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Abstract

We explore the possibility that a CP violating phase of the neutrino

mass matrix is promoted to a pseudo-Goldstone-boson field and is iden-

tified as the quintessence field for Dark Energy. By requiring that the

quintessence potential be calculable from a Lagrangian, and that the

extreme flatness of the potential be stable under radiative corrections,

we are led to an essentially unique model. Lepton number is violated

only by Majorana masses of light right-handed neutrinos, comparable to

the Dirac masses that mix right- with left-handed neutrinos. We outline

the rich and constrained neutrino phenomenology that results from this

proposal.

http://arxiv.org/abs/hep-ph/0505124v1


1 Introduction

A series of different observations and considerations [1, 2] provides a strong case for a striking

phenomenon: the expansion of the universe has recently begun to accelerate. Although a definitive

experiment with sufficiently small systematic uncertainties is lacking, if confirmed this remarkable

fact calls for an adequate explanation and, even more important, motivates the search for other

correlated observable phenomena.

The accelerated expansion of the universe could be due to a tiny Cosmological Constant (CC),

Λ ≈ (3 · 10−3eV)4; tiny, but non-zero. In fact, the frustration generated by the unsuccessful

attempts to solve the vacuum energy problem has led to the development of a mild anthropic

interpretation of the apparently observed value of the CC [3]. Here we take the view that the

search for a more fundamental understanding of the cosmic acceleration remains highly motivated,

even if still resting on the assumption of an exactly vanishing vacuum energy.

As an alternative to a CC, the accelerated expansion of the universe may be due to the evolution

of some scalar field, uniform or quasi-uniform in space, with the associated “Dark Energy” (DE)

mostly in its potential, usually called “quintessence” [4]. Signals related to such an interpretation,

although typically only vaguely determined, could be an equation of state of the associated fluid

different from the one of a pure CC, or the effects of the couplings of the quintessence field to the

usual matter or gauge fields.

In this work we describe a possible microscopic origin for the quintessence field and for its

potential, guided by two general requirements and one phenomenological observation. One general

requirement is that the quintessence potential should be calculable from a Lagrangian and its

peculiar properties, in particular its extreme flatness, should be stable under radiative corrections.

Since the mass scale governing this flatness is todays Hubble parameter, H0 ≈ 10−33 eV, this

requirement is severe indeed, although it is known to be satisfied by a Pseudo-Goldstone Boson

(PGB) arising from the spontaneous breaking of a global symmetry near the Planck scale [5]. Our

second general requirement is that the physics of DE be directly connected to observable particle

physics, so that the resulting theory can be tested in the laboratory. These two requirements

appear to conflict — if the quintessence field is coupled sufficiently strongly to the standard

model to give laboratory signals, then radiative corrections involving this coupling will destroy

the extreme flatness of the potential. A hint of a possible escape from this conundrum is provided

by the phenomenological observation, already made by several people [6, 7], of the relative closeness

of the energy scale associated with DE to the scale of neutrino masses. Thus we are led to explore

the possibility that a CP violating phase of the neutrino mass matrix is promoted to a PGB field

and is identified as the quintessence field for DE.
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2 The model

To implement this idea we introduce right-handed neutrinos, Ni, at least two but most likely three,

and as many complex scalars, φij, as there are independent Lorentz-invariant neutrino bilinears

NiNj . These scalars have Yukawa couplings to the Ni (φij = φji, λij = λji)

L
N
Y =

1

2

∑

ij

λij φijNiNj , (1)

which are invariant under independent phase transformations of each Ni field, say U(1)3 for con-

creteness. U(1)3 is a subgroup of the U(1)6 which transforms each of the φij-fields by an inde-

pendent phase. The crucial assumption is that, in the limit of vanishing λij, the full Lagrangian

is invariant under this global U(1)6, which is spontaneously broken by the vacuum expectation

values 〈φij〉 ≡ fij .

In the absence of any other coupling of the Ni fields, this model has three massless Goldstone

bosons and three PGBs, Gij . The effective potential for the combinations of Gij that are PGBs

arises at one loop and is given by

V1 ≈
1

32π2
Tr

[

MM †MM † ln
Λ2

MM †

]

(2)

where Mij = λijfije
iGij/fij is the field-dependent, right-handed neutrino mass matrix and Λ is a

cut-off, to be specified later. Note the irrelevance in V of any quadratic term in Mij , however

generated, since the only such term invariant under U(1)3 is also U(1)6-invariant, and therefore

Gij independent. A typical term in V1 contributing to the potential of a PGB field, G, has the

form

V (G) = µ4 cos (G/f) (3)

where µ4 = O(M4) arises as a product MijM
∗
jkMklM

∗
li, and f is an appropriate function of the

symmetry breaking parameters fij . It is well-known that, with µ ≈ 3 × 10−3 eV and f of order

MPl, G is a consistent candidate for the quintessence field [5, 6, 8]. However, the signals we wish

to stress are not those that come from the form of the potential (3), but rather are due to the

required form for the underlying neutrino sector.

Two natural and important questions arise at this point. Could we interpret the Ni as the left-

handed neutrinos entering the usual left-handed lepton doublets Li? What other couplings can

complete consistently the neutrino sector? To answer the first question we should first transform

eq. (1) into a gauge invariant interaction involving the Li and the Higgs doublet h

L
L
Y =

1

2

∑

ij

λL
ij φij

h2

M2

L

LiLj , (4)

where gauge indices are left understood and ML is an energy scale introduced to give L L
Y the

correct dimensions. Indeed, if we now replace the Higgs field with its vacuum expectation value,
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we would be led to the same contribution as in (2) to the PGB potential, except that Mij would

now be the left-handed neutrino mass matrix. Apparently this is the minimal theory, with the

DE field directly related to the phases of the 3× 3 neutrino mixing matrix. It is straightforward

to see, however, that radiative corrections above the weak scale with internal Higgs fields destroy

radiative stability. This is an important conclusion. Without considerable complications of the

Higgs sector [9], the introduction of light right-handed neutrinos appears as a necessity. A similar

conclusion applies to the case with φij fields coupled to the LiNj bilinear.

We can now answer the second question stated above. A consistent completion of the Yukawa

Lagrangian in the lepton sector has the form

LY =
∑

ij

λE
ij hLie

c
j +

∑

ij

λD
ij hLiNj +

1

2

∑

ij

λij φijNiNj (5)

involving the right-handed charged leptons, eci . One recognizes the usual Dirac neutrino mass

matrix, proportional to λD, and one notices the absence of any (gauge invariant) Majorana mass

term for the left-handed neutrinos of the form λM
ij h2LiLj/ML. Such a term, in fact, would

explicitly break lepton number and, in conjunction with the Dirac mass matrix, would allow terms

in the PGB potential linear in Mij , thus also destroying radiative stability. In fact, radiative

stability requires that all non-renormalizable operators conserve both U(1)6 on the φij and an

overall lepton number, U(1)L. In the presence of non-zero λij, as well as generic λE,D couplings,

the U(1)6 symmetry is explicitly broken to U(1)L; it is convenient to label the theory by “U(1)6 →
U(1)L”.

From the above arguments, the theory of (5) is essentially unique. The only fermion bilinear

that φij can couple to is NiNj, and the h2LiLj operator must be absent. We conclude that there

must be two or more light right-handed neutrinos, with typical entries in their Majorana mass

matrix of order 3 × 10−3 eV — broadly comparable to the entries in the Dirac matrix. It is

remarkable that, in promoting a CP violating phase of the neutino sector to a field, the mass of

this field can be protected to the level of H0 ≈ 10−33 eV. The key is to ensure that the leading

radiative correction to m2

G is of order m4

ν/M
2

Pl
.

It is the Dirac mass term in (5) that allows us to call Ni the right-handed neutrinos. One may

wonder whether this term introduces significant new corrections to the PGB potential. In fact it

does at two-loop order, giving a term in the PGB potential

V2 ≈
(

1

16π2

)2

Tr(MM †λDλD†) Λ2. (6)

This leads us to consider a supersymmetric extension of the model with spartner masses at the

Fermi scale, in which case a typical sneutrino mass cuts off both the quadratic divergence of

this two-loop potential and the logarithmic divergence of the one-loop term in (2). Up to loop

factors, the resulting two-loop contribution also becomes of the relevant order of magnitude for
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a quintessence potential1. Note that with the complete LY all the would-be-Goldstones associ-

ated with the breaking of U(1)6 acquire a mass from the PGB potential, except for the linear

combination related to the overall lepton number.

We must be clear that we have not explained why the neutrinos are light — quite the re-

verse, since we have introduced extremely small parameters in the λ and λD matrices. The PGB

masses are small because they are proportional to powers of these small explicit symmetry break-

ing parameters. Neglecting flavor labels and emphasizing only the very small parameters, the

interactions of (5) can be rewritten as hLec + εD hLN + ε2M φNN , where εD,M are now the small

parameters. These parameters may not be promoted to fields, with the lightness of the neutrinos

explained in terms of a small vacuum value, since these fields would lead to disastrous radiative

corrections to the PGB potential. Nevertheless, it is interesting that both εD and εM should take

on values of order 10−13 to 10−15 for acceptable neutrino masses and DE — an approximate sym-

metry acts on the N fields. In higher dimensional theories, a small ε could result if N propagate

in a bulk and have a small, exponentially suppressed wavefunction at the location of the φ, L

and h fields. Even in this case, any parameter that sets the geometrical configuration must not

correspond to a light field in the low energy effective four dimensional theory.

Two variations in the theory are possible: by restricting the form of the couplings or the number

of φ fields in (5), alternative symmetry breaking patterns emerge, yielding PGB potentials different

from V1 + V2 of the generic case. If the entire theory possesses an exact U(1)3i symmetry, with

one U(1) for each lepton generation, λE,D become diagonal and we obtain the “U(1)6 → U(1)3i ”

variation. Since Tr (MM †λDλD†) is now independent of the three PGB fields, the potential for

the PGBs is given purely by V1 of (2). As this potential has only a logarithmic divergence, the

quintessence potential is stable to radiative corrections whether or not superpartners are at the

weak scale. In this variation, lepton flavor mixing arises entirely from spontaneous breaking.

Finally, if the initial symmetry is restricted to U(1)3i , so that the theory possesses only three φ

fields, φii, we obtain the “U(1)3i → U(1)L” variation. The potential for the 2 PGBs occurs at 3

loops

V3 ≈
(

1

16π2

)3

Tr (MλD†λDM †λDλD†)Λ2. (7)

This again gives a successful theory for quintessence with entries of M of order 10−3 eV, but, in

contrast to the general case, supersymmetry should be absent, giving a cutoff Λ ≈ MPl. As the

cutoff is reduced, so the entries of M can be made larger — with the cutoff in this variation at

the weak scale the right-handed neutrino masses may be raised to an MeV.

1In contrast to the case of Mass Varying Neutrinos [7], the effective contribution to the quintessence potential

from the cosmological neutrino density is numerically irrelevant. We can also ignore the small variation of the

neutrino masses induced by their dependence on the dynamical PGB fields.
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3 Constraints and Neutrino Spectra

Since fij ∼ MPl the PGB interactions are extremely weak, so that the main consequences of our

theory are in the neutrino mass sector. With 3 right-handed neutrinos, the full neutrino mass

matrix is 6 × 6 and is made of a Dirac mass matrix, mij = λD
ij 〈h〉, and of a Majorana mass

matrix for the right-handed neutrinos, Mij = λijfij, both 3× 3 and roughly of the same size (up

to differences among the various matrix elements, which can of course be significant). An M very

much smaller or much bigger than m would in fact give the wrong size for the PGB potential.

Such a neutrino mass matrix is mainly constrained by oscillation experiments. However, it is also

constrained by cosmology: extra sterile neutrinos coming into equilibrium, partially or totally,

affects Big-Bang Nucleosynthesis (BBN), the Cosmic Microwave Background (CMB) and Large

Scale Structure (LSS) formation.

After symmetry breaking, the neutrino masses and mixings can be described in full generality

by

L =
g√
2
ν̄V γµPLeWµ + eTmEe

c + νTmdN +
1

2
NTUTMdUN + h.c. (8)

where the flavour indices are left understood, mE , m
d and Md are real and diagonal matrices, V is

a unitary matrix with a single physical phase and U is a unitary matrix with five physical phases2.

If m and M are diagonalized by m = VDm
dUD and M = UT

MMdUM respectively, then U = UMU †
D.

To analyze the constraints in full generality in the entire space of parameters is complicated and

goes beyond the scope of this work. In the following we try to describe the main features of the

allowed parameter space.

We first consider the special case U = 1, in which m and M may be simultaneously diagonal-

ized. This is a useful starting point to understand the more general situation or, at least, to show

that there are allowed regions in parameter space that fulfil all requirements. This situation is

fully realistic and we study it below.

The constraints on the mass parameters are easy to determine because diagonalization of the

6× 6 neutrino mass matrix decouples into 3 separate 2× 2 diagonalizations, one for each (νi, Ni)

pair. We disregard possible degeneracies and order the eigenvalues of the Dirac and Majorana mass

matrices, mi and Mi respectively, in such a way that m3,M3 govern the atmospheric oscillation

length and m2,M2 the solar oscillation length. The constraints from oscillation experiments on

M2 and M3 are shown in Fig. 1. Also shown are the respective fractions of thermalized sterile

neutrinos at BBN and CMB eras, ∆Nν , and the regions excluded by LSS data. An analogous

figure cannot be drawn for M1 since we do not know the mass of the lightest active, or quasi-active

neutrino. However, for m1 small enough, say m1 . 10−6 eV, M1 is almost unconstrained.

While LSS forbids M2,3
>∼ eV, each of these masses could lie in the “0.3 eV window”, given

by 0.1eV <∼ M2,3
<∼ eV. Since the observed masses for atmospheric and solar oscillations are less

2The proof is as follows. The first three terms in the right-hand-side of (8) are the usual terms in the case of pure

Dirac neutrinos, which can always be reduced to this form. The last term is an arbitrary symmetric matrix with

the overall phase which is unphysical because it can be reabsorbed by an overall lepton number transformation.

6



10-3 10-2 10-1 1 10
M2  in eV

-1

0

1

2

3

4

St
an

da
rd

de
vi

at
io

ns

0

0.5

1

T
he

rm
al

iz
ed

st
er

ile

10-4 10-3 10-2 10-1 1 10
M3  in eV

-1

0

1

2

3

4

St
an

da
rd

de
vi

at
io

ns

0

0.5

1

T
he

rm
al

iz
ed

st
er

ile

Figure 1: Sign(∆χ2) · |∆χ2|1/2 of the global oscillation fit (continuous blue line/left vertical axis)

and thermalized sterile fraction (red dotted line/right vertical axis). Large Scale Structure data

exclude thermalized heavy sterile neutrinos (shaded regions).

than 0.3 eV, these values for M2,3 lead to a mini-seesaw. Alternatively, although atmospheric

oscillations exclude M3 ≃ m3, any value less than about 10−2 eV is allowed, yielding a pseudo-

Dirac pair for (ν3, N3). On the other hand, solar oscillations forbid M2 beneath the 0.3 eV window

all the way down to ∼ 10−9 eV. Allowed values below 10−9 eV lead to a pseudo-Dirac (ν2,M2)

pair. Thus, each of (ν2,M2) and (ν3,M3) either undergo a mini-seesaw or form a pseudo-Dirac

pair. Furthermore, from Fig. 1 we see that the cosmological thermalization of the sterile state is

complete for the mini-seesaw case and absent for the pseudo-Dirac case (except as M3 approaches

10−2 eV, when partial thermalization occurs). Hence we can identify three possibilities3

(0) ∆Nν ≈ 0: (M2,M3) ≈ (10−9, 10−3) eV.

(1) ∆Nν ≈ 1: (1a) (M2,M3) ≈ (0.3, 10−3) eV, or (1b) (M2,M3) ≈ (10−9, 0.3) eV.

(2) ∆Nν ≈ 2: (M2,M3) ≈ (0.3, 0.3) eV.

These four mass ranges correspond to the four possible ways of assigning mini-seesaw and pseudo-

Dirac spectra to each of (ν2,M2) and (ν3,M3), as shown in Fig. 2. One extra neutrino at BBN

looks compatible with standard cosmology, with systematic effects taken into account, whereas

two extra neutrinos appear definitely problematic, unless one invokes an ad hoc non standard

cosmology, such as large lepton asymmetries or a MeV-scale reheating temperature.

Although we have set U = 1, the unitary matrix UM = UD is completely undetermined by

neutrino mass phenomenology — the Euler angles, θ, of UM can be chosen to obtain the observed

DE, ρDE. If M1 is sufficiently small, the relevant entries of Mij = λijfij are given by Euler angles

3Here 0.3 eV means anywhere in the “0.3 eV window”, M3 ≈ 10−3 eV means any value of M3 less than about

10−2 eV, and M2 ≈ 10−9 eV means any value of M2 less than about 10−9 eV.
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Figure 2: Schematic illustration of four possible neutrino mass spectra consistent with oscillation

and cosmological constraints. The mass of N1 is largely undetermined.

multiplied by M2 or M3. In cases (0), (1) and (2), ρDE typically requires θ ≈ 1, 10−2 and 10−4

respectively. Perhaps the case (0) is most natural, and, depending on the precise value for M3,

could lead to an observable deviation of ∆Nν from 0.

Theories with U 6= 1 can be constructed that are both more natural and more predictive than

the U = 1 case. In particular, suppose that, in the original basis for N , we have the texture

Mij = λijfij =





M1 ε12 ε13
ε12 M2 ε23
ε13 ε23 M3



 , m =





m1 0 0

0 m2 0

0 0 m3



 . (9)

where the εij are either zero or sufficiently small that the neutrino phenomenology is not signifi-

cantly altered from the U = 1 case. The standard neutrino mixing angles arise from transforma-

tions on the left-handed leptons, charged or neutral. In each of the three cases described above,

it is possible to introduce a single off-diagonal entry, εij, such that the appropriate PGB potential

is generated, ρDE ≈ MiiM
∗
ijMjjM

∗
ji for some (i, j).

Realistic examples, corresponding to cases (0) and (1) above, are

(0) (m1, m2, m3) ≈ (. 10−6eV, msun, matm),

(M1,M2,M3) ≈ (& 10−3, 10−9, 10−3) eV, and ε13 ≈ 10−2 eV;

(1) (m1, m2, m3) ≈ (0, 5× 10−3eV, matm),

(M1,M2,M3) ≈ (0, 0.3, 10−8—10−3) eV, and ε23 ≈ 10−4eV · (10−3eV/M3)
1/2;

with other εij taken irrelevantly small.
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4 Signals and Conclusions

In promoting a CP violating phase of the neutrino mass matrix to the DE quintessence field, we

are led, essentially uniquely, to a theory with light right-handed neutrinos, with possible spectra

shown in Figure 2. This proposal can be tested in neutrino physics.

• The three cases with differing ∆Nν will easily be distinguished by precision CMB measure-

ments at PLANCK, and perhaps at WMAP.

• The rangeM2 ∼ 0.3 eV can be completely tested by cosmology (searching for sterile neutrino

masses) and by reactor experiments (searching for ν̄e disappearance at base-line ∼ 10m).

• Similarly, M3 ∼ 0.3 eV can be tested by cosmology, and possibly by atmospheric neutrino

experiments (HyperK, MONOLITH, IceCube) and beam experiments (MiniBoone, MINOS).

• Long-baseline experiments will probe M3 ∼ 10−3 eV. If M3 approaches 10−2 eV, it can be

determined by a CMB or BBN measurement of ∆Nν , and signals may appear in atmospheric

oscillations.

• Very small M1,2,3 can give MSW resonances in the sun and in supernovæ, as well as vacuum

oscillations of neutrinos that travel cosmological distances.

• MiniBoone is currently testing the LSND anomaly. Constraints from other oscillation data

disfavor its interpretation in terms of sterile neutrinos, but do not fully exclude it.

• The detection of a 0ν2β signal would exclude this model, since the left-handed neutrinos do

not have a direct Majorana mass and the right-handed neutrinos are light, so that effects in

0ν2β are suppressed by powers of M/Q (where Q ∼ MeV is the energy released in 0ν2β).

The Mass Varying Neutrino scheme for DE [7] also involves a light scalar coupled to neutrinos.

The neutrino energy density plays a crucial role in the dynamics of DE because the scalar is both

light and has a significant coupling to the neutrinos. Thus the scheme predicts a characteristic

shift in the position of the CMB peaks, corresponding to at least one species of neutrino scattering

during the eV era [10]. On the other hand, in our scheme the coupling of neutrinos to light PGBs

is proportional to M/f , and is so small that all neutrinos free-stream during the CMB era.

We conclude by noting other areas that are worth investigating. Since there are several PGBs,

some might have masses larger than todays Hubble parameter, so that they oscillate during

the recent evolution of the universe with characteristic signals related to the associated Jeans

length [11, 12]. Could such a PGB give all of the dark matter? The mass should be larger

than about 10−22 eV, otherwise the uncertainty principle prevents the formation of structures at

sufficiently small scales [12]. Parameters exist that allow a unified picture of both dark matter and

DE. In theories with sufficiently sparse textures, it may be possible to compute the magnitude

of the DE and dark matter energy densities from measurements of neutrino masses and mixings.

Finally, the (super-)potential that gives the φij a vev at a large scale could play a role in inflation:
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a candidate for a such superpotential is W =
∑

ij Sij(σijφijφ̄ij − µ2

ij) where Sij, φij and φ̄ij are

chiral supermultiplets.
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