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5 B mesons and form factors
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In order to extract some information on the CKM matrix element |Vcb|, we have to determine
form factors in B decays. For this, we show that it is relevant to consider the non-forward
amplitude between the heavy-light B and D mesons within the Heavy Quark Effective Theory
(HQET). This method provides us crucial information on the shape of the elastic Isgur-Wise
(IW) function ξ(w). As examples, one gets that the n-th derivative of ξ(w) at w = 1 can be
bounded by the (n−1)-th one and one obtains an absolute lower bound for the n-th derivative

(−1)nξ(n)(1) ≥ (2n+1)!!

22n
. These bounds should be taken into account in the parametrizations

of ξ(w) used to extract |Vcb|. Besides, we have also obtained new information on subleading
functions at the order O(1/mQ) where mQ is the heavy quark mass, namely ξ3(w) and Λξ(w).

1 Introduction

In the leading order of the heavy quark expansion of QCD, Bjorken sum rule (SR) 1 relates

the slope of the elastic IW function ξ(w) to the IW functions of transition τ
(n)
1/2(w) and τ

(n)
3/2(w)

between the ground state jP = 1
2
−

and the jP = 1
2
+
, 3

2
+

excited states at zero recoil where
w = 1 (j is the total angular momentum of the light cloud and n is a radial quantum number).

This SR leads to the lower bound −ξ′(1) = ρ2 ≥ 1
4 . Recently, a new SR 2 was formulated

by Uraltsev in the heavy quark limit involving also τ
(n)
1/2(1) and τ

(n)
3/2(1) that implies, combined

with Bjorken SR, the much stronger lower bound ρ2 ≥ 3
4 . A basic ingredient in deriving this

bound is the consideration of the non-forward amplitude B(vi) → D(n)(v′) → B(vf ), allowing
for general vi, vf , v

′ and where B is a ground state meson. In order to make a systematic study
in the heavy quark limit of QCD, a manifestly covariant formalism within Operator Product
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Expansion (OPE) has been developed 3, using the matrix representation for the whole tower of

heavy meson states 4. In this formalism, Uraltsev SR has been recovered plus a new class of
SR that allows to bound also higher derivatives of the IW function. Making a natural physical
assumption, this new class of SR implies the bound σ2 ≥ 5

4ρ
2 where σ2 is the curvature of the

IW function. Using this formalism including the whole tower of excited states jP , the rigorous
bound σ2 ≥ 5

4ρ
2 has been recovered plus generalizations that extend it to all the derivatives of

the IW function ξ(w) at zero recoil, that is shown to be an alternate series in power of (w− 1).
After reviewing the corresponding sum rules in the heavy quark limit of QCD, the object of the
present paper is to extend the formalism to IW functions at subleading order in 1/mQ.

2 Sum rules in the heavy quark limit of QCD

Using the OPE and the trace formalism in the heavy quark limit, different initial and final

four-velocities vi and vf , and heavy quark currents J1 = h
(c)
v′ Γ1h

(b)
vi , J2 = h

(b)
vf
Γ2h

(c)
v′ where Γ1

and Γ2 are arbitrary Dirac matrices, the following sum rule can be written 3:

{ΣD=P,V ΣnTr[Bf (vf )Γ2D
(n)(v′)]

Tr[D
(n)

(v′)Γ1Bi(vi)]ξ
(n)(wi)ξ

(n)(wf )

+ Other excited states}

= −2ξ(wif )Tr[Bf (vf )Γ2P
′
+Γ1Bi(vi)].

(1)

In this formula, v′ is the intermediate charmed meson four-velocity, P ′
+ = 1

2(1 + v′) is the
positive energy projector on the intermediate c quark, ξ(wif ) is the elastic IW function that
appears because one assumes vi 6= vf . Bi and Bf are the 4 × 4 matrices of the ground state

B or B∗ mesons, respectively the pseudoscalar and the vector of the doublet 1
2

−
, while D(n)

stands for all possible ground state or excited state D mesons coupled to Bi and Bf through the

currents. In (1) we have made explicit the j = 1
2

−
D and D∗ mesons and their radial excitations

of quantum number n. The variables wi, wf and wif are defined as wi = vi.v
′, wf = vf .v

′,

wif = vi.vf and vary within the domain 3:

wi ≥ 1 , wf ≥ 1

wiwf −
√

(w2
i − 1)(w2

f − 1) ≤ wif ≤ wiwf +
√

(w2
i − 1)(w2

f − 1).
(2)

The general SR (1), obtained from the OPE, can be written in the following compact way :

LHadrons(wi, wf , wif ) = ROPE(wi, wf , wif ) (3)

where the l.h.s. is the sum over the intermediate charmed D states, while the r.h.s. is the OPE
counterpart. Within the domain (2), one can derive relatively to any of the variables wi, wf

and wif and obtain different SR taking different limits to the frontier of the domain.

On the one hand, we can choose, as in ref. 3, the B pseudoscalar meson B(v) = P+(−γ5) as
initial and final states and vector currents projected along the vi and vf four-velocities :

J1 = h
(c)
v′ 6 vih

(b)
vi , J2 = h

(b)
vf

6 vfh
(c)
v′ . (4)



We then obtain SR (1) with the sum of all excited states jP in a compact form :

(wi + 1)(wf + 1)Σl≥0
l+1
2l+1Sl(wi, wf , wif )Σnτ

(l)(n)
l+1/2(wi)τ

(l)(n)
l+1/2(wf )

+Σl≥1Sl(wi, wf , wif )Σnτ
(l)(n)
l−1/2(wi)τ

(l)(n)
l−1/2(wf )

= (1 + wi +wf + wif )ξ(wif ).

(5)

On the other hand, choosing instead the axial currents,

J1 = h
(c)
v′ 6 viγ5h

(b)
vi , J2 = h

(b)
vf

6 vfγ5h
(c)
v′ (6)

we get the following SR :

Σl≥0Sl+1(wi, wf , wif )Σnτ
(l)(n)
l+1/2(wi)τ

(l)(n)
l+1/2(wf )

+(wi − 1)(wf − 1)
∑

l≥1
l

2l−1Sl−1(wi, wf , wif )Σnτ
(l)(n)
l−1/2(wi)τ

(l)(n)
l−1/2(wf )

= −(1−wi − wf + wif )ξ(wif ).

(7)

In (5) and (7), the IW functions τ
(l)(n)
l+1/2(w) and τ

(l)(n)
l−1/2(w) have been defined in ref. 3 where l and

j = l± 1
2 are the orbital and the total angular momentum of the light cloud and Sn is given by

Sn(wi, wf , wif ) = viν1 . . . viνnvfµ1 . . . vfµn
Σλǫ

′(λ)∗ν1...νnǫ′(λ)µ1...µn (8)

which can take the following expression 3

Sn(wi, wf , wif ) = Σ0≤k≤n
2
Cn,k(w

2
i − 1)k(w2

f − 1)k(wiwf − wif )
n−2k (9)

with

Cn,k = (−1)k
(n!)2

(2n)!

(2n− 2k)!

k!(n− k)!(n − 2k)!
. (10)

On the one hand, making the sum of both equations (5) and (7), one obtains, differentiating
relatively to wif :

ξ(l)(1) =
1

4
(−1)ll!{

l + 1

2l + 1
4Σn[τ

(l)(n)
l+1/2(1)]

2 +Σn[τ
(l−1)(n)
l−1/2 (1)]2 +Σn[τ

(l)(n)
l−1/2(1)]

2} (l ≥ 0). (11)

This relation shows that ξ(w) is an alternate series in power of (w − 1) because of the factor

(−1)l and reduces to Bjorken SR1 for l = 1.
On the other hand, differentiating (7) relatively to wif and making wi = wf = wif = 1, one

has the simple formula :

ξ(l)(1) = (−1)ll!Σn[τ
(l)(n)
l+1/2(1)]

2 (l ≥ 0). (12)

Combining (11) and (12), one obtains the relation among the IW functions :

l

2l + 1
Σn[τ

(l)(n)
l+1/2]

2 −
1

4
Σn[τ

(l)(n)
l−1/2]

2 =
1

4
Σn[τ

(l−1)(n)
l−1/2 ]2 (13)

that reduces to Uraltsev SR 2 for l = 1 and generalizes it for all l. Replacing now Σn[τ
(l)(n)
l+1/2]

2

from the expression (12) into the generalization of Bjorken SR (11), one obtains :

(−1)lξ(l)(1) =
1

4

2l + 1

l
l!{Σn[τ

(l−1)(n)
l−1/2 (1)]2 +Σn[τ

(l)(n)
l−1/2(1)]

2} (14)



which implies the lower bounds :

(−1)lξ(l)(1) ≥ 2l+1
4 (−1)l−1ξ(l−1)(1)

≥ (2l+1)!!
22l

(15)

that give, in particular, for the lower cases,

− ξ′(1) = ρ2 ≥
3

4
, ξ′′(1) ≥

15

16
. (16)

Considering systematically the derivatives of the SR (5) and (7) relatively to wi, wf and wif

with the boundary conditions wi = wf = wif = 1, one obtains a new SR :

4

3
ρ2 + (ρ2)2 −

5

3
σ2 +

∑

n 6=0

|ξ(n)
′

(1)|2 = 0 (17)

that in turn implies :

σ2 ≥
1

5
[4ρ2 + 3(ρ2)2] (18)

There is a simple intuitive argument to understand the last term in the bound (18), namely the
non-relativistic light quark q interacting with a heavy quark Q through a potential. One can
indeed prove that 3

σ2
NR ≥

3

5
(ρ2NR)

2. (19)

Thus, the non-relativistic limit is a good guide-line to study the shape of the IW function ξ(w).

We have recently generalized the bound (19) to all the derivatives of ξNR(w)
5. The method uses

the positivity of matrices of moments of the ground state wave function. We have also shown
that the method can be generalized to the real function ξ(w) of QCD.

An interesting phenomenological remark is that the simple parametrization for the IW func-
tion 6

ξ(w) = (
2

w + 1
)2ρ

2

(20)

satisfies the inequalities (15) and (18) if ρ2 ≥ 3
4 . The result (15), that shows that all derivatives

at zero recoil are large, should have important phenomenological implications for the empirical
fit needed for the extraction of |Vcb| in the semileptonic exclusive decay mode B → D∗lν.

3 Sum rules for subleading form factors

We wish now to obtain new sum rules involving subleading quantities in 1/mQ where mQ is the

heavy quark mass 7. For this, we can perturb the generic SR (3) by 1/mc and 1/mb terms. The
perturbation of the r.h.s, the OPE side, is parametrized by six new subleading IW functions
concerning the ground state 1

2
−

and denoted by Li(w) (i = 1, . . . , 6) 8. As for the l.h.s., and

considering as intermediate D states the multiplets 1
2
−
, 1

2
+
, 3

2
+

(higher jP intermediate states

do not in fact contribute7), we have three types of matrix elements coresponding to the hadronic

transitions B → D(12
−
), B → D(12

+
) and B → D(32

+
). The corrections in 1/mb or 1/mc to the

first matrix element are given by the same ground state subleading IW functions Li(w), while

the O(1/mb) and O(1/mc) corrections to the matrix elements B → D(12
+
), D(32

+
) have been

carefully studied9 and result in a number of new subleading IW functions. All these corrections
are of two types, perturbations of the heavy quark current and perturbations of the Lagrangian.



Beginning with the general SR in the heavy quark limit and perturbing the heavy quark
limit matrix elements with 1/mb and 1/mc corrections, the general expression could then be
written, making explicit the leading and the 1/mc and 1/mb parts, as :

G0(wi, wf , wif ) + E0(wi, wf , wif ) +
1

2mb
[Gb(wi, wf , wif ) + Eb(wi, wf , wif )]

+ 1
2mc

[Gc(wi, wf , wif ) + Ec(wi, wf , wif )]

= R0(wi, wf , wif ) +
1

2mb
Rb(wi, wf , wif ) +

1
2mc

Rc(wi, wf , wif )

(21)

where the subindex 0 means the heavy quark limit, while the subindex b or c correspond to the
subleading corrections in 1/mb or 1/mc, and G or E mean, respectively, ground state or excited
state contributions.

In the heavy quark limit, on has :

G0(wi, wf , wif ) + E0(wi, wf , wif ) = R0(wi, wf , wif ) (22)

that leads to the results quoted in the section 2.
In expression (21), we can vary mb and mc as independent parameters and obtain new SR

for the subleading quantities. To obtain information on the 1/mb corrections, it is relatively
simple to proceed as follows by assuming the formal limit :

mc >> mb >> ΛQCD (23)

and perturb both sides of the SR (22) by 1/mb terms. In this limit, one obtains the relation :

Gb(wi, wf , wif ) + Eb(wi, wf , wif ) = Rb(wi, wf , wif ). (24)

One can then compute Gb(wi, wf , wif ) and Eb(wi, wf , wif ) using respectively the formalism of

Falk and Neubert 8 and the the one of Leibovich et al. 9, and obtain SR for the different
subleading IW functions Li(w).

Choosing the axial currents Γ1 = 6 viγ5 and Γ2 = 6 vfγ5 and taking as initial and final states
respectively the ground state pseudoscalar and vector mesons at different four-velocities, one
obtains the two sum rules 7 :

L4(w) = −6Σn∆E
(n)
1/2τ

(n)
1/2(1)τ

(n)
1/2(w)

−L5(w) + (w + 1)L6(w) = 2Σn∆E
(n)
1/2τ

(n)
1/2(1)τ

(n)
1/2(w)− 4(w + 1)Σn∆E

(n)
3/2τ

(n)
3/2(1)τ

(n)
3/2(w).

(25)

The functions Li(w) (i = 4, 5, 6) are not independent but are given in terms of two functions 8,
namely the elastic IW function ξ(w), a subleading function ξ3(w) and the fundamental parameter
of HQET Λ (Λ = mB−mb, which stands for the energy of the light cloud). Therefore, we finally
obtain the relations, valid for all w :

Λξ(w) = 2(w + 1)Σn∆E
(n)
3/2τ

(n)
3/2(1)τ

(n)
3/2(w) + 2Σn∆E

(n)
1/2τ

(n)
1/2(1)τ

(n)
1/2(w) (26)

ξ3(w) = (w + 1)Σn∆E
(n)
3/2τ

(n)
3/2(1)τ

(n)
3/2(w)− 2Σn∆E

(n)
1/2τ

(n)
1/2(1)τ

(n)
1/2(w). (27)

These new SR reduce to known SR for w = 1, for Λ obtained by Voloshin 10, and for ξ3(1)

obtained by Le Yaouanc et al. 11 and by Uraltsev 2, and generalize them to all values of w.
Therefore, we have shown that the subleading quantities Λξ(w) and ξ3(w), that are functions

of w, can be expressed in terms of leading quantities, namely the transition IW functions τ
(n)
j



and the corresponding level spacings ∆E
(n)
j (j = 1

2 ,
3
2 ). We can now discuss phenomenological

applications of these results, in particular the check of Bakamjian-Thomas quark models. Within
this scheme, ξ(w) is given by (20) with ρ2 = 1.02, while one gets, for the n = 0 states 6 :

τ
(0)
j (w) = τ

(0)
j (1)(

2

w + 1
)2σ

2
j (28)

with τ
(0)
1/2(1) = 0.22, σ2

1/2 = 0.83, τ
(0)
3/2(1) = 0.54 and σ2

3/2 = 1.50. Assuming the reasonable

saturation of the SR with the lowest n = 0 states, one gets, from the first relation (26), a
sensibly constant value for Λ = 0.513 ± 0.015.

4 Conclusion

Using sum rules in the heavy quark limit of QCD, as formulated in ref. 3, lower bounds for the
derivatives of the elastic IW function ξ(w) have been found. Any phenomenological parametriza-
tion of ξ(w) intending to fit the CKM matrix element |Vcb| in B → D(∗)lν should satisfy these
bounds. Moreover, we have found non-trivial new information on subleading contributions in
1/mQ. As a result, the fundamental quantity of HQET Λ appears to be a ratio of leading
functions and ξ3(w) is also given in terms of leading quantities. To proceed further phenomeno-
logically, we use as an Ansatz for these functions the results of the Bakamjian-Thomas quark
models, that gives covariant form factors in the heavy quark limit, satisfies IW scaling and also
Bjorken and Uraltsev sum rules. One obtains in this way for a very wide range of w the expected
constancy for Λ, with numerical value of the order of 0.5 and which is in agreement with other
methods as, for example, the QCDSR approach.
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