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Pion Parton Distributions in a non local Lagrangian.
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We use phenomenological nonlocal Lagrangians, which lead to non trivial forms for the quark
propagator, to describe the pion. We define a procedure based on previous studies on non local
lagrangians for the calculation of the pion parton distributions at low Q2 . The obtained parton
distributions fulfill all the wishful properties. Using a convolution approach we incorporate the
composite character of the constituent quarks. We evolve, using the Renormalization Group, the
calculated parton distributions to the experimental scale and compare favorably with the data and
draw conclusions.

PACS numbers: 11.10.St, 12.38.Lg, 13.60.Fz, 24.10.Jv

I. INTRODUCTION

Parton Distributions Functions (PDFs) and Generalized Parton Distributions (GPDs) [1, 2, 3], relating PDFs and
electromagnetic form factors, encode unique information on the non perturbative hadron structure (for a recent review,
see [4]). Any realistic model of hadron structure should be able to calculate them. We shall proceed in here to study
the parton distribution functions of the pion in a previous developed formalism [5].
From the experimental point of view the PDFs and GPDs of the pion are difficult to determine. Pions decay into

muons or photons and therefore the pion distribution functions can not be obtained from direct DIS experiments.
The pion parton distribution has been inferred from the Drell-Yang process [6, 7, 8] and direct photon production [9]
in pion-nucleon and pion-nucleus collisions. These set of experiments have been analyzed in ref. [10] obtaining that
the fraction of moment of each valence (anti)quark in the pion is about 0.23 for Q2 = 4GeV2 .
The parton distribution functions of the pion has been a subject of much discussion in the literature. In [11, 12]

calculations using quenched lattice QCD, for their lowest moments, were performed. The lack of sea quarks in
the approximation implies a greater presence of valence quarks. Its PDFs [13, 15] and GPDs [16] have been also
calculated in the Nambu-Jona Lasinio (NJL) model [17]. In the chiral limit, its quark valence distribution is as simple
as q (x) = θ (x) θ (1− x) . Once evolution is taken into account, good agreement is reached between the calculated
PDFs and the experimental results[13]. The pion PDFs and GPDs have also been calculated in a model with the
simplest pseudoscalar coupling between the pion and the constituent quark fields [14], and in the instanton model,
[19, 20]. In ref. [19] the chiral limit result of the NJL model for PDFs changes such that q (x) goes to zero for x→ 0
and x→ 1. The pion PDFs have also been calculated in a spectral quark model[18].
Also, the pion PDFs have been calculated in a statistical model, without any dynamical assumption, obtaining

quite reasonable results [21] . In [22] the GPDs of the pion are calculated in the bag model. A relevant contribution
to the calculation of the pion GPDs on the light-front has been given by Tiburzi and Miller [23], and some remarks on
the use of the light-front for calculating GPDs can be found in [24]. Looking for a more fundamental approach, not
related to a unique model, the pion PDF has been also calculated in the framework of Dyson-Schwinger Equations
[25].
In all the previous calculations the pion was built of two valence constituent (anti)quarks. However, these constituent

(anti)quarks are themselves built of elementary partons. The way to connect a description in terms of constituent
quarks with the description in terms of the elementary partons was described in [27, 31]. Hereafter, we will call this
procedure ACMP. In [27, 28, 29] the procedure was applied to the nucleon case and in [30] it was applied to the pion
case. The same description of the constituent quarks in terms of partons is used for the proton and for the pion.
The aim of this paper is to study the pion PDFs following the ideas developed in ref [5, 16]. Our main objective is to

develop a calculational method for the PDFs preserving all the fundamental symmetries, i.e. momentum conservation
and gauge symmetry. Another motivation is to understand the simple result obtained for the pion PDFs in the NJL
model in connection with our more elaborate description.
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Our study is done in a lagrangian model [5] built with the following properties: (i) manifest chiral invariance
for the strong part of the interaction; (ii) a momentum dependence for the quark propagator provided by QCD
based calculations; (iii) the implementation of local gauge invariance provides the electromagnetic interaction. This
procedure allows us to have simultaneously a coherent description of the dressed quark propagator, the pion state,
the dressed quark photon vertex and to preserve gauge symmetry. In this sense our aim is not to fit the best possible
description of the pion PDFs, but to learn about the influence of the momentum dependence of the quark propagator
on the definition of the PDFs. The differences between our approach and the previous calculation [25] will become
obvious. We achieve our objective in a three step process. The first is to construct the PDFs of the pion in terms
of its constituents quarks, for that we will use the model developed in ref. [5]. For this model the pion form factor
was calculated obtaining good agreement with data, and the operator form for the mesonic parton distribution was
found in terms of the quark propagator and the kernel of the BS equation. The second step is to include the partonic
structure of the constituent quarks. To do so we will use the ACMP procedure assuming for the quarks the same
structure functions as was obtained in the analysis for the proton. The last step is to evolve (to next to leading order),
by means of the renormalization group of QCD, the resulting parton distribution up to the value of Q2 for which data
exist [26].
This paper is organized as follows. In section II we discuss the definition of the PDFs in our formalism and give

provide some technical details of the calculation. In section III we perform an analysis of the PDFs, with models
defined from fundamental approaches, achieving a good description of the data. In section IV we calculate the moments
of the parton distribution, using three different procedures, to check the validity of our method for calculating parton
distributions, and in section V we provide some conclusions.

II. THE CONSTITUENT PARTON DISTRIBUTION FUNCTIONS

In our scheme the pion arises as a solution of the two body BS and therefore is a composite system of two
“constituent” valence (anti)quarks which determine the PDFs. To calculate them the corresponding operator was
introduced in ref [5] (we refer the reader to this paper for details).
The parton distribution has three contributions:

qu (x) = q(1)u (x) + q̃(1)u (x) + q(2)u (x) . (1)

The first one, q
(1)
u (x), corresponds to the one body term

q(1)u (x) = −
∫

d4p

(2π)
4 δ

(

x− n

2
· (2p+ P )

)

Tr

[

i S

(

p− 1

2
P

)

Γ̄M (p, P ) i S

(

p+
1

2
P

)

Γµ

(

p+
1

2
P, p+

1

2
P

)

nµ i S

(

p+
1

2
P

)

ΓM (p, P )

]

(2)

where Tr represent the trace in Dirac, color and flavor indices, Γµ (p, p′) is the quark-photon vertex which in general
can have a complicated structure (see [5, 32, 33]). Here ΓM (p, P ) is the BS amplitude for the meson,

ΓM
γα (p, P ) = −2i

∫

d4p′

(2π)4
Gαβγδ (p, p

′, P )

(

i S

(

p′ +
1

2
P

)

ΓM (p′, P ) i S

(

p′ − 1

2
P

))

βδ

(3)

with α, β, γ and δ including spinor, color and flavor indices. The normalization condition for the BS amplitude is:

2iPµ =
∫

d4p

(2π)4
Tr

[

Γ̄M (p, P ) i
∂S

(

p+ 1
2P

)

∂Pµ
ΓM (p, P ) i S

(

p− 1

2
P

)

+ Γ̄M (p, P ) i S

(

p+
1

2
P

)

ΓM (p, P ) i
∂S

(

p− 1
2P

)

∂Pµ

]

−

2i

∫

d4p

(2π)
4

d4p′

(2π)
4

[

i S

(

p− 1

2
P

)

Γ̄M (p, P ) i S

(

p+
1

2
P

)]

αγ

∂Gαβγδ (p, p
′, P )

∂Pµ

[

i S

(

p′ +
1

2
P

)

ΓM (p′, P ) i S

(

p′ − 1

2
P

)]

βδ

.

(4)

To calculate the PDF we need the elastic vertex Γµ (p, p) directly related to the quark propagator by using the
Ward Identity:

Γµ (p, p) =
∂S−1 (p)

∂pµ
. (5)
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FIG. 1: Diagrammatic expression of the first one body term in Eq.(1)

FIG. 2: Diagrammatic expression of the second one body term and the two body term in Eq.(1)

The pion momentum can be expressed in terms of the light-front vectors as Pµ = p̄µ + m2
πn

µ/2 with p̄µ =

P̄ (1, 0, 0, 1)/
√
2, nµ = (1, 0, 0,−1)/(

√
2P̄ ), where P̄ has a particular value for each frame (for instance P̄ = M/

√
2

for the rest frame). This first contribution corresponds to diagram shown in Fig. 1.
The second term is also a one body term:

q̃(1)u (x) =

∫

d4p

(2π)
4

1

4
δ
(

x− n

2
· (2p+ P )

)

Tr

[

inµ
dΓ̄M (p, P )

dpµ
i S

(

p+
1

2
P

)

ΓM (p, P ) i S

(

p− 1

2
P

)

+ i S

(

p− 1

2
P

)

Γ̄M (p, P ) i S

(

p+
1

2
P

)

inµ
dΓM (p, P )

dpµ

]

(6)

while the third term is a genuine two body term given by:

q(2)u (x) =

∫

d4p

(2π)
4

∫

d4p′

(2π)
4

[

i S

(

p′ − 1

2
P

)

Γ̄M (p′, P ) i S

(

p′ +
1

2
P

)]

αγ

1

2
nµ

{[

δ
(

x− n

2
· (2p+ P )

)

(

d

dp′µ
+ 2

d

dPµ

)

+ δ
(

x− n

2
· (2p′ + P )

)

(

d

dpµ
+ 2

d

dPµ

)]

Gαβγδ (p
′, p, P )

}

[

i S

(

p+
1

2
P

)

ΓM (p, P ) i S

(

p− 1

2
P

)]

βδ

(7)

These two last contributions corresponds to the diagram of Fig 2 and they result from the non local character of the

interactions . In the contribution q̃
(1)
u (x) the bubble integral has been performed using the BS equation, whereas this

is not possible in the contribution q
(2)
u (x) .

In ref. [5] a particular model was developed defined by means of a chirally invariant lagrangian:

L (x) = ψ̄ (x) (i /∂ −m0)ψ (x) + g0

[

J†
S (x) JS (x) + ~J †

5 (x) ~J5 (x)
]

+ gp J
†
p (x) Jp (x) (8)
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built with the non local currents defined by

JS (x) =

∫

d4y G0 (y) ψ̄

(

x+
1

2
y

)

ψ

(

x− 1

2
y

)

~J5 (x) =

∫

d4y G0 (y) ψ̄

(

x+
1

2
y

)

i~τγ5ψ

(

x− 1

2
y

)

(9)

Jp (x) =

∫

d4y Gp (y) ψ̄

(

x+
1

2
y

)

1

2
i
←→
/∂ ψ

(

x− 1

2
y

)

where u
←→
∂ v = u (∂v) − (∂u) v. The first and second currents require the same G0 (y), in order to implement chiral

invariance, while the third current is self-invariant under chiral transformations. The scalar current, JS , generates
a momentum dependent mass, and the last current, the “momentum” current, Jp, is responsible for the momentum

dependence of the wave function renormalization. The pseudo-scalar current, ~J5, generates the pion pole. For
simplicity, we assume that all the G (y) functions are real.
Let us define

G (p) =

∫

d4y eiypG (y) (10)

with the normalization condition G (p = 0) = 1. For simplicity we consider that our effective theory arises from the
large Nc limit of QCD. This is equivalent to working in the Hartree approximation, i.e. only direct diagrams will be
considered.
The model introduces, in a natural way, momentum dependence to the quark mass and to the wave function

renormalization of the quark propagator:

S (p) = Z (p)
/p+m (p)

p2 −m2 (p) + iǫ
(11)

where the explicit expressions for m (p) and Z (p) are given in the Appendix A. The scalar current can give a mass
for the quark even if the Lagrangian contains no explicit mass term, m0 = 0, leading to a spontaneous symmetry
breaking mechanism similar to that in the Nambu-Jona Lasinio model. On the other hand, the momentum current
gives rise to a momentum dependent wave function normalization. However, even though the latter contributes to
the mass, it is not able by itself to break chiral symmetry spontaneously.
The model defined in Eq. (8) gives the following interaction terms,

Gαβγδ (p
′, p, P ) = 2 g0 G0 (p

′)G0 (p)
[

δγαδδβ + (i~τγ5)γα (i~τγ5)δβ

]

+ 2 gp Gp (p
′)Gp (p) (/p

′)γα (/p)δβ (12)

and the corresponding BS equation (3) can be easily solved leading to:

ΓM=πi

(p, P ) = i γ5 τ
i gπqqG0 (p) (13)

In Appendix A we give the explicit expressions fixing the pion mass and the normalization constant gπqq. This model
realizes the Goldstone theorem and therefore mπ goes to zero when m0 vanishes. This is a consequence of the use of

the same G0 (p) function in the scalar current, JS , and pseudoscalar current, ~J5, in Eq. (9). On the other hand, we
have no constrain on Gp (p) imposed by chiral symmetry.
Inserting Eqs.(12) and (13) in Eq. (7) we obtain

q(2)u (x) = 0. (14)

Summarizing, our scheme leads to two contributions: the standard one, associated with the triangle diagram, and
defined in (2) and a new contribution defined in Eq. (6). This latter contribution arises from the non locality of the
currents in our model, it is also a triangle diagram, from the point of view of QCD, but once written in terms of the
BS amplitudes it gets a different structure.
We now proceed to the explicit calculation of the PDF. First of all we can use the δ-function present in Eqs. (2)

and (6) in order to integrate over p3 :

δ
(

x− n

2
· (2p+ P )

)

=
√
2P̄ δ

(√
2P̄

(

x− 1

2

)

− p0 − p3
)

(15)
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With this integration, all the quantities appearing in Eqs. (2) and (6) become linear in p0. In order to show explicitly
that the results do not depend on the choice of P̄ we use the following variable

2
√
2P̄

(

p0 − P̄√
2

(

x− 1

2

))

= ω +m2
π

(

1

2
− x

)

. (16)

The last term has been introduced in order to obtain symmetric expressions. In terms of ω we have

p2 = ω

(

x− 1

2

)

−m2
π

(

1

2
− x

)2

− ~p2⊥ ,

(

p− 1

2
P

)2

= −ω (1− x) +m2
πx (1− x)− ~p2⊥ , (17)

(

p+
1

2
P

)2

= ωx+m2
π (1− x)x− ~p2⊥ .

Next we perform the Wick rotation in terms of the ω variable and thereafter its integration.
The calculation is performed in Euclidean space. To bring back these results to Minkowsky space is, in general, a

non trivial matter, as will be discussed shortly. To check the consistency our scheme we will rely on the verification
of four fundamental properties of the PDFs which arise form conservation laws, i.e. momentum conservation, gauge
symmetry, isospin symmetry and the fixed number of valence particles in our state. These properties are: (i) the
parton distribution must be defined between 0 < x < 1; (ii) the first moment of the parton distribution is 1; (iii) the
second moment of the parton distribution is 1/2; (iv) the parton distribution must be symmetric q (x) = q (1− x) .
The way the first property is realized, in those cases where an exact solution is possible [16], is associated to the

Wick rotation. Let us assume that the masses are momentum independent. The denominators present in the definition
of the parton distribution, Eqs. (2) and (6), can be written as

(

p− 1

2
P

)2

−m2 + iε = − (1− x)
[

ω −m2
πx+

~p2⊥ +m2

(1− x) − i
ε

(1− x)

]

(18a)

(

p+
1

2
P

)2

−m2 + iε = x

[

ω +m2
π (1− x)−

~p2⊥ +m2

x
+ i

ε

x

]

(18b)

and we observe that the integration over ω is different from zero only if 0 < x < 1. We can perform the Wick rotation
in the region 0 < x < 1, where this rotation is well defined according to the pole positions given by Eqs. (18). For
the values of x in the regions x < 0 and x > 1 the Wick rotation is not allowed.
The models used here are too complex to allow for a similar proof of the first property, but we have been able to

show numerically that the parton distribution vanishes outside the interval. Moreover, the last three properties come
out of the calculation and represent our consistency check.
In many models these four properties are not satisfied. In that case authors proceed in the following way: (i) they

impose that the PDF is only valid for 0 < x < 1; (ii) they force the normalization condition of the PDF by changing
the normalization of the wave function or BS amplitude; however in this process, the form factor of the pion will loose
its normalization; (iii) some authors claim that not satisfying the third and fourth properties is consequence of the
lack of “gluon component” in the meson in those models.

III. EXPERIMENTAL ANALYSIS OF PDFS.

In order to get numerical estimates for the PDFs we need to introduce specific models which provide us with
expressions for G0 (p) and Gp (p) or alternatively for m (p) and Z (p) . There are many papers dedicated to the study
of the quark mass term in the quark propagator [18, 34, 35, 36, 37, 38, 39, 40, 41] . We consider two different
scenarios based on different philosophies but which give quite coherent results. From now on the analysis is carried
out in Euclidean space a feature which we indicate by the sublabel E in the corresponding momenta.
The first scenario, called hereafter S1, is based on the work of Dyakonov and Petrov [36], which provides us with

the momentum dependence of the quark mass term coming from a instanton model. They assume Z (pE) = 1 and
work in the chiral limit (m0 = 0). Their results are well described by the expression

m (pE) = m0 + αm

(

Λ2
m

Λ2
m + p2E

)3/2

(19)
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Case 〈q̄q〉1/3 (MeV) m0 (MeV) mπ (MeV) < r2 > (fm2)

S1 −303. 2.3 137. 0.41

S2 −285. 3.0 139. 0.36

Exp. −250 ∼ −300 1.5 ∼ 8 135. ∼ 140. 0.44

TABLE I: Results for < qq >1/3 , m0, the corresponding Mp and the rms radius squared < r2 >, for the two scenarios described
in the main text.

0.0 0.2 0.4 0.6 0.8 1.0
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0.0

0.5

1.0

1.5

2.0
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3.0

 

 

q(x)

x

FIG. 3: PDFs for S1 (left) and S2 (right). We have drawn the contribution from Eq. (2) (q
(1)
u (x), dashed line), from Eq. (6)

(q̃
(1)
u (x), dotted line) and the total parton distribution (full line).

with Λm = 0.767GeV and αm = 0.343GeV .
The second scenario, S2, corresponds to an alternative mass function obtained from lattice calculations by Bowman

et al. [37, 38],

m (pE) = m0 + αm
Λ3
m

Λ3
m + (p2E)

1.5 (20)

with Λm = 0.719GeV and αm = 0.302GeV . In their lattice analysis the authors also look for the wave function
renormalization constant. Their values are reasonably reproduced by:

Z (pE) = 1 + αz

(

Λ2
z

Λ2
z + p2E

)5/2

(21)

with αz = −0.5 and Λz = 1.183GeV .
In reference [5] different properties of these two scenarios have been studied. In particular, in table I we show the

values of 〈q̄q〉1/3 , pion mass and mean squared radius obtained for these scenarios. The form factor of the pion is also
analyzed in [5], obtaining a reasonable agreement.
In Figs. 3 we show the parton distributions obtained for the two defined scenarios. In both cases we have drawn the

contribution from Eq.(2) (q
(1)
u (x), dashed line), from Eq. (6) (q̃

(1)
u (x), dotted line) and the total parton distribution

(full line). We observe that only the total parton distribution is symmetric around the point x = 0.5, as isospin
predicts. The first moment of the parton distribution is automatically 1, provided that our pion BS amplitude is well

normalized using Eq. (4). The contribution to the first moment of the new term, q̃
(1)
u (x), is zero as a consequence of

charge conjugation symmetry [5]. Regarding the second moment of the parton distribution, we have for S1 that the

contribution from q
(1)
u (x) is 0.47 and the one coming from q̃

(1)
u (x) is 0.03. In the S2 their values are are 0.46 and 0.04

respectively. We observe that our “new” contribution, q̃
(1)
u (x) , restores the correct value, with a contribution at the

level of 8%.
We have also looked to the behavior of the PDFs under variations of the parameters present in the expression of

m (p) and Z (p). We observe that not all values of the parameters are permitted by our consistency requirements. For
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

 

q(x)

x

FIG. 4: Full line corresponds to S2, Eqs. (20 ) and (21). The other curves corresponds to changes in the parameters of this
scenario: (i) αZ divided by 2 and ΛZ multiplied by 2 (dashed line); (ii) αm divided by 2 and Λm multiplied by 2 (dotted line);
(iii) both αZ and αm divided by 2 and both Λm and ΛZ multiplied by 2 (dashed-dotted line).

instance, if we increase αm or αZ by a factor 2 we observe that the second moment of the PDF deviates from 0.5 and
the PDF is not more symmetric around the point x = 0.5. These results appear because the Wick rotation introduces
spurious contributions. Let us be more precise, our formalism preserves all the symmetries up to the point in which
we perform the Wick rotation. It is while performing the latter that, if “spurious” poles and/or cuts are close to the
physical ones, appreciable errors might arise. The position of these singularities depends on the “models” and the
“parameter choice” in those models.
Let us now change our parameters in the opposite direction in order to compare our approach with the NJL model.

We multiply Λm and ΛZ by 2, and at the same time divide αm and αZ by 2 to insure that the value of the physical
observables, like the quark condensate, do not change too much. This change makes the currents in Eqs. (9) more
point like, leading to a model whose results, in the limit αZ → 0, Λm →∞ resemble those of the NJL model. In Fig.
4 we show the pion PDF in S2, Eqs. (20) and (21), with the following changes: (i) ΛZ multiplied by 2 and αZ divided
by 2 (dashed line); (ii) Λm multiplied by 2 and αm divided by 2 (dotted line); (iii) both Λm and ΛZ multiplied by 2
and both αZ and αm divided by 2 (dashed-dotted line). We observe the similarity, especially of the last case, to the
result of the NJL model in the chiral limit, q (x) = 1.
Some doubts maybe cast in our calculation having to do with the relation between the calculation in Minkowsky

and Euclidean spaces, as a consequence of the singularity structure discussed in section II. In section IV we resolve
this problem by calculating the moments of the parton distribution functions in three different ways and proving that
for the scenarios described above the three methods fully agree.
By explicit construction, our quarks are constituent quarks. The experimental parton distributions however, unveil

the structure of the pion in terms of fundamental partons. How to relate the constituent quarks and the fundamental
partons is an old problem analyzed by Altarelli, Cabibbo, Maiani and Petronzio [27], and applied more recently to
the pion [30] and to the nucleon [28, 29]. Let us recall the main features of this development.
As shown in ref.[27], the constituent quarks are themselves composite objects whose structure is described by a

set of functions φq0q (x) that specify the number of point-like partons of type q which are present in the constituent
of type q0, with fraction x of its total momentum. We will hereafter call these functions, generically, the structure
functions of the constituent quark. The functions describing the nucleon parton distributions are expressed in terms
of these new functions φq0q (x) and of the calculated constituent density distributions (q0 = u0, d0) as,

q
(

x,Q2
)

=
∑

q0

∫ 1

x

dz

z
q0

(

z,Q2
)

φq0q

(x

z
,Q2

)

(22)

where q labels the various partons, i.e., valence quarks and antiquarks (uv, d̄v), sea quarks (us, ds, s), sea antiquarks
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(

ūs, d̄s, s̄
)

and gluons g.
The different types and functional forms of the structure functions of the constituent quarks are derived from three

very natural assumptions [27]: (i) The point-like partons are QCD degrees of freedom, i.e. quarks, antiquarks and
gluons; (ii) Regge behavior for x→ 0 and duality ideas; (iii) invariance under charge conjugation and isospin.
These considerations define in the case of the valence quarks the following structure function

φq0qv
(

x,Q2
)

=
Γ
(

A+ 1
2

)

Γ
(

1
2

)

Γ (A)

(1− x)A−1

√
x

. (23)

For the sea quarks the corresponding structure function becomes,

φq0qs
(

x,Q2
)

=
C

x
(1− x)D−1 , (24)

and, in the case of the gluons, it is taken

φq0g
(

x,Q2
)

=
G

x
(1− x)B−1

. (25)

We take the same parameters as in ref.[28] for the proton case A = 0.435, B = 0.378, C = 0.05, D = 2.778, and
G = 0.135, since these functions should in principle be independent of the hadron under scrutiny.
Once the convolution defined by Altarelli et al. is performed, we proceed to look for the evolution of the parton

distribution under the Renormalization Group. The evolution is carried to next to leading order. We find the hadronic
scale, i.e. the scale at which the constituent quark structure is defined, at Q2

0 = 1GeV2. This scale is determined by
imposing that the fraction of the total momentum carried by the valence quark at Q2 = 4GeV2 is 0.46 as determined
from experiment [10].
In Fig. 5 we show the evolved PDF for S2 (full line). S1, discussed at the beginning of the section, gives similar

results. The dashed line corresponds to the evolution of the PDF of S2 without the ACMP convolution. We observe
that the results are reasonable since not a single parameter was fixed in the fit, although too small in the x ∼ 1 region.
The ACMP procedure pushes the PDF to higher values of x and therefore produces a significant corrections in the
right direction.
We show in Fig. 5 also the results obtained with S2 for Λm and ΛZ multiplied by 2 and αZ and αm divided by 2

(dashed-dotted line). We observe that the experimental results are well reproduced in this case and our curve is very
well reproduced by the expression

xq (x) =
Γ (1 + α+ β)

Γ (α) Γ (1 + β)
xα (1− x)β with α = 0.62, β = 1.04 (26)

which is quite close to the bests fits in [10] . The fact that the PDF in terms of the constituent quarks is larger in
the regions x ∼ 0 and x ∼ 1 leads, after applying the ACMP procedure, to a result which is reasonable in the large
x region. The NJL model, when the ACMP procedure is applied to it, leads to a PDF which too large in the x ∼ 1
region, although quite reasonable given the simplicity of the model and the fact that no single parameter was fitted
in the process (small dashed line in Fig. 5).

IV. MOMENTS OF THE CONSTITUENT PARTON DISTRIBUTION FUNCTIONS.

In section II we have calculated the parton distribution q (x) . We have assumed that the parton distribution is
defined between 0 < x < 1 and have used as a consistency test of this assumption that the first moment of the parton
distribution is 1 and the second moment is 1/2. From Eq. (2), (6) and (7)it can be analitically proved that

∫

dx q (x) = F (0) ,
∫

dx x q (x) = 1
2F (0) ,

(27)

when the integration is not restricted to the region 0 ≤ x ≤ 1 1. The consistency test proposed in section II reflects
that the significant contribution to the two integrals (27) comes from the physical region 0 ≤ x ≤ 1.

1 In [5] is was proved that the pion form factor appears correctly normalized, F (0) = 1, in the formalism.
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FIG. 5: Full line corresponds to the evolved PDF for S2 including the ACMP procedure. The dashed line corresponds to the
evolution of the PDF of the same scenario without the ACMP convolution. The dashed-dotted and small-dashed lines are for
the evolved PDF for S2 with αZ and αm divided by 2 and Λm and ΛZ multiplied by 2 and for the NJL model respectively, in
both cases the ACMP procedure is implemented.

The numerical value of the higher moments are not fixed by symmetry arguments. Nevertheless we can use them
as a proof of the consistency of our procedure if we are able to calculate them in a different way. We proceed to do
so.
The moments of the parton distribution are defined as:

〈x〉s =
∫ 1

0

dx xs−1 q (x) (28)

A first procedure to calculate the moments is to perform the integration defined in Eq. (28) using the parton
distribution, q (x) , obtained in section II. An alternative method is to perform the integral over x, using the delta
functions present in Eqs. (2), (6) and (7), before performing the integration over the internal momentum, p, in these
equations. We focus our discussion in the contribution to 〈x〉s coming from (2), because the generalization to the
other two contributions is straightforward.
Once the integral over x is performed, the contribution to 〈x〉s coming from (2) is

〈x1〉s = −
∫

d4p

(2π)
4

[n

2
· (2p+ P )

]s−1

Tr

[

i S

(

p− 1

2
P

)

Γ̄M (p, P ) i S

(

p+
1

2
P

)

Γµ

(

p+
1

2
P, p+

1

2
P

)

nµ i S

(

p+
1

2
P

)

ΓM (p, P )

]

(29)

with the momentum integration restricted to those values that guaranty the condition

0 <
n

2
· (2p+ P ) < 1 . (30)

The difference between the first and the second procedures is just the order of integration of the variables. Any
significant problem with singularities must appear in comparing the result of these two methods.
For calculating the integral present in Eq. (29) we need a reference frame. The most adequate one is the infinite

momentum frame, in which we have nµ = (1, 0, 0,−1)/
√
2P̄ with P̄ going to infinity. The pion momentum is expressed
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as

Pµ =
1√
2

(

P̄ +
m2

π

2P̄
, 0, 0, P̄ − m2

π

2P̄

)

. (31)

In this reference frame the dominant terms appearing in the denominators of the propagators are proportional to P̄ ,
[ (p± P/2)2 ∝ ± 1√

2

(

p0 − p3
)

P̄ ], which lead to an integrand vanishing as P̄−2 for large values of P̄ , except in a

small region of p0 around p3. In order to evaluate the contribution of this region it is adequate to make the following
change of variable

p0 = p3 +
m̄

P̄
p′0 (32)

where m̄ is any mass in the problem, for instance m̄ = m (0) .

Using (32) in eq. (30) we obtain that the integration over p3 must be performed between −P̄ /(2
√
2) and P̄ /(2

√
2)

and similarly for p0. Then, the contribution coming from (29) is

〈x1〉s = − lim
P̄→∞

∫ P̄ /(2
√
2)

−P̄ /(2
√
2)

m̄

P̄

dp′0

2π

∫ P̄ /(2
√
2)

−P̄ /(2
√
2)

dp3

2π

∫

d2p⊥

(2π)
4

[√
2
p3

P̄
+

1

2

]m−1

Tr

[

i S

(

p− 1

2
P

)

Γ̄M (p, P ) i S

(

p+
1

2
P

)

Γµ

(

p+
1

2
P, p+

1

2
P

)

nµ i S

(

p+
1

2
P

)

ΓM (p, P )

]

(33)

It is a this stage that we assume that the Wick rotation on the variable p′0 can be performed without problems. The
most dangerous term, [n · (2p+ P ) /2]

s−1
, is under control for any value of s. It is not difficult to show that this

integral has a well defined value as P̄ →∞ and that this value is independent of m̄ in Eq.(32).
We have applied the same procedure to the other two contributions to 〈x〉s , coming form Eqs. (6) and (7) and we

have calculated the moments of the parton distribution in the two scenarios, S1 and S2, defined in section III. We
have also calculated them directly from Eq. (28) with the parton distributions obtained in section III. The numerical
results coincide in both scenarios for all the moments.
Summarizing, in here we have calculated the moments of the parton distribution functions for the two scenarios

defined in section III in two different ways. Firstly, from Eq. (28) using the calculated parton distribution obtained
from the method explained in section II. In this first method we do not need to define a particular frame for the
calculation. In the second method, we have calculated the moments directly in Euclidean space and in the infinite
momentum frame. This second procedure has been justified from an analysis in Minkowsky space, by performing the
Wick rotation in Eq. (33) and the equivalent equations for the other two contributions coming from Eqs. (6) and
(7). The methods are based on significantly different calculations and therefore, they provide a test of consistency.
Those models which violate the check of consistency defined at the end of section II, will also give different numerical
results for the moments of the parton distribution functions in the two methods.

V. CONCLUSIONS.

We have applied a procedure for calculating the PDFs in a framework, based on the Dyson-Schwinger equations,
first introduced in ref. [5]. The motivation behind our procedure is the preservation of all the conservation laws
associated with the fundamental symmetries (Poincaré covariance, gauge invariance, isospin symmetry and number of
valence constituents) which implies that before evolution the PDF of the pion built with only two valence (anti)quarks
has first moment equal to 1, second moment equal to 0.5, is symmetric around the point x = 0.5 and is defined in
0 < x < 1. Our procedure, determined by the appropriate implementation of local gauge invariance, is defined in
terms of an operator, which incorporates additional contributions besides the conventional triangle diagram [5]. The
method of calculation follows the method used in [16] for the calculation of the GPDs in the NJL model and can be
easily applied to any model with similar ingredients.
Our approach preserves all the symmetries up to the moment in which the Wick rotation is performed. The

particular choice for m (p) and Z (p) becomes crucial at this moment. An arbitrary choice of m (p) or Z (p) can
have “spurious” singularities which might lead to appreciable symmetry breaking effects. Our expressions for these
functions, obtained from QCD studies, are consistent, within our numerical precision, with all the symmetries. Note
the parton distribution vanishes at the support endpoints, x = 0 and x = 1, a feature which occurs in the instanton
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model [19], but not in the NJL model. The new terms in the operator give no contribution to the first moment of the
PDF, but a significant contribution (∼ 6− 8%) to the second moment and restore the symmetry of the PDF around
the point x = 0.5. We can approach the results of the NJL model by a change in the parameters.
In order to check furthermore our procedure we have calculated the moments of the parton distribution in two

different ways. The consistency of these procedures provides a strong test for our formalism to determine the parton
distributions.
In order to describe the experimental data we have realized that the ACMP procedure is necessary. Nevertheless,

even incorporating the ACMP convolutions, the results with the given parameterization are not spectacular, they
fall very low for large x. On the other hand, the NJL model, also with ACMP convolutions, behaves oppositely, its
PDFs is too large in that region. Since we can approach the NJL model in our scheme by increasing Λm we do so,
changing simultaneously αm to keep the low energy properties as close as possible to the experimental ones. The
improvement is immediate although we have done no fine tuning. Nevertheless, we do not make a big statement about
this improvement, since there might be other contributions to the PDFs arising from improvements to our lagrangian,
which are lacking in our formulation.
Fundamental studies of QCD provide results which lead to effective nonlocal interactions which are difficult to

connect with the data. The analysis carried out here shows that the formalism developed in ref.[5] is well suited for
this purpose. The formalism can be easily generalized to any model, is based on the Dyson-Schwinger equations, and
therefore contains all the non perturbative input associated with the bound state structure of hadrons, and is suited to
preserve all the wishful symmetries, as long as we are able to control the passage from Euclidean to Minkowski space-
times. Besides these general conclusions, we have also shown, in the calculation of the PDFs, that the models thus far
developed to describe the structure of hadrons at low Q2 (scenarios S1 and S2) require from a convolution formalism
of the ACMP type to approach the data. Moreover, surprisingly enough, without any change in the parameters of
these models, the results, once ACMP is incorporated, are qualitatively correct. Finally, with little changes in the
parameterization we have also shown that one can easily adjust both low energy and high energy observables within
the same model lagrangian. We have not pretended to do so precisely, since our model is far too crude to be able to
explain the data, but our calculations shows that this enterprise is feasible.
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APPENDIX A: DESCRIPTION OF THE QUARK PROPAGATOR AND PION AMPLITUDE.

In ref [5] it is studied the model described by the lagrangian of Eq. (8). We obtain from the Dyson equation the
momentum dependence of the mass and wave function renormalization of the propagator of Eq. (11):

m (p) =
m0 + α0G0 (p)

1− αpGp (p)
(A1)

Z (p) =
1

1− αpGp (p)
(A2)

The constants α0 and αp are directly related to couplings constants g0 and gp :

α0 = i 8NcNfg0

∫

d4p

(2π)
4G0 (p)

Z (p)m (p)

p2 −m2 (p) + iǫ
(A3)

αp = i 8NcNfgp

∫

d4p

(2π)4
Gp (p)

p2Z (p)

p2 −m2 (p) + iǫ
(A4)

The BS equation is solved leading to:

ΓM=πi

(p, P ) = i γ5 τ
i gπqqG0 (p) (A5)
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Defining the pseudo-scalar polarization

Πps

(

P 2
)

= − i 4NcNf

∫

d4p

(2π)
4G

2
0 (p)

Z
(

p+ 1
2P

)

Z
(

p− 1
2P

) [

1
4P

2 − p2 +m
(

p+ 1
2P

)

m
(

p− 1
2P

)]

[

(

p+ 1
2P

)2 −m2
(

p+ 1
2P

)

+ iǫ
] [

(

p− 1
2P

)2 −m2
(

p− 1
2P

)

+ iǫ
] , (A6)

the pion mass is obtained from the relation:

1 = 2 g0Πps

(

P 2 = m2
π

)

(A7)

and the normalization constant gπqq is given by

1

g2πqq
= −

(

∂Πps

∂P 2

)

P 2=m2
π

. (A8)
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