
ar
X

iv
:h

ep
-p

h/
05

05
00

5v
1 

 3
0 

A
pr

 2
00

5
PNU-NTG-10/2005

Production of Λ(1520)

Seung-Il Nam,1, 2, ∗ Atsushi Hosaka,1, † and Hyun-Chul Kim2, ‡

1Research Center for Nuclear Physics (RCNP),
Osaka University, Ibaraki, Osaka 567-0047, Japan

2Department of Physics and Nuclear Physics & Radiation Technology Institute (NuRI),
Pusan National University, Keum-Jung gu, Busan 609-735, Republic of Korea

Abstract
We investigate the Λ(1520) photoproduction via the reaction process, γN → KΛ(1520). We

employ the Born approximation and the Rarita-Schwinger formalism is used for Λ(1520). We

reproduce the total cross sections and the various angular distributions qualitatively well for the

proton target and estimate them for the neutron one. We find that the contact term contributes

much more to the process than the other kinematical channels. Taking into account this fact, we

reanalyze the K∗–exchange dominance hypothesis suggested by the previous experiments.
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I. INTRODUCTION

The observation of the evidence of the exotic pentaquark baryon Θ+ has been one of
the hottest issues in recent years in hadron physics [1]. However, there have been also
many negative opinions and results for that evidence. Recently, the LEPS collaboration
reported a new positive result for the evidence of the Θ+ baryon from the deuteron target [2].
Interestingly, the production of Θ+ took place together with Λ(1520) (≡ Λ∗) production.
Therefore, it is natural to expect that there is a deep correlation between the productions
of the two baryons, and it can be possible to extract information for the Θ+ baryon by
analyzing Λ∗ instead.

At present, there are several experiments related to the photoproduction (A. Boyarski et
al. [3] and D. P. Barber et al. [4]) and the electroproduction (S. P. Barrow et al. [5]) of Λ∗.
It was reported that the photoproduction of Λ∗ from the proton target was dominated by
vector K∗–exchange by analyzing the Λ∗ decay in the t–channel helicity frame [4]. On the
other hand, it was claimed that the pseudoscalar K–exchange was the dominant contribution
in the electroproduction [5].

In the present report, we investigate the Λ∗ photoproduction via the reaction process
γN → KΛ∗. As a frame work, we make use of the Born approximation which is expected to
work properly in the low energy region. The Rarita-Schwinger vector-spinor formalism is in-
troduced to treat spin–3/2 baryon (Λ∗) relativistically. A phenomenologically parameterized
form factor is taken into account in gauge invariant manner.

We obtain qualitatively well reproduced total cross sections and momentum transfer t–
dependence for the proton target case (γp → K+Λ∗) and estimate them for the neutron one
(γn → K0Λ∗). The contact term contribution is found to be the most dominant contribution
among various kinematical channels. This fact leads to the large difference in the order of
magnitudes of the total cross sections for the proton and neutron targets (σp ≫ σn). Vector
K∗–exchange plays an important role to produce a characteristic angular distribution for
the neutron target case. The K∗–exchange dominance hypothesis in the Λ∗ photoproduction
from the proton target [4] is reanalyzed by decomposing final spin state of the reaction. We
observe that though spin(helicity)-3/2 final state is important as concluded by the previous
analysis [4], the contribution of the spin–3/2 comes not only from the K∗–exchange but also
from the contact term. Furthermore, we show the contribution from the contact term is
larger than that from the K∗–exchange.

The present report will be organized as follows. In section 2 we will present the formalism
for the present reaction calculations. section 3 will provide numerical results including total
and differential cross sections and the t–dependence for the proton and neutron targets. A
reanalysis of the K∗–exchange dominance hypothesis will be given in section 4. Finally, we
will summarize our results and make a brief conclusion in section 5.

II. FORMALISM

We begin with the effective Lagrangians relevant to the γN → KΛ∗ process depicted in
Fig. 1. We define the momenta of photon, pseudo-scalar kaon, vector kaon, nucleon and
Λ∗ as shown in the figure. For convenience, the vector K∗–exchange in the t–channel and
contact diagrams will be called as the v–channel (vector channel) and c–channel (contact
term channel), respectively. We need to consider all diagrams shown in Fig. 1 for the proton
target, whereas only the magnetic (tensor) term of the s–channel, the K∗–exchange (v–
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FIG. 1: The Feynmann diagrams

channel) and the u–channel are necessary for the neutron target due to charge neutrality.
In order to formulate the effective Lagrangians including spin-3/2 particles, we employ the
Rarita-Schwinger (RS) field formalism which we summarize in the Appendix.

The relevant effective Lagrangians are given as :

LγNN = −ep̄

(

γµ + i
κp

2Mp

σµνk
ν
1

)

AµN + h.c.,

LγKK = ie
{

(∂µK†)K − (∂µK)K†
}

Aµ,

LγΛ∗Λ∗ = −Λ̄∗µ

{(

−F1/ǫgµν + F3/ǫ
k1µk1ν
2M2

Λ∗

)

− /k1/ǫ

2MΛ∗

(

−F2gµν + F4

k1µk1ν
2M2

Λ∗

)}

Λ∗ν

+ h.c.,

LγKK∗ = gγKK∗ǫµνσρ(∂
µAν)(∂σK)K∗ρ + h.c.,

LKNΛ∗ =
gKNΛ∗

MK
Λ̄∗µΘµν(A,Z)(∂

νK)γ5p + h.c.,

LK∗NΛ∗ = −igK∗NΛ∗

MV
Λ̄∗µγν(∂µK

∗
ν − ∂νK

∗
µ)p+ h.c.,

LγKNΛ∗ = −i
egKNΛ∗

MK
Λ̄∗µAµKγ5N + h.c., (1)

where N , Λ∗
µ, K and Aµ are the nucleon, Λ∗, pseudoscalar kaon and photon fields, respec-

tively. The interaction for K∗NΛ∗ vertex is taken from Ref. [14]. As for the γΛ∗Λ∗ vertex
for the u–channel, we utilize the effective interaction suggested by Ref. [15] which contains
four form factors of different multipoles. We ignore the electric coupling F1, since Λ∗ is
neutral. We also neglect F3 and F4 terms, assuming that higher multipole terms are less
important. Hence, for the photon coupling to Λ∗, we consider only the magnetic coupling
term F2 whose strength is proportional to the anomalous magnetic moment of Λ∗, κΛ∗ which
is treated as a free parameter. The off-shell term Θµν(A,Z) of a general spin-3/2 particle is
defined as follows [12, 13] :

Θµν(A,Z) = gµν +
{

1

2
(1 + 4Z)A+ Z)

}

γµγν . (2)
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If we choose A = −1 [7, 12, 13], we can rewrite Eq. (2) in the following form with new
parameter X = −(Z + 1/2) :

Θµν(X) = gµν +Xγµγν . (3)

Here, we will regard X as a free parameter in the present work.
In order to determine the coupling constant gKNΛ∗, we make use of the full width ΓΛ =

15.6 MeV and the branching ratio 0.45 for the decay Λ∗ → K̄N [16]. The coupling constant
KNΛ∗ can be obtained by the following relation :

gKNΛ∗ =







P3

4πM2
Λ∗M2

KΓΛ∗





1

4

∑

spin

|M′|2










− 1

2

, iM′ = ū(P2)γ5P
µ
3 uµ(P1),

(4)

where P1, P2 and P3 are the momenta of Λ∗, N and K̄, respectively for the two body
decay Λ∗ → K̄N in the center of mass frame. Thus, we obtain gKNΛ∗ ∼ 11. As for the
K∗NΛ∗ coupling constant, we will choose the values of |gK∗NΛ∗| = 0 and |gK∗NΛ∗| = 11
for the numerical calculation. In the non-relativistic quark model, if Λ∗ is described as
a p–wave excitation of flavor-singlet spin-3/2 state, it is shown that the strength of the
K∗NΛ∗ coupling constant is of the same order as that of KNΛ∗ or even larger than that.
The coupling constant of gγK∗K is taken to be 0.254 [GeV−1] for the charged decay and
0.388 [GeV−1] for the neutral decay [16].

Taking all of these into consideration, we construct the invariant amplitudes as follows :

iMs = −egKNΛ∗

MK

ūµ(p2, s2)k2µγ5
(/p1 +Mp)Fc + /k1Fs

q2s −M2
p

/ǫu(p1, s1),

+
eκpfKNΛ∗

2MpMK
ūµ(p2, s2)k2µγ5

(/qs +Mp)Fs

q2s −M2
p

/ǫ/k1u(p1, s1)

iMu = −fKNλκΛ∗

2MKMΛ

ūµ(p2)/k1/ǫD
µ
σΘ

σρk2ργ5u(p1)Fu,

Mt =
2efKNΛ∗

MK

ūµ(p2, s2)
qt,µk2 · ǫ
q2t −M2

K

γ5u(p1, s1)Fc,

iMc =
efKNΛ∗

MK
ūµ(p2, s2)ǫµγ5u(p1, s1)Fc,

iMv =
−igγKK∗gK∗NB

MK∗(q2t −M2
K)

ūµ(p2, s2)γν (q
µ
t g

νσ − gνt q
µσ) ǫρηξσk

ρ
1ǫ

ηkξ
2u(p1, s1)Fv,

(5)

where uµ is the RS vector-spinor which is defined as follows :

uµ(p2, s2) =
∑

λ,s

(

1λ
1

2
s|3
2
s2

)

eµ(p2, λ)u(p2, s), (6)

with the Clebsh-Gordon coefficient (1λ1
2
s|3

2
s2). Dµν stands for the spin-3/2 propagator :

Dµν = − /q +MΛ∗

q2 −M2
Λ∗

{

gµν −
1

3
γµγν −

2

3M2
Λ∗

qµqν +
qµγν + qµγν

3MΛ∗

}

. (7)
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In Eq. (5), we have shown how the four-dimensional form factor is inserted in such way
that gauge-invariance is preserved. As suggested in Ref. [17, 18], we adopt the following
parameterization for the four-dimensional gauge– and Lorentz–invariant form factor:

Fx(q
2) =

Λ4

Λ4 + (x−M2
x)

2
, x = s, t, u, v

Fc = Fs + Ft − FsFt. (8)

The form of Fc is chosen such that the on-shell values of the coupling constants are repro-
duced. The cutoff masses, Λ will be determined to produce the γp → K+Λ∗ total cross
section data.

III. NUMERICAL RESULTS

A. γN → KΛ∗ without the form factors

In this subsection, we present the numerical results for the γN → KΛ∗ without the form
factors in order to see the bare contributions from each channel. In the upper two panels of
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FIG. 2: Various contributions to the total cross (upper two panels) and differential (lower two

panels) sections for the proton target (left panel) and the neutron target (right panel) without a

form factor. The differential cross sections are obtained for Eγ = 2..0 GeV. We choose the unknown

parameters (κΛ∗ ,X) = (1, 1) and the coupling constant gKNΛ∗ = +11.

Fig. 2, we present various contributions to the total cross sections for the proton and neutron
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targets without form factors. Here, we fix the unknown parameters κΛ∗ = 1.0, X = 1 and
gK∗NΛ∗ = gKNΛ∗ = +11. Later, we discuss parameter dependence of our calculation. In the
case of the proton target in the left panel of Fig. 2, we observe that the contribution of the
contact term (c–channel) is dominant over other channels. We also note that the c– and v–
channels demonstrate the s–wave threshold behavior (σ ∼ (Eγ −Eth)

1/2), where Eth stands
for the threshold energy, although the magnitude of the v–channel is smaller than that of
the c–channel. However, the other channels, s, u and t start with p-wave contribution in
the vicinity of the threshold. This kinematical effect explains why the s–, u– and t–channels
are relatively suppressed especially near the threshold region as compared with the c– and
v–channels containing the s-wave contribution. For the neutron target (right panel), the
s–channel is the dominant contribution, because we have no neutral charge coupling in the
c–channel. We also find destructive interference between the s–, u– and v–channels. We
also show the differential cross sections in the upper two panels of Fig. 2 without the form
factor. The differential cross sections are obtained for Eγ = 2..0 GeV.

B. γN → KΛ∗ with the form factor

In this subsection, we present the numerical results for the Λ∗ photoproduction with the
form factor given in Eq. (8). The experimental data are taken from Ref. [4] In Fig. 3, we
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0
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FIG. 3: The total cross sections for the proton target with the form factor. We show the s–, t–

and c–channels, separately. The contribution of the s–channel is negligibly small.

show the total cross sections including s–, t– and c–channels which do not contain unknown
parameters κΛ∗ , X and gK∗NΛ∗ . The experimental data are taken from Ref. [4] with photon
energies in the range of 2.8 GeV < Eγ < 4.8 GeV. In the present calculation, we have
chosen the cutoff parameter Λ = 700 MeV, which can reproduce the experimental data very
well from the threshold to the higher energy region. However, the results in the higher
energy region should not be taken seriously since the Born approximation works properly
in the low energy region near the threshold. In fact, we have verified that the total cross
sections depend much on the parameters, κΛ∗ and X , beyond Eγ >

∼
3 GeV, whereas the

parameter dependence is rather weak for Eγ <
∼
3 GeV [19]. Therefore, we focus most of

our discussion below the energy region Eγ <
∼
3 GeV, where the Born approximation of the

effective Lagrangian method is expected to work. It is interesting to observe that the size
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and energy dependence of the total cross section of the Λ∗(1520) production are similar to
those of the production of the ground state Λ(1116) [3, 4].

In Fig. 3, we have also shown separate contributions from the s–, t– and c–channels.
Obviously, the c–channels contribution dominates, which is the important feature of the
reaction with the proton. In order to see the role of K∗–exchange, we consider the two
cases gK∗NΛ∗ = ±|gKNΛ∗| and compare the results to the case without the K∗NΛ∗ coupling,
i.e. gK∗NΛ∗ = 0. In Fig. 4, we compare the total cross sections up to Eγ <

∼
3 GeV using
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FIG. 4: The total cross sections for the proton target with the form factor. We choose (κΛ∗ ,X) =

(−0.5, 0) and (0.5, 1) in order to see the parameter dependence. We choose three different values

of the coupling constant gK∗NΛ∗ = 0 and ±11.

the different K∗NΛ∗ coupling strengths. The total cross sections are rather insensitive to
the contribution of K∗–exchange, a consequence that the the c–channel contribution is still
dominant for the proton target.

These two results are compared for the two different parameter sets, (κΛ∗ , X) = (−0.5, 0)
and (0.5, 1). As discussed previously, the results do not depend much on these parameters
at low-energies Eγ <

∼
3 GeV. In the quark model, it is found that the anomalous magnetic

moment κΛ∗ turns out to vanish in the SU(3) limit for a pure flavor singlet Λ∗. Taking into
account that the effect of explicit SU(3) symmetry breaking, we expect that the values of
κΛ∗ may lie in the range of |κΛ∗| < 0.5. However, from Fig. 4, we expect that the dependence
on κΛ∗ within this range is small. Therefore, these two parameters κΛ∗ and X can be set
zero, i.e. κΛ∗ = X = 0.

In Fig. 5, we plot the dependence on the momentum transfer, dσ/dt (t–dependence) at
Eγ = 3.8 GeV which is the average energy of the Daresbury experiment (2.8 < Eγ < 4.8
GeV) [4]. The figure indicates good agreement with the data. In Fig. 6, we also demon-
strate the angular dependence. Here, θ is the angle between the incident photon and the
outgoing kaon in the center of mass system. Each panel draws the differential cross sections
dσ/d(cos θ) with gK∗NΛ∗ varied. We observe that K∗–exchange does not contribute much to
the differential cross sections as in the case of the total cross sections (see Fig. 4).

Now, we discuss the case of the neutron target. In this case, the c–channel contribution
vanishes, and therefore, the total cross section becomes much smaller than the case of the
proton target especially when the form factor is employed. The left panel of Fig. 7 shows
the total cross sections with and without K∗–exchange. When K∗–exchange is switched
off, only the s–channel plays a role. Furthermore, in the neutron target case, the p–wave
contribution is dominant, which leads to the energy dependence (Eγ − Eth)

3/2 of the total

7



0.0 0.2 0.5 0.8 1.0
−t [GeV

2
]

0.0

0.3

0.6

0.9

1.2

1.5

dσ
/d

t [
µb

/G
eV

2 ]

Eγ=3.8 GeV

Daresbury (1980)
gΚ∗ΝΛ∗ =−11
gΚ∗ΝΛ∗ =0
gΚ∗ΝΛ∗ =11

FIG. 5: The t–dependence for the proton target at Eγ = 3.8 GeV. We choose (κΛ∗ ,X) = (0, 0).
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FIG. 6: The differential cross sections for the proton target with the form factor. Several photon

energies are taken into account. We choose (κΛ∗ ,X) = (0, 0).

cross sections as clearly indicated in Fig. 7. The inclusion of K∗–exchange enhances the
total cross sections with the energy dependence ∼ (Eγ − Eth)

1/2. The contribution of K∗–
exchange is important for the neutron target. However, the magnitude of that contribution
is still small as compared to the proton target. Experimental study of the energy dependence
will be useful to obtain the informations of the reaction mechanism.
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FIG. 7: The left panel : the total cross sections for the neutron target with the form factor. We

use (κΛ∗ ,X) = (0, 0). We choose three different values of the coupling constants gK∗NΛ∗ = 0 and

±11. The right panel : the t–dependence for the neutron target with the form factor at Eγ = 3.8

GeV.

Turning to the t–dependence, we demonstrate it in the right panel of Fig. 7, where we
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choose once again Eγ = 3.8 GeV. The t–dependence of the neutron target is very much
different from the proton one, since the relevant diagrams are different.

In Fig. 8, we show the angular dependence for the neutron target, using the form factor.
With the K∗–exchange being included, the differential cross sections are enhanced around
∼ 45◦. Note that the sign of gK∗NΛ∗ is not important. The bump around 45◦ is a typical
behavior comming from the K∗–exchange.
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FIG. 8: The differential cross sections for the neutron target with the form factor. Several photon

energies are taken into account. We choose (κΛ∗ ,X) = (0, 0).

IV. THE ROLE OF K∗–EXCHANGE

In Ref. [4] of the Daresbury experiment, it was argued that the Λ∗ photoproduction was
dominated by vector K∗–exchange (v–channel) rather than pseudoscalar K–exchange (t–
channel) by analyzing the decay amplitude in the t–channel in the helicity basis of the Λ∗.
If the helicity of the Λ∗ is Sz = ±3/2, the decay of Λ∗ → K−p is explained by sin2 θ in
which θ is the angle between the two kaons in the helicity basis (see Ref. [5] for details).
On the other hand, the angular dependence becomes 1/3 + cos2 θ for the decay of the
Sz = ±1/2 state. Therefore, taking into account the ratio of these two helicity amplitudes,
one could extract information which meson would dominate. In Ref. [4], it was shown that
the ratio of (Sz = ±1)/(Sz = ±3/2) was nearly zero. Thus, it was suggested that the Λ∗

photoproduction was dominated by the v–channel.
In Fig. 9, we plot the t–dependence for each helicity using the form factor with three

different values for the coupling constants gK∗NΛ∗ . We choose Eγ = 3.8 GeV as done
previously. In Fig. 9, we observe that the Sz = ±3/2 contribution is dominant especially in
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FIG. 9: The t–dependence for each helicity of the Λ∗ in the final state. We change the coupling

constant gK∗NΛ∗ . We choose (κΛ∗ ,X) = (0, 0).

the region −t <
∼
0.2GeV−2. There is also a small contribution from the Sz = ±1/2. However,
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we find that even without the v–channel (gK∗NΛ∗ = 0), the Sz = ±3/2 does not become
zero. Therefore, the Sz = ±3/2 contribution comes from not only the v–channel but also
from the other channels.

In order to see this situation more carefully, we pick up three important channels, the c–,
t– and v–channels, and plot the t–dependence for each helicity in Fig. 10. One can see that
the Sz = ±1/2 contribution is larger than that of the Sz = ±3/2 for the pseudoscalar K–
exchange (t–channel), and vice versa for the v–channel. We also observe that the c–channel
has sizable contributions to both Sz = ±1/2 and Sz = ±3/2 amplitudes.
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FIG. 10: The t–dependence for the two helicities Sz = ±1/2 and Sz = ±3/2 for the c–, t– and

v–channels.

From these observations, our diagram calculation indicates that the Sz = ±3/2 contribu-
tion is significant as shown in Ref [4]. However, most of the Sz = ±3/2 contribution comes
from the c–channel, not from the v–channel as suggested in Ref. [4]. We also find that the
sizable Sz = ±1/2 contributions are produced from the c– and t–channels. Therefore, in
order to reproduce a nearly zero value of the ratio of (Sz = ±1/2)/(Sz = ±1/2) [4], we need
a more suppression factor in the t–channel, which is the major source of the Sz = ±1/2
contribution in the Λ∗ photoproduction.

V. SUMMARY AND CONCLUSION

In the present work, we investigated the Λ∗(1520, 3/2−) photoproduction via the γN →
KΛ∗ reaction. We employed the Rarita-Schwinger formalism for describing the spin-3/2
particle for a relativistic description. Using the effective Lagrangians for the Born diagrams,
we constructed the invariant amplitudes for the reaction. We have investigated carefully the
dependence on the model parameters including various meson-baryon coupling constants and
form factors. Numerical results were then presented using reasonable sets of the parameters
for relatively low energy region Eγ <

∼
3 GeV. Important results are then summarized in

Table. I where the features of the γp → K+Λ∗ and γn → K0Λ∗ are shown. Turning to the

Reactions γp → K+Λ∗ γn → K0Λ∗

σ ∼ 900nb ∼ 30nb

dσ/d(cos θ) Forward peak Bump at ∼ 45◦

dσ/dt Good No data

TABLE I: Summary of the results.

helicity dependence, though the contribution of the Sz = ±3/2 was dominant, it was not

10



directly related to the K∗–exchange dominance as indicated in the previous experimental
analysis. We hope that the present work will provide a guideline to understanding the
structure and reactions for Λ(1520).
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Appendix

A. Rarita-Schwinger vector-spinor

We can write the RS vector-spinors according to their spin states as follows:

uµ(p2,
3

2
) = eµ+(p2)u(p2,

1

2
),

uµ(p2,
1

2
) =

√

2

3
eµ0 (p2)u(p2,

1

2
) +

√

1

3
eµ+(p2)u(p2,−

1

2
),

uµ(p2,−
1

2
) =

√

1

3
eµ−(p2)u(p2,

1

2
) +

√

2

3
eµ0 (p2)u(p2,−

1

2
),

uµ(p2,−
3

2
) = eµ−(p2)u(p2,−

1

2
). (9)

Here, we employ the basis four-vectors, eµλ which are written by

eµλ(p2) =

(

êλ · ~p2
MB

, êλ +
~p2(êλ · ~p2)

MB(p02 +MB)

)

with

ê+ = − 1√
2
(1, i, 0), ê0 = (0, 0, 1) and ê− =

1√
2
(1,−i, 0). (10)
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