN decomposition on
a lattice according to (3.9). The numerical simulations show that the cross term
〈〈V · X〉〉 = 〈〈B · X〉〉 does not vanish and becomes negative, 〈〈B · X〉〉 < 0, after the
complete gauge fixing, i.e., the Landau gauge fixing in addition to the nMAG. In
other words, Xµ is not in the mass eigenstate X̃µ. However, the condensate 〈〈X̃2

µ〉〉 =
〈〈X2

µ〉〉 6= 0 has the same value.

5 Conclusion and Discussion

We have implemented the Cho-Faddeev-Niemi decomposition in the SU(2) Yang-Mills
theory on a lattice. Performing the Monte Carlo simulation on a lattice based on this
framework, we have obtained a first numerical evidence for the existence of a novel

magnetic condensation
〈

B2
µ

〉

in addition to another magnetic condensation 〈‖H‖〉
corresponding to the Savvidy-like magnetic field. We have confirmed the existence
of the vacuum condensations by calculating the effective potential on a lattice and
obtained the stable value for the ratio r ∼ 1.8 in favor of stability restoration of the
Savvidy vacuum according to the previous paper [6]. Moreover, it has been checked
that the magnetic condensations in question do not break the Lorentz invariance.

In the previous paper [6], we have argued that the stability of the Savvidy vacuum
is restored due to the dynamical mass generation of off-diagonal gluons caused by a
novel type of magnetic condensation (with mass dimension two) coming from mag-
netic monopole degrees of freedom. The off-diagonal gluons acquire the dynamical

mass, M2
X = g2

〈

B
2
µ

〉

due to the existence of a novel magnetic condensation
〈

B
2
µ

〉

and removes the tachyon mode of the off-diagonal gluon to cure the Nielsen–Olesen
instability of the Savvidy vacuum, while the diagonal gluon remains massless. To
really confirm this claim, we must check whether the off-diagonal gluon mass MX

determined by measuring the decay rate of the correlation function
〈

XA
µ (x)X

B
ν (y)

〉

agrees with the magnetic condensation g2〈B2
µ〉. In order to know the absolute value

of the condensate
〈

B2
µ

〉

, we need to know more detailed behaviors of the propagator,

e.g., the anomalous dimension of the field n. Analytical attempt of calculating the
anomalous dimension is now in progress within the continuum formulation.

The other vacuum condensation 〈X2
µ〉 is also important. In fact, the off-diagonal

gluon condensation of mass dimension 2 proposed in the MAG [19], 〈Xρ ·Xρ〉 = 2Λ2 6=
0, in the present framework yields the mass term for the field Bµ or the kinetic term
for n through the interaction term 1

2
Bµ · BµXρ ·Xρ:

g2Λ2
Bµ · Bµ = Λ2(∂µn)

2. (5.1)

Therefore, the off-diagonal gluon condensation yields the Skyrme-Faddeev model [26],
which has been proposed as a low-energy effective theory of Yang-Mills theory and is
supposed to describe the glueball by the knot soliton solution.
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A way to obtain a gauge invariant characterization of dual superconductivity in
QCD is to calculate the Wilson loop average. This is in principle possible in the
same framework using the CFN decomposition based on a version of the non-Abelian
Stokes theorem [17, 27].

It is also important to clarify the relationship between magnetic condensation
discussed in this paper and magnetic monopole condensation as a source of dual
superconductor, in order to confirm the magnetic monopole dominance. The issues
are to be reported in subsequent papers.

Remarks on the gauge invariance

The numerical simulations performed in this paper are based on a new interpreta-
tion of the CFN decomposition proposed in the paper [30]. As shown in [30], in order
to determine the configurations of the n field, the complete gauge fixing is needed,
and we have adopted the nMAG and the Landau gauge in this simulation. In this
sense, the obtained configurations of n field depend on the gauge adopted.

However, the following points should be remarked.

1. We can choose an arbitrary gauge-fixing condition other than the Landau to fix
the SU(2) local gauge symmetry II which remains after the nMAG, as clarified
in [30].

2. The n field is not a directly measurable physical quantity, since it is a vector
indicating the color direction at each spacetime point and is not a color singlet
object. Therefore, even if the n field is subject to changes by taking different
gauge fixing conditions, it does not cause the observable phenomena. Hence,
this does not lead to any difficulty.

Therefore, the problem is whether or not the resulting changes of the n field
influence the magnetic condensations in question. As already mentioned in ref. [6],

we know that the operators B2
µ and

√

H2
µν whose expectation values are measured

in this paper are not invariant under the full SU(2) local gauge transformation II,
although they are invariant under the global gauge transformation II (color rotation).
(After the nMAG, the theory has the SU(2) local gauge symmetry II, see [30]). In the
operator level, the full SU(2) gauge invariant combinations are obtained by including

the electric components as
√

(Eµν +Hµν)2 or V
2
µ = (Bµ+Cµ)

2 = B2
µ+C2

µ. Therefore,

from the viewpoint of gauge invariance in the operator level, we should have measured

the quantities
〈√

(Eµν +Hµν)2
〉

or
〈

V2
µ

〉

. Nevertheless, we have measured only
〈

B2
µ

〉

or
〈√

H2
µν

〉

in this paper and avoided including the electric components. The reasons

are as follows.

1. The dimension two composite operators B2
µ,
√

H2
µν , and the dimension four

operators H2
µν are gauge invariant in the operator level under the local U(1)II

gauge transformation, see Appendix A.2. This is the same setting as the original
approach of Nielsen–Olesen [2]. Moreover, they are also color singlets, i.e.,
invariant under the global SU(2) gauge transformation II (color rotation).

2. In this paper we are interested in the magnetic contributions coming from the
topological degrees of freedom expressed through the n field.
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3. According to the conventional wisdom, the pure color electric field makes the
vacuum unstable due to gluon-antigluon pair annihilations in gluodynamics,
just as the pure electric field makes the QED vacuum unstable due to electron-
positron pair creations. Therefore, the inclusion of the electric components Cµ

and Eµν under our identification could be other sources for the instability of the
vacuum. This leads to difficulties in demonstrating our claim that the magnetic
condensations stabilize the vacuum by eliminating the tachyon mode.

4. Our simulations are inspired by the analytical calculation [6] to the one-loop
order. In the pure magnetic case, the effective potential is obtained in the
closed form. When the electric field and the magnetic field are simultaneously
included, however, no one has succeeded to obtain the closed form for the ef-
fective potential and the known expression is a cumbersome infinite series.

5. After taking spacetime average and the vacuum expectation value or Yang-Mills
average, the gauge variant operator in the strong sense could become gauge
invariant in the week sense as discussed in [48–50]. This leaves a possibility of

SU(2) gauge invariance for
〈

B2
µ

〉

and
〈√

H2
µν

〉

.

6. Incidentally, the same type of a mathematical identity is applied to yield the
lower bound on V2

µ. But the identity (Vµ · Vµ)
2 − (Vµ × Vν) · (Vµ × Vν) =

(Vµ · Vν)(Vµ · Vν) ≥ 0, yields not so beautiful and not so useful result:

g2V2
µ = g2B2

µ + g2c2µ ≥ g
√

H2
µν + 2[c2µ(∂νn)

2 − cµcν∂µn · ∂νn]. (5.2)

Indeed, the effect of the electric field is important. We have succeeded to separate all
the CFN variables n, cµ and Xµ. Therefore, we can now calculate the relevant quanti-
ties and estimate the desired electric contributions. Some of the results are presented
in section 4.8 and at the workshop [52]. We plan to perform the detailed investiga-
tion as the next work. However, we wish to avoid to present the details. Because,
the inclusion of such materials makes the paper longer and the presentation could
become rather incomplete. Without presenting the detailed numerical calculations,
we can show that the other electric contributions increase the value of off-diagonal
gluon mass and they are larger than the magnetic contributions, at least in the bare
values before performing the renormalization by subtracting the perturbative ultravi-
olet divergent part. Therefore, the inclusion of the electric part does not change the
main claim of this paper: the tachyon mode is eliminated as a consequence of shifting
the spectrum of the off-diagonal gluons upward due to the novel type of magnetic
condensation (it is sufficiently achieved without the positive electric contribution).
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A Gauge invariance and fixing in the CFN variable

A.1 Gauge symmetry

For the CFN decomposition,

Aµ(x) = cµ(x)n(x) + g−1∂µn(x)× n(x) + Xµ(x) (A.1)

the restricted potential cµ and gauge covariant potential Xµ are specified by n and
Aµ:

cµ(x) = n(x) · Aµ(x), (A.2)

Xµ(x) = g−1n(x)×Dµ[A ]n(x). (A.3)

The second equation is obtained by making use of the fact that

Dµ[V]n := ∂µn+ gVµ × n = ∂µn+ gBµ × n := Dµ[B]n ≡ 0, (A.4)

which yields

Dµ[A ]n = ∂µn+ gAµ × n = ∂µn+ gVµ × n+ gXµ × n = gXµ × n. (A.5)

Therefore, the gauge transformations δcµ, δXµ are uniquely determined, once the
transformations δn and δAµ are specified.

• The fact n(x)2 = 1 urges us to consider the local rotation by an angle θ(x):

δn(x) = gn(x)× θ(x) = gn(x)× θ⊥(x), (A.6)

where θ⊥(x) are the perpendicular components of θ(x) with two independent
components (n · θ = 0). For the parallel component θ‖(x) = θ‖(x)n(x), the
vector field n(x) is invariant. Therefore, it is a redundant symmetry, which
we call U(1)θ symmetry, of the Yang-Mills theory written in terms of CFN
variables, since cµ(x) and Xµ(x) are also unchanged for a given Aµ(x). This
symmetry is the local SU(2)/U(1) symmetry and denoted by [SU(2)/U(1)]θlocal.

• The invariance of the Lagrangian is guaranteed by the usual gauge transforma-
tion:

δAµ(x) = Dµ[A ]ω(x). (A.7)

This symmetry is the local SU(2) gauge symmetry and denoted by SU(2)ωlocal.
Note thatω(x) and θ(x) are independent, since the original Yang-Mills Lagrangian

is invariant irrespective of the choice of θ(x).
For later convenience, we denote the above transformations by δθ and δω:

(1) θ 6= 0 (n · θ = 0), ω = 0:

δθn(x) = gn(x)× θ(x), δθAµ(x) = 0. (A.8)

(2) θ = 0, ω 6= 0:
δωn(x) = 0, δωAµ(x) = Dµ[A ]ω(x). (A.9)

Then the general gauge transformation of the CFN variables is obtained by combining
δθ and δω.
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A.2 Local gauge transformations I and II

In the papers [5, 6], two local gauge transformations are introduced by decomposing
the original gauge transformation, δωAµ(x) = Dµ[A ]ω(x). 7

Local gauge transformation I:

δωn =0, (A.10a)

δωcµ =n ·Dµ[A ]ω, (A.10b)

δωXµ =Dµ[A ]ω − n(n ·Dµ[A ]ω), (A.10c)

=⇒δωBµ = 0, δωVµ = n(n ·Dµ[A ]ω). (A.10d)

Local gauge transformation II:

δ′ωn =gn× ω′, (A.11a)

δ′ωcµ =n · ∂µω′, (A.11b)

δ′ωXµ =gXµ × ω′, (A.11c)

=⇒δ′ωBµ = Dµ[B]ω
′ − (n · ∂µω′)n, δ′ωVµ = Dµ[V]ω

′. (A.11d)

The gauge transformation for the field strength can be obtained in the similar way
as follows.
Local gauge transformation I:

δωEµν =nδωEµν = n{∂µ(n ·Dν [A ]ω)− ∂ν(n ·Dµ[A ]ω)}, (A.12)

δωHµν =nδωHµν = 0. (A.13)

Local gauge transformation II:

δ′ωEµν =gEµν × ω′ + n{∂µ(n · ∂νω′)− ∂ν(n · ∂µω′)}, (A.14)

δ′ωHµν =gHµν × ω′ − n{∂µ(n · ∂νω′)− ∂ν(n · ∂µω′)}. (A.15)

This implies the transformation for the sum

δ′ω(Eµν +Hµν) =g(Eµν +Hµν)× ω′, (A.16)

leading to the full SU(2)II invariance:

δ′ω(Eµν +Hµν)
2 =0. (A.17)

Moreover, we can show that

δ′ω(Dµ[V]Xν −Dν [V]Xµ) =g(Dµ[V]Xν −Dν [V]Xµ)× ω′, (A.18)

δ′ω(Xµ × Xν) =g(Xµ × Xν)× ω′, (A.19)

7The gauge transformation I was called the passive or quantum gauge transformation, while
II was called the active or background gauge transformation. However, this classification is not
necessarily independent, leading to sometimes confusing and misleading results.
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which lead to the full SU(2)II gauge invariance:

δ′ω(Dµ[V]Xν −Dν [V]Xµ)
2 = 0, δ′ω(Xµ × Xν)

2 = 0, (A.20)

δ′ω[(Eµν +Hµν) · (gXµ × Xν)] = 0. (A.21)

In particular, when ω′(x) is parallel to n, i.e., ω′(x) = θ′(x)n(x), we obtain
Local U(1) gauge transformation II for ω′(x) = θ′(x)n(x):

δ′θn =0, (A.22a)

δ′θcµ =∂µθ
′, (A.22b)

δ′θXµ =gXµ × θ′n, (A.22c)

=⇒δ′θBµ = 0, δ′θVµ = n∂µθ
′. (A.22d)

Note that n and Bµ are invariant under the U(1)II gauge transformation II, while
cµ transforms as the U(1)II gauge field. It is easy to show the local U(1)II gauge
invariance for the field strengths:

δ′θEµν = 0, δ′θHµν = 0, (A.23)

which is also consistent with the initial definitions:

Eµν = n(∂µcν − ∂νcµ), Hµν = −gBµ × Bν . (A.24)

Therefore, the dimension two composite operators B2
µ,
√

H2
µν , and the dimension

four operators H2
µν are gauge invariant under the local U(1)II gauge transformation.

A.3 MAG as a partial gauge fixing

The gauge transformation I defined in the previous paper [6] is nothing but δω. On the
other hand, the gauge transformation II has been defined in [6] as a gauge transforma-
tion such that it does not change X2. To see this, we consider the gauge transformation
of X2. Since the relationship (A.5) leads to

X
2
µ = g−2(n×Dµ[A ]n)2 = g−2

{

(Dµ[A ]n)2 − (n ·Dµ[A ]n)2
}

= g−2(Dµ[A ]n)2,

(A.25)

the gauge transformation of X2 is calculated as [30]

δ
1

2
X

2
µ = g−1(Dµ[A ]n) · {n×Dµ[A ](θ⊥ − ω⊥)}, (A.26)

where we have used (A.8) and (A.9). Therefore, it turns out that the gauge transfor-
mation II corresponds to a special case θ⊥(x) = ω⊥(x).

The average over the spacetime of (A.26) reads [30]

δ
∫

d4x
1

2
X

2
µ =

∫

d4x(θ⊥ − ω⊥) ·Dµ[V]Xµ, (A.27)
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where we have used (A.3) and integration by parts. Hence the minimizing condition

0 = δ
∫

d4x
1

2
X

2
µ (A.28)

for arbitrary θ⊥ and ω⊥ yields the differential form:

FMA = χ := Dµ[V]Xµ ≡ 0, (A.29)

which reproduces exactly the MAG for the CFN variables [6]. Therefore, the min-
imization condition (A.28) works as a gauge fixing condition except for the gauge
transformation II, i.e., θ⊥(x) = ω⊥(x).

B Lattice CFN variables and gauge fixing

B.1 Continuum

We show that for the CFN decomposition,

Aµ = Vµ + Xµ = Cµ + Bµ + Xµ, Cµ = cµn, Bµ = g−1∂µn× n, (B.1)

the equality holds,

(Dµ[A ]n)2 = g2X2
µ. (B.2)

In other words, X2
µ is rewritten in terms of A and n. This is shown as follows.

(Dµ[A ]n)2 =(∂µn+ gAµ × n)2

=(∂µn)
2 + 2g∂µn · (Aµ × n) + g2(Aµ × n) · (Aµ × n)

=(∂µn)
2 + 2gAµ · (n× ∂µn) + g2(Aµ · Aµ)(n · n)− g2(Aµ · n)2

=g2B2
µ − 2g2(Cµ + Bµ + Xµ) · Bµ + g2(Cµ + Bµ + Xµ)

2 − g2(Cµ)
2

=g2B2
µ − 2g2B2

µ − 2g2Xµ · Bµ + g2(Bµ + Xµ)
2

=g2X2
µ, (B.3)

where we have used (A× B) · (C× D) = (A · C)(B · D)− (A · D)(B · C).
Another (simpler) way of showing the equivalence between (Dµ[A ]n)2 and X2

µ is
as follows. By making use the fact that

Dµ[V]n := ∂µn+ gVµ × n = ∂µn+ gBµ × n := Dµ[B]n ≡ 0, (B.4)

we find

Dµ[A ]n = ∂µn+ gAµ × n = ∂µn+ gVµ × n+ gXµ × n = gXµ × n. (B.5)

This fact leads us to the equivalence,

(Dµ[A ]n)2 = g2(Xµ × n)2 = g2(Xµ · Xµ)(n · n)− g2(Xµ · n)2 = g2X2
µ. (B.6)
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Hence, Xµ is rewritten in terms of Aµ and n

Xµ = g−1n×Dµ[A ]n. (B.7)

This is also the case for cµ,

cµ = n · Aµ. (B.8)

As shown in Appendix A, we can impose the gauge fixing condition by minimizing
the following functional under the local gauge transformation:

0 = δ
∫

x

1

2
X

2
µ, (B.9)

which leads to the differential form of the MAG condition in the CFN decomposition

Dµ[V]Xµ = 0. (B.10)

The MAG condition can also be derived by minimizing the functional

0 = δ
∫

x

1

2
(Dµ[A ]n)2. (B.11)

This is confirmed by explicit calculation and we leave it for the reader as an exercise.

B.2 Lattice

We show that the link variable on the lattice is identified with the CFN decomposition
of the gauge potential as

Ux,µ = exp{−iǫgAµ(x)} = exp{−iǫg[Cµ(x) + Bµ(x) + Xµ(x)]}. (B.12)

In fact, we recover (Dµ[A ]n)2 in the naive continuum limit from the lattice functional

FMAG := −
∑

x,µ

tr[nxUx,µnx+µU
†
x,µ]. (B.13)

In fact, by expanding the exponential Ux,µ = e−iǫAµ(x) into the Taylor series, we obtain

1

4

∑

µ

tr[nxUx,µnx+µU
†
x,µ]

=
D

2
− 1

4
ǫ2
{

(∂µn)
2 − 2g(∂µn× n) · Aµ + g2(n · n)(Aµ · Aµ)− g2(n · Aµ)

2
}

+O(ǫ3),

=
D

2
− 1

4
ǫ2(Dµ[A ]n)2 +O(ǫ3)

=
D

2
− 1

4
ǫ2g2X2

µ +O(ǫ3), (B.14)

where the summation over µ = 1, · · · , D should be understood and the order ǫ terms
cancel. Therefore, we can obtain the MAG in the CFN decomposition by minimizing
the functional FMAG with respect to the gauge transformation under the identification
(B.12).
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In particular, the naive MAG for the usual Cartan decomposition is obtained from
minimizing the functional

1

4

∑

µ

tr[σ3
GUx,µσ3

GU †
x,µ]

=
D

2
− 1

4
ǫ2g2

{

(Aµ · Aµ)− (σ3 · Aµ)
2
}

+O(ǫ3)

=
D

2
− 1

4
ǫ2g2Aa

µA
a
µ +O(ǫ3), (B.15)

for the link variable

gUx,µ = exp{∓iǫgAµ(x)} = exp{∓iǫg[aµ(x)T
3 + Aa

µ(x)T
a]}. (B.16)

In the above calculation of the naive continuum limit, we have used the following
formulae for the trace of the product of the generators in the SU(N) algebra.

tr(TATB) =
1

2
δAB, (B.17)

tr(TATBTC) =
1

4
(ifABC + dABC), (B.18)

tr(TATBTCTD) =
1

4N
δABδCD +

1

8
(ifABE + dABE)(ifCDE + dCDE). (B.19)

They are obtained by the repeated use of

TATB =
1

2
[TA, TB] +

1

2
{TA, TB} =

i

2
fABDTD +

1

2

(
1

N
δAB + dABDTD

)

. (B.20)

For SU(2), they are simplified as

tr(TATB) =
1

2
δAB, (B.21)

tr(TATBTC) =
1

4
iǫABC , (B.22)

tr(TATBTCTD) =
1

8
δABδCD − 1

8
ǫABEǫCDE =

1

8
δABδCD − 1

8
δACδBD +

1

8
δADδBC .

(B.23)

They are obtained by the repeated use of

TATB =
i

2
ǫABDTD +

1

4
δAB. (B.24)

In order to obtain this result (B.14), we must symmetrize the expression, i.e.,

FMAG :=− 1

2

∑

x,µ

tr[nxUx,µnx+µU
†
x,µ + nx−µUx−µ,µnxU

†
x−µ,µ]

=− 1

2

∑

x,µ

tr[nxUx,µnx+µU
†
x,µ + nxUx,−µnx−µU

†
x,−µ], (B.25)
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since +µ and −µ should be treated on the equal footing. Then the kinetic term for
n is derived as

1

2

∑

x,µ

tr[nxnx+µ + nx−µnx] =
1

2

∑

x,µ

tr[nx(nx+µ + nx−µ)]

=
1

2

∑

x,µ

tr[nx(2nx + ǫ2∂ǫ
µ∂

′ǫ
µnx)]

=
1

2

∑

x

[Dnx · nx +
1

2
ǫ2nx · ∂ǫ

µ∂
′ǫ
µnx]

=
∑

x

[
D

2
− 1

4
ǫ2(∂ǫ

µnx)
2
]

, (B.26)

where we have defined the forward derivative and the backward derivative by

∂ǫ
µφ(x) := [φ(x+ µ)− φ(x)]/ǫ, ∂′ǫ

µφ(x) := [φ(x)− φ(x− µ)]/ǫ, (B.27)

and the integration by parts,

∑

x

f(x)∂′ǫ
µg(x) = −

∑

x

∂ǫ
µf(x)g(x). (B.28)

The lattice d’Alembertian is defined by

∆(x, y) := −∂ǫ
µ∂

′ǫ
µδ(x− y) = −∂′ǫ

µ∂
ǫ
µδ(x− y). (B.29)

The other terms can be calculated in the similar way.

B.3 Remarks

We show that both (Dµ[A ]n)2 and X2
µ are invariant

δII(Dµ[A ]n)2 = g2δIIX
2
µ = 0, (B.30)

under the local gauge transformation II of the CFN variables:

n(x) → U(x)n(x)U †(x) := n′(x),

Xµ(x) → U(x)Xµ(x)U
†(x) := X

′
µ(x),

Dµ[A ](x) → U(x)Dµ[A ](x)U †(x) := Dµ[A ]′(x), (B.31)

where U(x) = exp(igω′(x)). Note that n(x) and Xµ(x) transform in the adjoint
transformation under the gauge transformation II. In particular, Dµ[A ](x) transforms
in the same way under the gauge transformation I and II, since it is written in terms
of the original variable Aµ which transforms as

Aµ(x) → U(x)AµU
†(x) +

i

g
U(x)∂µU

†(x) := A
′
µ(x). (B.32)
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The signature in front of A is important, since

(Dµ[−A ]n)2 =(∂µn− gAµ × n)2

=(∂µn)
2 − 2g∂µn · (Aµ × n) + g2(Aµ × n) · (Aµ × n)

=(∂µn)
2 − 2gAµ · (n× ∂µn) + g2(Aµ · Aµ)(n · n)− g2(Aµ · n)2

=g2B2
µ + 2g2(Cµ + Bµ + Xµ) · Bµ + g2(Cµ + Bµ + Xµ)

2 − g2(Cµ)
2

=g2B2
µ + 2g2B2

µ + 2g2Xµ · Bµ + g2(Bµ + Xµ)
2

=4g2B2
µ + 4g2Xµ · Bµ + g2X2

µ = g2(2Bµ + Xµ)
2, (B.33)

and there is no guarantee for the invariance of (2Bµ+Xµ)
2 under the gauge transfor-

mation II.
Note that in the usual continuum limit the signature in front of Aµ is not impor-

tant. However, in this case, we can not adopt the

Ux,µ = exp{iǫgAµ(x)} = exp{iǫg[Cµ(x) + Bµ(x) + Xµ(x)]}. (B.34)

The identification (B.12) is necessary in order to recover the continuum expressions
in the naive continuum limit as shown below. This is because the odd term in Aµ

plays the important role in this case and we can not change the signature arbitrarily.
However, if we adopted (B.34), then the naive continuum limit left the Bµ depen-

dent term after the CFN decomposition,

1

4

∑

µ

tr[nxUx,µnx+µU
†
x,µ]

=
D

2
− 1

4
ǫ2
{

(∂µn)
2 + 2g(∂µn× n) · Aµ + g2(n · n)(Aµ · Aµ)− g2(n · Aµ)

2
}

+O(ǫ3),

=
D

2
− 1

4
ǫ2(Dµ[−A ]n)2 +O(ǫ3)

=
D

2
− 1

4
ǫ2g2(2Bµ + Xµ)

2 +O(ǫ3). (B.35)

Note that

1

4

∑

µ

tr[nxUx,µnxU
†
x,µ]

=
D

2
− 1

4
ǫ2g2

{

(Aµ · Aµ)− (n · Aµ)
2
}

+O(ǫ3),

=
D

2
− 1

4
ǫ2g2(Bµ + Xµ)

2 +O(ǫ3). (B.36)

If we wish to adopt (B.34) as the definition of the link variable, we must change the
definition of Bµ as

Bµ = g−1n× ∂µn, (B.37)

which is determined from the condition of the covariant constant for the different
covariant derivative,

Dµ[V]n := ∂µn− gVµ × n = ∂µn− gBµ × n := Dµ[B]n ≡ 0. (B.38)
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Then we obtain the naive continuum limit,

1

4

∑

µ

tr[nxUx,µnx+µU
†
x,µ]

=
D

2
− 1

4
ǫ2
{

(∂µn)
2 + 2g(∂µn× n) · Aµ + g2(n · n)(Aµ · Aµ)− g2(n · Aµ)

2
}

+O(ǫ3),

=
D

2
− 1

4
ǫ2(∂µn− gAµ × n)2 +O(ǫ3)

=
D

2
− 1

4
ǫ2g2X2

µ +O(ǫ3). (B.39)
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