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Prediction of Ue3 and cos 2θ23 from discrete symmetry a

Morimitsu Tanimoto

Department of Physics, Niigata University, 950-2181 Niigata, Japan

We discuss the question why the mixing Ue3 is small. The natural answer is Ue3 = 0 in some

symmetric limit, in which two large mixings are realized. It is possible to force Ue3 and cos 2θ23
to be zero by imposing a discrete symmetry. We investigate a special class of symmetries Z2

and of the consequences of their perturbative violation.

1 Introduction

In the standard model with three families, three mixing angles are free parameters. A lot of
studies address the origin of the bi-large mixings of neutrino flavors, which may be a clue to
the beyond the standard model, on the other hand, we should also answer the question why the
neutrino mixing Ue3 is so small.

The natural answer is Ue3 = 0 in some symmetric limit, in which two large mixings are
realized. There are many examples of symmetries which can force Ue3 and/or cos 2θ23 to van-

ish. Both quantities vanish in the extensively studied bi-maximal mixing Ansatz 2,3,4,5, which
can be realized through a symmetry 6. One can also make both Ue3 and cos 2θ23 zero while
leaving the solar mixing angle arbitrary 7,8. Alternatively, it is possible to force only Ue3 to be
zero by imposing a discrete Abelian 9 or non-Abelian 10 symmetry; conversely, one can obtain
maximal atmospheric mixing but a free Ue3 in a non-Abelian symmetry or a non-standard CP
symmetry 11.

The symmetries mentioned above need not be exact. It is important to consider perturba-
tions of those symmetries from the phenomenological point of view and to study quantitatively12

the magnitudes of Ue3 and cos 2θ23 possibly generated by such perturbations. We discuss a spe-
cial class of symmetries Z2 and of the consequences of their perturbative violation. We also
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study of the specific perturbation which is induced by the electroweak radiative corrections to
a Z2-invariant neutrino mass matrix defined at a high scale. The numerical result of a specific
model is presented for this scenario.

2 Vanishing Ue3 and Z2 symmetry

Let us construct the neutrino mass matrix in terms of neutrino masses m1,m2,m3 and mixings:

U =





c13c12 c13s12 s13e
−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13
s23s12 − c23s13c12e

iδ −s23c12 − c23s13s12e
iδ c23c13



 , (1)

where cij and sij denote cos θij and sin θij, respectively. The neutrino mass matrix Mν is given

in the flavor basis: Mν = U∗
MNS Mdiagonal U

†
MNS .

In the standpoint of naturalness, as a dimensionless small parameter s13 goes down to zero,
the symmetry should be enhanced. In |Ue3| = s13 = 0 limit, Mν is written as

Mν =





X̃ Ã B̃
Ã C̃ D̃
B̃ D̃ Ẽ



 , (2)

where matrix elements are given including Majorana phases ρ and σ:

X̃ = c212m1e
−2iρ + s212m2e

−2iσ , Ã = c12s12c23(m2e
−2iσ −m1e

−2iρ) ,

B̃ = −c12s12s23(m2e
−2iσ −m1e

−2iρ) , C̃ = s212c
2
23m1e

−2iρ + c212c
2
23m2e

−2iσ + s223m3 , (3)

D̃ = c23s23(m3 −m1e
−2iρs212 −m2e

−2iσc212), Ẽ = s212s
2
23m1e

−2iρ + c212s
2
23m2e

−2iσ + c223m3.

There is no explicit symmetry in this mass matrix if there are no relations among matrix ele-
ments. However, we obtain the mass matrix with a Z2 symmetry by putting sin θ23 = 1/

√
2:

Mνf =





X A A
A B C
A C B



 , (4)

with

X = c212m1e
−2iρ + s212m2e

−2iσ , A = − 1√
2
c12s12(m1e

−2iρ −m2e
−2iσ) , (5)

B =
1

2
(s212m1e

−2iρ + c212m2e
−2iσ +m3) , C =

1

2
(s212m1e

−2iρ + c212m2e
−2iσ −m3) ,

where

SMνfS = M (0)
ν , S =





1 0 0
0 0 1
0 1 0



 , S2 = 1 .

The matrix S is a realization of the discrete group Z2. It is emphasized that m1, m2, m3, θ12,
ρ, σ are arbitrary. In order to respect the symmetry, θ23 is maximal, but θ12 is not necessarily
maximal. The general discussion of this symmetry was given in the previous work 1.



3 Non-zero Ue3, cos 2θ23 from Z2 breaking

Consider a general perturbation δMνf to Mνf in eq.(4). The matrix δMνf is a general complex
symmetric matrix, but part of it can be absorbed through a redefinition of the parameters in
eq.(4). The remaining part can be written, without loss of generality, as

δMνf =





0 ǫ1 −ǫ1
ǫ1 ǫ2 0
−ǫ1 0 −ǫ2



 . (6)

The perturbation is controlled by two parameters, ǫ1 and ǫ2, which are complex and model-
dependent. We want to study their effects perturbatively, i.e. we want to assume ǫ1 and ǫ2 to
be small. We define two dimensionless parameters:

ǫ1 ≡ ǫA, ǫ2 ≡ ǫ′B. (7)

Thus, we have the neutrino mass matrix with Z2 breaking as follows:

Mνf =





X A (1 + ǫ) A (1− ǫ)
A (1 + ǫ) B (1 + ǫ′) C
A (1− ǫ) C B (1− ǫ′)



 , (8)

where we shall assume ǫ and ǫ′ to be small, |ǫ| , |ǫ′| ≪ 1.

One finds that, to first order in ǫ and ǫ′, the only effect of the δMνf is to generate non-zero
Ue3 and cos 2θ23. The neutrino masses, as well as the solar angle, do not receive any corrections.
Ue3 and cos 2θ23 are of the same order as ǫ and ǫ′. Define

m̂1 ≡ m1e
−2iρ , m̂2 ≡ m2e

−2iσ , ǫ ≡ (m̂1 − m̂2) ǫ , ǫ′ ≡ m̂1s
2
12 + m̂2c

2
12 +m3

2
ǫ′ , (9)

we get

Ue3 =
s12c12

m2
3 −m2

2

(

ǫs212m̂
∗
2 + ǫ∗s212m3 − ǫ′m̂∗

2 − ǫ′
∗
m3

)

+
s12c12

m2
3 −m2

1

(

ǫc212m̂
∗
1 + ǫ∗c212m3 + ǫ′m̂∗

1 + ǫ′
∗
m3

)

, (10)

cos 2θ23 = Re

{

2c212
m2

3 −m2
2

(

ǫs212 − ǫ′
)

(m̂2 +m3)
∗ − 2s212

m2
3 −m2

1

(

ǫc212 + ǫ′
)

(m̂1 +m3)
∗

}

.

The induced values of |Ue3| and | cos 2θ23| are strongly correlated to neutrino mass hierar-
chies. This makes it possible to draw some general conclusions even if we do not know the
magnitudes of ǫ, ǫ′. Remarks are given as follows:

• Ue3 gets suppressed by a factor O(∆sun

∆atm
) for the inverted or quasi-degenerate spectrum

with ρ = σ = 0. Similar suppression also occurs in the case of the normal neutrino mass
hierarchy even when ρ 6= σ. Ue3 need not be suppressed in other cases and can be large.

• In contrast to Ue3, cos 2θ23 is almost as large as ǫ, ǫ′ if neutrino mass spectrum is normal
or inverted. It gets enhanced compared to these parameters if the spectrum is quasi-
degenerate.

• In case of the quasi-degenerate spectrum, both | cos 2θ23| and |Ue3| can become quite large
and reach the present experimental limits. The parameters ǫ, ǫ′ are constrained to be lower
than 10−2 for the quasi-degenerate spectrum.



Figure 1: In case of the normal neutrino mass hierarchy with ρ = 0, σ = 0 and ǫ, ǫ′ = −0.3 ∼ 0.3.

In our numerical study, the input parameters are randomly varied in the experimentally
allowed regions. m1 was varied up to m2. On the other hand, ǫ, ǫ′ are unknown unless the
symmetry breaking is specified, so these are varied in the range −0.3 ∼ 0.3 with the condition
that the output parameters should lie in the 90% CL limit of the experimental data.

In Fig.1, we show the numerical result in the case of the normal neutrino mass hierarchy
with ρ = σ = 0. The |Ue3| is forced to be small less than 0.025. The value ∼ 0.025 at the upper
end arises from the (assumed) bound |ǫ|, |ǫ′| ≤ 0.3. Since |Ue3| is proportional to ǫ, ǫ′, it increases
if the bound on ǫ, ǫ′ is loosened. However, |ǫ| ≤ 0.3 is a reasonable bound due to assume if Z2

breaking is perturbative. On the other hand, | cos 2θ23| can assume large values as seen from
Fig. 1. The present bound sin2 2θ23 > 0.92 from the atmospheric experiments gets translated
to | cos 2θ23| < 0.28 which constrains |ǫ′| ≤ 0.2 in our analyses. The phase dependence is found

in the prediction of |Ue3|, which increases up to 0.075 1.
We wish to point out an interesting aspect of this analysis. Since Ue3 is zero in the absence of

the perturbation, the CP violating Dirac phase δ relevant for neutrino oscillations is undefined
at this stage. CP violation is present through the Majorana phases ρ and σ. Turning on
perturbation leads to non-zero Ue3 and also to a non-zero Dirac phase even if perturbation is
real. Moreover, δ generated this way can be large and independent of the strength of perturbation
parameters 13.

4 Radiatively generated Ue3 and cos 2θ23

The ǫ, ǫ′ were treated as independent parameters so far. They can be related in specific models.
We now consider one example which is based on the electroweak breaking of the Z2 symmetry
in the MSSM. We assume that neutrino masses are generated at some high scale MX and the
effective neutrino mass operator describing them is Z2 symmetric with the result that Ue3 =
cos 2θ23 = 0 at MX . This symmetry is assumed to be broken spontaneously in the Yukawa
couplings of the charged leptons. This breaking would radiatively induce non-zero Ue3 and
cos 2θ23

14. This can be calculated by using the renormalization group equations (RGEs) of the

effective neutrino mass operator 15,16,17. These equations depend upon the detailed structure
of the model below MX . We assume here that theory below MX is the MSSM and use the RGEs
derived in this case. Subsequently we will give an example which realizes our assumptions.

Integration of the RGEs allows us 15,16,17 to relate the neutrino mass matrix Mνf (MX) to
the corresponding matrix at the low scale which we identify here with the Z mass MZ :

Mνf (MZ) ≈ IgIt (I Mνf (MX) I ) , (11)
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Figure 2: In case of the radiatively broken Z2 and the quasi-degenerate neutrino masses with ρ = 0, σ = π/2.

where Ig,t are calculable numbers depending on the gauge and top quark Yukawa couplings. I
is a flavor dependent matrix given by

I ≈ diag(1 + δe, 1 + δµ, 1 + δτ ) with δα ≈ c

(

mα

4πv

)2

ln
MX

MZ
, (12)

where c = 3
2 ,− 1

cos2 β in case of the SM and the MSSM, respectively 15. v refers to the VEV for
the SM Higgs doublet.

Since Mνf (MX) is given by eq. (4), we can write Mνf (MZ) as follows when the muon and
the electron Yukawa couplings are neglected:

Mνf (MZ) =





X A′ A′

A′ B′ C ′

A′ C ′ B′



+





0 A′ǫ −A′ǫ
A′ǫ B′ǫ′ 0
−A′ǫ 0 −B′ǫ′



+O(δ2τ ) , (13)

where

C ′ = C(1 + δτ ) , A′ = A(1 +
δτ
2
) , B′ = B(1 + δτ ) , ǫ =

ǫ′

2
= −δτ

2
. (14)

Note that m1, m2 and m3 defined previously are no longer mass eigenvalues because of the
changes A → A′, B → B′ and C → C ′. Then we get

Ue3 ≃ − δτs12c12
2(m2

3 −m2
1)

[

m2
1 + 2m3m̂1

∗ +m2
3

]

+
δτs12c12
2m2

3 −m2
2

[

m2
2 + 2m̂2

∗m3 +m2
3

]

,

cos 2θ23 ≃ δτs
2
12

m2
3 −m2

1

[

m2
1 + 2m3m̂1

∗ +m2
3

]

+
δτ c

2
12

m2
3 −m2

2

[

m2
2 + 2m̂2

∗m3 +m2
3

]

. (15)

It is seen that the effect of the radiative corrections is enhanced in the case of the quasi-
degenerate neutrino masses with |ρ − σ| = π/2 as previous works presented 16,17. In the
MSSM, the parameter δτ is negative and its absolute value can become quite large for large
tan β. Results of the numerical analysis are shown in Fig. 2 in case of the quasi-degenerate
spectrum with m = 0.3 eV, σ = π/2, ρ = 0. Both |Ue3| and | cos 2θ23| can reach their respective
experimental bound. We find numerically that tan β is constrained to be lower than 20 in this
case. On the other hand, |Ue3| reaches at most 0.025 in the normal-hierarchy and inverted-one.
The forthcoming experiments will be able to test this relationship between |Ue3| and | cos 2θ23|.

5 Summary

The neutrino mixing matrix contains two small parameters |Ue3| and cos 2θ23 which would
influence the outcome of the future neutrino experiments. The vanishing of |Ue3| was shown to



follow from a class of Z2 symmetries of Mνf . This symmetry can be used to parameterize all
models with zero Ue3. A specific Z2 in this class also leads to the maximal atmospheric neutrino
mixing angle. We showed that breaking of this can be characterized by two dimensionless
parameters ǫ, ǫ′ and we studied their effects perturbatively and numerically.

It was found that the magnitudes of |Ue3| and | cos 2θ23| are strongly dependent upon the
neutrino mass hierarchies and CP violating phases. The |Ue3| gets strongly suppressed in case
of the inverted or quasi-degenerate neutrino spectrum if ρ = σ while similar suppression occurs
in the case of normal hierarchy independent of this phase choice. The choice ρ 6= σ can lead
to a larger values ∼ 0.1 for |Ue3| which could be close to the experimental value in some cases
with inverted or quasi-degenerate spectrum. In contrast, the | cos 2θ23| could be large, near its
present experimental limit in most cases studied. For the normal and inverted mass spectrum,
the magnitude of cos 2θ23 is similar to the magnitudes of the perturbations ǫ, ǫ′ while it can get
enhanced compared to them if the neutrino spectrum is quasi-degenerate.

References

1. W. Grimus, A. S. Joshipura, S. Kaneko, L. Lavoura, H. Sawanaka and M. Tanimoto, Nucl.
Phys. B713 (2005) 151.

2. S. M. Barr and I. Dorsner, Nucl. Phys. B585 (2000) 79.
3. C. Guinti and M. Tanimoto, Phys. Rev. D66 (2002) 113006; ibid. D66 (2002) 056013;

P. H. Frampton, S. T. Petcov and W. Rodejohann, Nucl. Phys. B687 (2004) 31;
W. Rodejohann, Phys. Rev. D70 (2000) 073010.

4. G. Altarelli, F. Feruglio and I. Masina, Nucl. Phys. B689 (2004) 157;
S. Antusch and S. F. King, Phys. Lett. B591 (2004) 104;
A. Romanino, Phys. Rev. D70 (2004) 013003;
M. Raidal, Phys. Rev. Lett. 93 (2004) 161801.

5. H. Minakata and A. Yu. Smirnov, Phys. Rev. D70 (2004) 073009.
6. S. Nussinov and R. N. Mohapatra, Phys. Rev. D60 (1999) 013002.
7. W. Grimus and L. Lavoura, Acta Phys. Polon. B34 (2003) 5393; JHEP 0107 (2001) 045;

E. Ma, Phys. Rev. D66 (2002) 117301;
E. Ma and G. Rajasekaran, Phys. Rev. D68 (2003) 071302;
R. N. Mohapatra, JHEP 0410 (2004) 027.

8. W. Grimus and L. Lavoura, Phys. Lett. B572 (2003) 189.
9. C. I. Low, Phys. Rev. D70 (2004) 073013.

10. W.Grimus, A.S. Joshipura, S.Kaneko, L.Lavoura and M.Tanimoto, JHEP 0407 (204) 078.
11. K. S. Babu, E. Ma and J. W. F. Valle, Phys. Lett. B552 (2003) 207;

W. Grimus and L. Lavoura, Phys. Lett. B579 (2004) 113.
12. A. S. Joshipura, hep-ph/0411154.
13. A. S. Joshipura, N. Singh and S. Rindani, Nucl. Phys. B660 (2003) 362;

T. Miura, T. Shindou and E. Takasugi, Phys. Rev. D66 (2002) 093002.
14. S. Antusch, J. Kersten, M. Lindner and M. Ratz, Nucl. Phys. B674 (2003) 401.
15. P. H. Chankowski and Z. Pluciennik, Phys. Lett. B316 (1993) 312;

K. S. Babu, C. N. Leung and J. Pantaleone, Phys. Lett. B319 (1993) 191;
P. H. Chankowski, W. Krolikowski and S. Pokorski, Phys. Lett. B473 (2000) 109;
J. A. Casas, J. R. Espinosa, A. Ibarra and I. Navarro, Phys. Lett. B473 (2000) 109;
S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Phys. Lett. B519 (2001) 238,
B525 (2002) 130.

16. M. Tanimoto, Phys. Lett. B360 (1995) 41;
J. Ellis, G. K. Leontaris, S. Lola and D. V. Nanopoulos, Eur. Phys. J. C9 (1999) 389;
J. Ellis and S. Lola, Phys. Lett. B458 (1999) 310;
J. A. Casas, J. R. Espinosa, A. Ibarra and I. Navarro, Nucl. Phys. B556 (1999) 3;

http://arxiv.org/abs/hep-ph/0411154


JHEP 9909 (1999) 015; Nucl. Phys. B569 (2000) 82;
M. Carena, J. Ellis, S. Lola and C. E. M. Wagner, Eur. Phys. J. C12 (2000) 507.

17. N. Haba, Y. Matsui, N. Okamura and M. Sugiura, Eur. Phys. J. C10 (1999) 677;
Prog. Theor. Phys. 103 (2000) 145;
N. Haba and N. Okamura, Eur. Phys. J. C14 (2000) 347;
N. Haba, N. Okamura and M. Sugiura, Prog. Theor. Phys. 103 (2000) 367.


	Introduction
	Vanishing Ue3 and Z2 symmetry
	Non-zero Ue3, cos223 from Z2 breaking
	Radiatively generated Ue3 and cos223
	Summary

