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Abstract

Heavy-to-light meson form factors at large recoil can be described using the same tech-
niques as for hard exclusive processes involving only light hadrons. Two competing
mechanisms appear in the large-recoil regime, describing so-called “soft-overlap” and
“hard-scattering” components of the form factors. It is shown how existing experimen-
tal data from B and D decays constrain the relative size of these components, and how
lattice data can be used to study properties such as the energy scaling laws obeyed by
the individual components. Symmetry relations between different form factors (F+, F0

and FT ), and between different heavy initial-state mesons (B and D), are derived in the
combined heavy-quark and large-recoil limits, and are shown to generalize corresponding
relations valid at small recoil. Form factor parameterizations that are consistent with
the large-recoil limit are discussed.
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1 Introduction

Form factors for exclusive heavy-to-light meson transitions at large recoil energy, such as
B → πlν with Eπ ∼ mB/2, are an important ingredient for measurements of the unitarity tri-
angle, and form the basis for studying more complicated processes such as radiative B → K∗γ
or hadronic B → ππ decays. The description of heavy-meson decays into exclusive final
states containing energetic light hadrons involves multiple energy scales, and the interplay of
perturbative and nonperturbative dynamics. Simplifications arise upon expanding in powers
of the heavy-quark mass, mb, and the light hadron energy, E. The 1/mb expansion, when
E is small, is implemented by the heavy-quark effective theory (HQET) [1], while the 1/E
expansion, when mb is small, is described by well-known methods for hard-exclusive processes
in QCD [2, 3]. The simultaneous expansion for mb ∼ E ≫ Λ, with Λ a typical hadronic
scale, requires a merging of these complementary approaches, and results in the soft-collinear
effective theory (SCET) [4, 5, 6, 7, 8]. This effective field theory description accomplishes the
separation of different energy scales, thus allowing access to the powerful tools of factorization,
to relate different processes to universal hadronic quantities, and renormalization, to consis-
tently combine perturbative expansions performed at a high energy scale with the universal
nonperturbative quantities evaluated at a low energy scale.

The focus will be on B → P transitions, where P is a light (flavor non-singlet) pseudoscalar
meson. Matrix elements of the vector and tensor currents are parameterized by the form factors
F+, F0 and FT :

〈P (p′)|q̄γµb|B̄(p)〉 ≡ F+(q
2)

(

pµ + p′µ − m2
B −m2

P

q2
qµ
)

+ F0(q
2)
m2

B −m2
P

q2
qµ

≡ F+(q
2) (pµ + p′µ) + F−(q

2)qµ ,

〈P (p′)|q̄σµνqνb|B̄(p)〉 ≡ iq2FT (q
2)

mB +mP

(

pµ + p′µ − m2
B −m2

P

q2
qµ
)

, (1)

with q ≡ p−p′. The vector form factors F+ and F0 are relevant, e.g., in semileptonic B → πlν,
while the tensor form factor FT describes, e.g., “penguin” amplitudes in B → Kl+l−. For
notational simplicity, results will generally be written for B decays, with the understanding
that similar results hold also for D decays with B̄ ↔ D (b↔ c at the quark level).

The discussion to follow can be motivated by considering first the case of small recoil,
E ≡ v · p′ = mP v · v′ ∼ Λ, where the velocities are given by pµ ≡ mBv

µ, p′µ ≡ mP v
′µ. There

are two types of form factor relations that arise in the heavy-quark limit [9]. The first type
relates different form factors involving the same initial and final states: at leading order in
1/mb, the form factors appearing in (1) are related by

FT (q
2)

mB +mP

=
1

2mB

[(

1 +
m2

B −m2
P

q2

)

F+(q
2)− m2

B −m2
P

q2
F0(q

2)

]

, (2)

as follows from (1) upon using /v b ≈ b. The second type relates form factors involving different
initial states, but the same final state (and at the same final-state energy):

FB→P
+ (E)

FD→P
+ (E)

=

√

mB

mD
,

FB→P
0 (E)

FD→P
0 (E)

=

√

mD

mB
,

mD +mP

mB +mP

FB→P
T (E)

FD→P
T (E)

=

√

mD

mB
, (3)
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as follows from again using /v b ≈ b, and the fact that the left-hand sides in (1) scale as√
mB — the heavy-quark mass is decoupled from the dynamics via a field redefinition, b(x) =

e−imbv·xh(x) + . . . , and no other large scales remain.1 HQET formalizes the 1/mb expansion,
making explicit the mass decoupling at leading power and allowing radiative corrections to be
systematically incorporated.

Significant modifications should be expected at large recoil for the symmetry relations
(2) and scaling laws (3). For instance, the dimensionless parameter v · v′ can be as large
as (v · v′)max ≈ 6.5 for semileptonic D → π transitions, and (v · v′)max ≈ 19 for B → π.
Comparison to a typical dimensionless expansion parameter of HQET, mc/Λ ∼ 3 − 4 or
mb/Λ ∼ 10, shows that counting v · v′ as order unity is likely to lead to a poor expansion,
corresponding to neglect of contributions involving the new large scale Λ2v · v′ ∼ EΛ. The
regime of applicability for relations such as (2) and (3), and the extent to which significant
modifications arise in the kinematic region accessible in B and D decays, was identified as an
important question early in the study of heavy-quark hadrons [9, 10], but has so far resisted a
quantitative understanding. The present generation of B- and D-decay experiments, as well
as lattice gauge-theory simulations, are reaching the level of sensitivity where this question
becomes significant (and answerable). The appropriate effective field theory description is now
in place to frame this question precisely, and to interpret the relevant data.

There has been considerable attention in the literature directed at the description of heavy-
to-light form factors at large recoil. Approaches proceeding in complete analogy with form
factors involving only light mesons suffer from the well-known problems associated with end-
point singularities [11, 12]. In [13] it was proposed that the form factors at large recoil should
obey symmetry relations appropriate for the transition of a static heavy quark into a light en-
ergetic quark, thus avoiding the problem of endpoint singularities by reducing, e.g., all B → π
form factors to a single universal (nonperturbative) function. Symmetry-breaking corrections
were investigated in a phenomenological framework in [14], and the effective-theory description
of these spectator-interaction effects was initiated in [8]. The form factors have since been
studied in more detail using the SCET framework in [15, 16, 17, 18]. This paper shows how
these analyses connect to more familiar methods for hard exclusive processes in QCD, derives
new symmetry relations at large recoil that generalize (2) and (3), and introduces a convenient
parameterization of the form factors for confronting the experimental and lattice data.

The remainder of the paper is organized as follows. In Section 2, the description of form
factors in SCET is outlined, and the close connection between the ideas of SCET and the de-
scription of hard exclusive processes in QCD is demonstrated. Section 3 presents the resulting
symmetry relations that are valid at both small and large recoil. Section 4 introduces a class of
parameterizations for the vector B → π form factors (F+ and F0) which accommodate the new
terms appearing at large recoil. These new terms require a generalization of parameterizations
often used to present experimental and theoretical form-factor results. Section 5 considers the
experimental constraints placed on the size of the new terms, and Section 6 compares to recent
predictions from lattice QCD and light-cone QCD sum rules. Section 7 provides a concluding
discussion.

1The relativistic normalization of states is used throughout.
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2 Form factors in SCET

To make clear the connection with more familiar ideas from the study of hard exclusive
processes for light hadrons, it is useful to first consider the description of light meson form
factors in the effective field theory language. In particular, the matrix elements of the vector
current defining the elastic pion form factor,

〈π(p′)|ψ̄γµψ|π(p)〉 ≡ (pµ + p′µ)Fπ(q
2) , (4)

and the ρ− π transition form factor,

〈π(p′)|ψ̄γµψ|ρ(p, η)〉 ≡ 2iǫµνρσηνpρp
′
σ

Fρπ(q
2)

mρ +mπ
, (5)

capture all of the essential ingredients required to describe large-recoil B − π form factors.
The first task is to decompose ψ̄γµψ into the most general effective-theory operator. Fac-

torization and symmetry properties for the decay amplitude can then be examined at the
operator level. In preparation for the discussion of heavy-to-light form factors, the analysis is
done in the rest frame of the initial-state meson. To obtain an explicit scale separation, the
momentum modes of the quark and gluon fields ψ(x) and Aµ(x) are grouped into different
momentum regions. A separate effective-theory field is assigned to each such region, and the
interaction Lagrangian between these effective-theory “particles” is expanded order by order
in 1/E [4, 5, 6, 7, 8, 19]. The field decomposition is described in terms of light-cone reference
vectors n and n̄, satisfying n2 = n̄2 = 0 and n · n̄ = 2; e.g, the default choice is nµ = (1, 0, 0, 1)
and n̄µ = (1, 0, 0,−1) for an energetic hadron moving in the z-direction. A general momentum
can then be expressed as

pµ = n · pn̄
µ

2
+ n̄ · pn

µ

2
+ pµ⊥ , (6)

or more compactly, p = (n · p , n̄ · p , p⊥). The necessary field content of the effective theory
involves the soft region, with momentum components of order ps ∼ E(λ, λ, λ); the collinear
region, with pc ∼ E(λ2, 1, λ); and the soft-collinear region, with psc ∼ E(λ2, λ, λ3/2).2 Here
λ = Λ/E ≪ 1 is a dimensionless expansion parameter. Fields Xc, Ac are introduced for
collinear particles, and Qs, As for soft particles.

3 The soft-collinear region, represented by qsc
and Asc, describes endpoint configurations of the soft initial-state meson, and collinear final-
state meson, where the n · p and n̄ · p components of momentum become atypically small [19].
Sensitivity to this region signals a breakdown of factorization, since soft-collinear “messenger”
particles may be exchanged between the soft and collinear sectors. Soft-collinear contribu-
tions are not perturbatively calculable, so that demonstrating their absence or cancellation
to all orders in perturbation theory is a necessary ingredient in establishing factorization for

2An equivalent “moving SCET” description is obtained from the Lorentz boost n · p → λ−1/2n · p, n̄ · p →
λ1/2n̄ · p, under which soft, collinear and soft-collinear become n̄-collinear, pc̄ ∼ E′(1, λ′2, λ′); n-collinear,
pc ∼ E′(λ′2, 1, λ′); and ultrasoft, pus ∼ E′(λ′2, λ′2, λ′2), respectively [19]. Here λ′ = λ1/2 and E′ ∼

√
EΛ are

the expansion parameter and energy in the boosted frame.
3These fields reduce to the ordinary collinear and soft degrees of freedom (ξc, Ac) and (qs, As) in light-cone

gauge n̄ ·Ac = 0 and n ·As = 0, but in general contain additional gauge strings to make the operators invariant
under soft and collinear gauge transformations.
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d [λ]

1
n̄·∂c

X̄c
n̄/
2
Γ′Xc 2 2

1
n·∂s

Q̄s
n/
2
Γ′Qs 2 2

Q̄sΓ
′′Qs 3 3

n·∂s Q̄s
n̄/
2
Γ′
Qs 4 4

d [λ]

gµν⊥ , ǫµν⊥ 0 0

∂µc⊥, A
µ
c⊥, ∂

µ
s⊥, A

µ
s⊥ 1 1

n·∂sn̄·∂s, n·∂sn̄·As 2 2

n̄·∂cn·∂c, n̄·∂c n·Ac 2 2

1
n̄·∂c n·∂s

−2 −1

Table 1: Boost-invariant building blocks for SCETII operators, with their dimension d and
order [λ] in the power expansion. Soft derivatives ∂s can act on any soft field in the operator,
collinear derivatives ∂c on any collinear field. Here Γ′ ∈ {1, γ5, γµ⊥}, Γ′′ ∈ Γ′∪{n̄/ n/, γµ⊥γ5, γ

µ
⊥γ

ν
⊥−

γν⊥γ
µ
⊥}, g

µν
⊥ = gµν − 1

2
(n̄µnν + nµn̄ν) and ǫµν⊥ = 1

2
ǫµναβ n̄αnβ.

a particular process [20, 17, 21]. This cancellation occurs for Fπ in (4), but not for Fρπ in
(5). Similarly, the B → π form factors at large recoil contain both a factorizable and a
nonfactorizable piece.

At leading order in 1/Q2, where Q2 = −q2 ≈ n · p n̄ · p′ ∼ ΛE, the pion form factor (4) is
given by

Fπ =
1

Q2
〈π(p′)|[−in̄ · ∂ψ̄/nψ]|π(p)〉 = 1

Q2
〈π(p′)|[in · ∂ψ̄ /̄nψ]|π(p)〉 . (7)

In either case, the operator to be represented, [−in̄ ·∂ψ̄/nψ] or [in ·∂ψ̄ /̄nψ], has dimension four.
The effective-theory representation can be obtained using Table 1 of [21], reproduced here as
Table 1.4 This table summarizes the building blocks which comprise the general effective-
theory operators, including their mass dimension d and power-counting [λ]. We first consider
contributions to the matrix element in (7) from “typical” momentum configurations of the
initial-state soft pion, and final-state collinear pion, i.e., configurations in which none of the
partons are in atypical endpoint momentum regions. The effective-theory operators must then
have the minimal valence field content X̄c(. . . )XcQ̄s(. . . )Qs, in order to mediate the transition
of the soft pion into the energetic collinear pion. Using the table for d = 4, the lowest order
in power counting at which this field content can be realized is [λ] = 4. From (7) it follows
immediately that

Fπ ∼ 1

Q2
. (8)

It can be shown using similar power-counting arguments [21] that the infrared soft-collinear
momentum regions are absent at leading power from the matrix elements (7), and that the
resulting expression takes a factorized form, in terms of a convergent convolution integral
over meson light-cone distribution amplitudes (LCDAs) and a perturbatively calculable hard-
scattering kernel.

4For a related approach, see [16].
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The ρ− π form factor (5) is given by

Fρπ

mρ +mπ
=

1

Q2
(−i)ǫµν⊥ η∗µ〈π(p′)|[ψ̄γ⊥νψ]|ρ(p, η)〉 , (9)

with ǫµν⊥ as in Table 1. The operator [ψ̄γ⊥νψ] has dimension three, and from Table 1, the
leading effective-theory operators with d = 3 containing the minimal valence field content
X̄c(. . . )XcQ̄s(. . . )Qs have [λ] = 4. From (9), it follows immediately that

Fρπ

mπ +mρ

∼ 1

Q4
. (10)

The operators in this case involve at least one occurrence of the inverse derivative (n̄·∂cn·∂s)−1,
as well as transverse derivatives, extra gluon fields, or the occurrence of operators such as
Q̄sΓ

′′Qs corresponding to subleading-twist wavefunctions of the initial-state meson. Using
similar power-counting arguments [21], infrared momentum regions can be shown to contribute
at leading power, spoiling factorization between the soft and collinear sectors.

The mode structure and power counting of SCET, as summarized by the building blocks
in Table 1, thus naturally reproduce the dimensional/helicity counting rules for hard exclu-
sive processes involving light mesons [2], e.g. (8) and (10). The effective theory also allows
all-orders statements concerning factorization to be made; in particular, the well-known fac-
torizable form of Fπ at leading order in 1/Q2 follows from the uniqueness of the operator
with d = [λ] = 4, together with simple field redefinitions that demonstrate the cancellation of
contributions from infrared momentum regions in the matrix element of this operator. The
same arguments demonstrate that Fρπ is sensitive to infrared momentum regions at leading
power, giving rise to the well-known endpoint singularities that appear in this case [22].

The extension to large-recoil heavy-to-light form factors involves one step in addition to
the above analysis. Here the heavy-quark mass mb introduces an additional hard scale into the
problem, so that mapping onto the low-energy theory in this case involves first integrating out
“hard” scales of order µ2 ∼ m2

b . The resulting description is then independent of the heavy-
quark mass, and the analysis proceeds in direct analogy with the above case, involving only
light hadrons, to integrate out the remaining “hard-collinear” scale of order µ2 ∼ EΛ ∼ mbΛ.
The only difference is the novel (HQET) description of the soft heavy quark, obtained by
replacing the soft Lagrangian by the HQET Lagrangian, and the soft light-quark field Qs by
the soft heavy-quark field Hs. It should be emphasized that this additional step of integrating
out the heavy quark can be treated perturbatively, and that the remaining low-energy theory
consists of precisely the same momentum modes as for light-meson systems.

The first step of integrating out hard (but not hard-collinear) scales is accomplished by
matching QCD onto an intermediate effective theory, denoted SCETI. This intermediate
theory describes hard-collinear and soft fields, with momentum phc ∼ E(λ, 1, λ1/2) and ps ∼
E(λ, λ, λ), respectively. Each SCETI operator has a well-defined mass dimension, and the
matching onto the final effective theory, denoted SCETII, is accomplished by using Table 1
and the same dimensional arguments as above. In particular, for the representation of QCD
current operators [23, 18],

q̄Γb→ CA
i (E,mb)J

A
i +

1

2E

∫ 1

0

duCB
j (E,mb, u)J

B
j (u) + . . . , (11)
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where the SCETI operators of dimension three and four have the form

JA
i = X̄hc(0)Γ

A
i h(0) ,

JB
j (u) = n̄ · P

∫

ds

2π
e−iusn̄·P

X̄hc(sn̄)Ahc⊥µ(0)Γ
Bµ
j h(0) . (12)

Here Xhc and Ahc are hard-collinear quark and gluon fields and h is the heavy-quark field.
The reference vectors n and n̄ are chosen such that v⊥ = 0. At leading power the energy is
given by 2E = n · vn̄ · P , where n̄ · P is the total large-component of collinear momentum.
The quantities u and (1− u) in (12) represent the momentum fractions carried by the quark
and gluon fields, respectively. Using Table 1 to match onto operators with minimal field
content X̄c(. . . )XcQ̄s(. . . )Hs shows that large-recoil heavy-to-light meson form factors have
two components — one A-type, nonfactorizable, contribution as in the ρ− π form factor, and
another B-type, factorizable, contribution as in the pion form factor. The complete result at
leading power in 1/mb is expressed as [14, 15, 16, 17, 18]

FB→M
i (E) =

√
mB

[

CA
Fi
(E,mb, µ) ζ̂M(E, µ)

+
1

2E

∫ ∞

0

dω

ω

F (µ)

4
φ+(ω, µ)

∫ 1

0

du fM(µ)φM(u, µ)

∫ 1

0

du′JΓ(u, u
′, ln

2Eω

µ2
, µ)CB

Fi
(E,mb, u

′, µ)

]

,

(13)

where M represents the light pseudoscalar (P ) or vector (V ) final state meson. Since the
A-type contribution is nonfactorizable, the SCETI matrix element is simply defined by5

〈M(p)|X̄hcΓh|B(v)〉 = −2E
√
mB ζ̂M(E, µ) tr

[

MM(n)ΓM(v)
]

, (14)

where M(v) and MM(n) are spinor wave-functions appropriate to the heavy-quark and large-
energy limits [21]. The light-cone distribution amplitudes for the heavy and light mesons are
defined by

〈0|Q̄s(tn)
/n

2
ΓHs(0)|B(v)〉 = iF (µ)

2

√
mB tr

[

/n

2
ΓM(v)

]
∫ ∞

0

dω e−iωtn·v φ+(ω, µ) ,

〈M(p)|X̄c(sn̄) Γ
n̄/

2
Xc(0)|0〉 =

ifM(µ)

4
n̄ · p tr

[

MM(n)Γ

]
∫ 1

0

du eiusn̄·pφM(u, µ) , (15)

with associated decay constants F (µ) and fM(µ). Functions CA and CB are matching coeffi-
cients for the first matching step (QCD onto SCETI). The “jet function” JΓ is the universal
matching coefficient for the factorizable B-type contribution in the second matching step
(SCETI onto SCETII), with JΓ = J‖ for decays to pseudoscalar or longitudinally-polarized
vector mesons, and JΓ = J⊥ for decays to transversely-polarized vector mesons [18].

The dependence on energy, heavy-quark mass and renormalization scale has been made
explicit for the various quantities in (13). In particular, the heavy-quark mass dependence

5ζ̂M in (13) and ζM in [18] are related by ζM =
√
mB ζ̂M .
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enters the large-recoil heavy-to-light form factors only via two sources: the overall factor
√
mB,

simply a result of the relativistic normalization convention for the B-meson state; and the
perturbatively calculable coefficients CA and CB. The energy dependence is also perturbatively
calculable for the B-type contribution. Taking CB = −1, and the tree-level jet function,

J‖(u, u
′)tree = J⊥(u, u

′)tree = −4πCFαs

N

1

2E(1− u)
δ(u− u′) , (16)

the quantities6

ĤM(E, µ) ≡ −1

2E

∫ ∞

0

dω

ω

F (µ)

4
φ+(ω, µ)

∫ 1

0

du fM(µ)φM(u, µ)

∫ 1

0

du′JΓ(u, u
′, ln

2Eω

µ2
, µ) , (17)

to be considered in detail in the following section, are seen to scale exactly as 1/E2. Radiative
corrections to the jet functions JΓ, and to the hard matching coefficients CB, lead to pertur-
batively calculable violations of this tree-level scaling law. The 1/E2 law also follows from the
heavy-quark mass dependence in (13), combined with the SCET power counting, Fi ∼ λ3/2,
and applies to both the A-type and B-type contributions. However, since the nonperturba-
tive function ζ̂M depends on energy, scaling violations for the A-type contributions are not
perturbatively calculable.

Both the A-type and B-type components of the form factors in (13) appear at leading
power in 1/mb ∼ 1/E. The two components do not mix under renormalization [18], and it
is then a physically meaningful, and phenomenologically important, question which, if either,
component is dominant.

3 Symmetry relations in the large-recoil limit

Given the present uncertainty in the hadronic input parameters appearing in (13), it is useful
to consider consequences of this description that are independent of these inputs. In the
following discussion, coefficients CA

Fi
and CB

Fi
in (13) will be taken at tree-level. Higher-order

radiative corrections are small, and their effects are discussed in Section 7. Because CB is
independent of momentum fraction at tree level, this coefficient can be taken outside of the
convolution integral over u′ in (13), and the B-type contribution is then described by the
universal function, ĤM , introduced in (17).

The remainder of the paper focuses on the case M = P , i.e., decays into pseudoscalar
final states. Choosing the normalization of the B → P form factors as F+, (mB/2E)F0 and

[mB/(mB+mP )]FT , the A-type coefficients are equal to unity at tree level: C
A(tree)
F+

= C
A(tree)
F0

=

C
A(tree)
FT

= 1. Also with this normalization, the B-type coefficients are C
B(tree)
F+

= 1 − 4E/mB,

C
B(tree)
F0

= −1, and C
B(tree)
FT

= 1. From (13) and (17),

F+(E) =
√
mB

[

ζ̂P (E) +

(

4E

mB
− 1

)

ĤP (E)

]

,

6ĤM in (17) and HM in [18] are related by HM =
√
mB(mB/2E)2ĤM .
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mB

2E
F0(E) =

√
mB

[

ζ̂P (E) + ĤP (E)

]

,

mB

mB +mP

FT (E) =
√
mB

[

ζ̂P (E)− ĤP (E)

]

. (18)

A residual scale dependence is present in the quantities ζ̂P and ĤP , being cancelled by
radiative corrections which have been neglected in the hard-scale coefficients CA and CB.
For definiteness, ζ̂P (E) ≡ ζ̂P (E, µ = 2E) and ĤP (E) ≡ ĤP (E, µ = 2E) in (18). Since the
three form factors in (18) are described by only two functions, there is one nontrivial relation
between them [18, 24]:7

mB

mB +mP

q2

m2
B

FT (E) = F+(E)− F0(E) . (19)

For comparison, we may rewrite (2), dropping kinematic factors quadratic in the light-meson
mass, as

mB

mB +mP

q2

m2
B

FT (E) = F+(E)− F0(E)−
1

2

[

2E

mB
F+(E)− F0(E)

]

. (20)

Since the extra terms in (20) involve factors, E/mB or F0/F+, that are suppressed at small
recoil, both (19) and (20) are valid relations at leading power in this regime. However, at large
recoil the extra terms involving ĤP are not suppressed, and here (19) is the correct relation.
It is interesting to note that if the terms involving ĤP are neglected, then the relation (2) (or
(20)) derived at small recoil is seen to hold in the full kinematic range. Form factors describing
B decays to vector final states exhibit the same behavior: the relations derived at small-recoil
are equivalent to relations valid at large recoil, plus hard-scattering corrections. In the regime
E ∼ mb ≫ Λ, both ζ̂P and ĤP are of the same order in power counting, and only a numerical,
but not parametric, suppression could justify neglecting one or the other term. In fact, when
E ≫ mb ≫ Λ (an energy regime beyond that accessible in B decays), the hard-scattering
terms dominate, as seen from the fact that the B-π form factor must be described at leading
order in 1/E in the same way as the π-π form factor (cf. (7) and (8) above), but with an
asymmetric B-meson wavefunction replacing the initial-state pion wavefunction. It is precisely
the cross-over regime E ∼ mb, where both components are of the same order, that is most
relevant to experimental studies in B-decays.

As in the case of small recoil, heavy-quark symmetry may be used to relate form factors
at large recoil for different heavy mesons. From (18),

FB→P
− (E)

FD→P
− (E)

=

√

mB

mD
,

FB→P
0 (E)

FD→P
0 (E)

=

√

mD

mB
,

mD +mP

mB +mP

FB→P
T (E)

FD→P
T (E)

=

√

mD

mB
, (21)

7In [7] it was shown that with tree-level matching there are no contributions from O(λ1/2) SCETI operators
that violate the relation (19). Since dimensional analysis and power-counting [16, 21] shows that no O(λ)
SCETI operators can match onto SCETII operators giving leading-order form-factor contributions, the result
(19) then follows. Note however that the converse is not true - although the symmetry relations for vector final
states, between form factors V and A1, and between T1 and T2, receive contributions from O(λ1/2) SCETI

operators [7], these corrections are of higher order in the final SCETII power counting, leaving exact relations
at leading power [18].
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with F− defined in (1). Both (3) and (21) are valid relations at small recoil, where (F− +
F+)/F+ ∼ 1/mb. However, at large recoil the terms involving ĤP enter at leading power, and
here (21) gives the correct relations.

4 Form factor parameterizations and the large-recoil

limit

The form factor of primary phenomenological interest for B → π decays is F+, since (for
massless leptons), it is the only form factor required to extract |Vub| from the experimental
B → πlν rate. Due to the kinematic constraint F+ = F0 at q2 = 0, it is useful to consider
also F0, in order to help constrain extrapolations of form factor determinations at small recoil
into the large recoil regime. It will be convenient to introduce the following normalization and
shape parameters describing these two form factors at large recoil:

f(0) ≡ F+(0) , δ ≡ 1 +
F−(0)

F+(0)
,

1

β
≡ m2

B −m2
π

F+(0)

dF0

dq2

∣

∣

∣

∣

q2=0

. (22)

From the definition of F−, it follows immediately from (22) that

m2
B −m2

π

F+(0)

(

dF+

dq2

∣

∣

∣

∣

q2=0

− dF0

dq2

∣

∣

∣

∣

q2=0

)

= 1− δ . (23)

Thus the relative normalization of F+ and F0 is fixed at maximum recoil by the kinematic
constraint

F+(q
2 = 0) = F0(q

2 = 0) , (24)

while the relative slope of F+ and F0 is determined by the quantity δ. In addition to the
quantities (22) referring to the large-recoil behavior of the form factors, it is convenient to
introduce the following parameters describing the form factors at small recoil:

1

1− α
≡ 1

m2
B∗

Resq2=m2
B∗

F+(q
2)

F+(0)
, f(m2

B) ≡ F0(m
2
B) . (25)

Note that although the notation anticipates the parameterizations to be discussed below, the
quantities α, β, δ, f(0) and f(m2

B) have been introduced simply as convenient definitions for
the exact physical quantities appearing on the right-hand sides in (22) and (25).

The parameters (f(0), α, β, δ) are sufficient to describe the present generation of experi-
mental and lattice form factor data. Additional shape parameters can be introduced to obtain
a systematically improved form factor parameterization. A straightforward approach starts
from the dispersive representation,

F+(q
2) =

F+(0)/(1− α)

1− q2/m2
B∗

+
1

π

∫ ∞

(mB+mπ)2
dt

ImF+(t)

t− q2
,

F0(q
2) =

1

π

∫ ∞

(mB+mπ)2
dt

ImF0(t)

t− q2
, (26)
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where the B∗ pole appears in F+ as a distinct contribution below the Bπ threshold. A
series of increasingly precise approximations to the form factors in the semileptonic region,
0 < q2 < (mB − mπ)

2, is obtained by breaking up the integrals in (26), and is given for
increasing N by

F+ =
f(0)/(1− α)

1− q2

m2
B∗

+
ρ1

1− 1
γ1

q2

m2
B∗

+ · · ·+ ρN

1− 1
γN

q2

m2
B∗

,

F0 =
κ1

1− 1
β1

q2

m2
B∗

+ · · ·+ κN

1− 1
βN

q2

m2
B∗

, (27)

with parameters constrained by (23) and (24). The main focus will be on the case N = 1,
which can be written [25]

F+(q
2) =

f(0)

(

1−
1

γ
−α

1−α
q2

m2
B∗

)

(

1− q2

m2
B∗

)(

1− 1
γ

q2

m2
B∗

) , F0(q
2) =

f(0)

1− 1
β

q2

m2
B∗

, (28)

where the constraints (23) and (24) have been used, and where8

1

γ
≡ 1− 1− α

α

(

1

β
− δ

)

. (29)

If the experimental or lattice form factor data can be described by (28), then the fit parameters
(f(0), α, β, δ) yield a determination of the physical quantities describing the form factors —
at large recoil on the right-hand sides of (22), and at small recoil on the right-hand sides of
(25).

The discussion so far has not required, nor utilized, the large-recoil, heavy-quark expansion
of the form factors. From (18), the following relations hold at leading order in 1/mb and αs(mb):

f(0) =
√
mB(ζ̂π + Ĥπ)

∣

∣

∣

∣

E=mB/2

+ . . . , δ =
2Ĥπ

ζ̂π + Ĥπ

∣

∣

∣

∣

E=mB/2

+ . . . ,

1

β
= −d ln(ζ̂π + Ĥπ)

d lnE

∣

∣

∣

∣

E=mB/2

− 1 + . . . . (30)

The relations (30), between the physical form factors appearing in (22) and the SCET functions
ζ̂π and Ĥπ, are independent of any parameterization. The dependence of the parameters on
the heavy-quark mass is determined by the scaling laws ζ̂π ∼ Ĥπ ∼ 1/E2. In particular,

f(0) ∼ m
−3/2
b , so that FB→π

+ (0)/FD→π
+ (0) ≈ (mD/mB)

3/2. The simple power-counting rules of
SCET provide a formal demonstration of this scaling law, which was justified in [25] using more
qualitative arguments based on QCD sum rules [26, 13]. Parameter δ is O(1) in the power

8Numerical factors m2
B∗/m2

B − 1 and m2
π/m

2
B are beyond the current level of precision and have been

neglected.
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counting, and is independent of the heavy-quark mass when scaling violations are neglected.
Finally, β−1 ∼ m−1

b . There are also constraints appearing from the small-recoil regime. Using
soft-pion relations, it follows that [27, 28]

f(0)

1− α
=
fB∗gB∗Bπ

2mB∗

, f(m2
B) =

fB
fπ

, (31)

where fπ, fB and fB∗ are decay constants, and gB∗Bπ is the coupling of the B and B∗ mesons to
the pion. If this coupling, and/or the decay constants for the B andB∗ mesons were determined
precisely, they could be used to place further constraints on the parameters appearing in (28),
or the more general parameterization (27). Conversely, to the extent that the data is described
by (28), the resulting fit parameters provide a determination of fB∗gB∗Bπ and fB. The analysis
in Sections 5 and 6 concentrates on the region α < 1, as required for f(0) > 0, gB∗Bπ > 0.

Power counting in (31) at small recoil, together with the scaling law f(0) ∼ m
−3/2
b , implies

that α− 1 ∼ m−1
b and f(m2

B) ∼ m
−1/2
b . The quantity γ in (29) is then given up to corrections

of order 1/m2
b by

1

γ
= α + δ(1− α) , (32)

yielding the parameterization:

F+(q
2) =

f(0)
(

1− δ q2

m2
B∗

)

(

1− q2

m2
B∗

)(

1−
[

α + δ(1− α)
]

q2

m2
B∗

) , F0(q
2) =

f(0)

1− 1
β

q2

m2
B∗

. (33)

Due to the different energy dependence of the coefficients multiplying ζ̂P and ĤP in (18),
information on the parameter δ describing the relative size of ζ̂P and ĤP can be extracted
from the single form factor, F+, that is most readily accessible experimentally.9 Several
special limits of F+ in (33) may be noted. Firstly, points on the line δ = 1 or on the line
α = 0 are equivalent and correspond to the simple pole model, with a single pole at q2 = m2

B∗ .
Secondly, the “point-at-infinity”, given by α→ ∞, δ → 1 with α(1− δ) fixed, corresponds to
a single pole model, with pole at q2 = m2

B∗/[1 + α(1− δ)]. If the physical values of the shape
parameters were to lie close to one of these special points, then the parameter choice (γ, δ),
with γ from (32), may be more suitable than the choice (α, δ) for performing fits; assuming
α > 0 and δ < 1, as indicated by the data, this will not be the case. Finally, the axis δ = 0
corresponds to the three-parameter Becirevic-Kaidalov (BK) parameterization [25]. It may
also be noted that at small q2/m2

B∗ the shape of F+ is similar to that of (33) at δ = 0, but
with an effective αeff = α(1 − δ). Data with sensitivity mostly at small q2 is therefore not
easily distinguished from the three-parameter BK form. In this situation, since α = 1 in
the heavy-quark limit, a large deviation of αeff from unity could signal a nonzero value of δ.
However, with precise enough data, the general form (33) can be distinguished from the δ = 0
case, and the parameter δ measured directly. The analysis in Sections 5 and 6 concentrates on
the region δ > 0, corresponding to a positive inverse moment of the B-meson LCDA in (17).

9The same could not be done from F0, since here both terms behave as E−1 at large energy. This fact
allows F0, but not F+, to be modeled by a single pole.
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Figure 1: 68% (dark) and 90% (light) confidence regions for parameters α and δ as determined
by fitting F+ in (33) to binned B → πlν branching fraction measurements in [29], [30] and [31].
Also shown is the boundary of the 68% confidence region (dashed line) for the parameterization
of F+ in (28), with βBπ = 1.2.

5 Experimental Constraints

Existing experimental data can be used to put significant constraints on the observables defined
in (22) and (25). Figure 1 shows the constraints imposed on α and δ by combined CLEO [29]
(three q2 bins), Belle [30] (three q2 bins) and BaBar [31] (five q2 bins) B → π branching
fraction measurements. The contours in Figure 1 are obtained from a χ2 fit of F+ in (33) to
the data, and correspond to 68% (∆χ2 = 2.3) and 90% (∆χ2 = 4.6) confidence-level regions.
Systematic errors are added to the statistical errors in quadrature. With the exception of
[29], where error correlations between different q2 bins are available, branching fractions for
different bins are assumed uncorrelated, as are the measurements of different experiments.
The fit yields αBπ = 0.8+0.5

−0.2 and δ
Bπ = 0.6+0.3

−0.7 as the 68% confidence intervals for the separate
parameters. The simple pole model, corresponding to the boundaries of the plot at α = 0 and
δ = 1, is ruled out decisively by the data (99.99% level). However, the single pole model is
not ruled out with high confidence. The contours in Figure 1 thus extend as fine filaments
toward the “point-at-infinity” as discussed after (33). If δ is small, power-suppressed terms in
α and β may compete with this parameter in (29). For comparison, the 68% confidence-level
region obtained from a fit to F+ in the parameterization (28), before expanding in α− 1 and
β − 1, is also shown in Figure 1, using βBπ = 1.2 [34, 35] (see Section 6), and imposing the
physical constraint 0 < 1/γ < m2

B∗/(mB + mπ)
2 on the position of the effective pole. With

12



-0.5 0 0.5 1 1.5
-0.5

0

0.5

1

-0.5 0 0.5 1 1.5
-0.5

0

0.5

1

PSfrag replacements

αDπαDπ

δD
π

δD
π

Figure 2: 68% (dark) and 90% (light) confidence regions for parameters α and δ as determined
by fitting F+ in (33) (with mB∗ → mD∗) to D → π data in [32]. Also shown is the 68%
confidence region (dashed line) using the parameterization of F+ in (28) before expansion,
with βDπ = 1.6.

the constraint in place, the unexpanded fit yields 1 + 1/βBπ − δBπ = 1.3+0.4
−0.1.

10

Treating the charm mass as sufficiently heavy to perform the large-recoil/heavy-quark
expansion, the same reasoning as led to (33) yields a similar parameterization for D → π
form factors, with mD∗ replacing mB∗ . Under the identification (30), and neglecting scaling
violations, parameter δ is independent of the heavy-quark mass, and is therefore the same for B
and D mesons in the heavy-quark limit. Figure 2 shows constraints imposed by D → πlν data
from the CLEO collaboration, which measured relative branching fractions in three q2 bins [32].
The figure shows 68% and 90% confidence regions for α and δ using the parameterization of F+

in (33), with mB∗ → mD∗ . Also shown is the 68% confidence region for the parameterization
of F+ in (28) before expansion, using βDπ = 1.6 [37],11 and imposing the constraint 0 <
1/γ < m2

D∗/(mD + mπ)
2 on the position of the effective pole. With the constraint in place,

the unexpanded fit yields 1 + 1/βDπ − δDπ = 1.1+0.6
−0.2.

The same analysis can be performed for D → K form factors, with now the D∗
s mass being

used in (33). In the limit of exact SU(3) flavor symmetry, parameters α and δ are the same for
this case as for D → π form factors. The CLEO collaboration has measured relative branching
fractions for D → Klν in three q2 bins [32]. The FOCUS collaboration has extracted the form
factor F+ for D → Kµν decays at nine q2 points [33]. Figure 3 shows a fit of F+ in (33), with

10For a more detailed analysis using the general parameterization (27), see [42].
11From the central value for the single-pole fit in [37], βDπ = [m2

D∗/(m2
D −m2

π)] × 1.41 ≈ 1.6, and βDK =
[m2

D∗

s

/(m2
D −m2

K)]× 1.31 ≈ 1.8.
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Figure 3: 68% (dark) and 90% (light) confidence regions for parameters α and δ as determined
by fitting F+ in (33) (with mB∗ → mD∗

s
) to D → K data in [32] and [33]. Also shown is the

68% confidence region (dashed line) using the parameterization of F+ in (28) before expansion,
with βDK = 1.8.

mB∗ → mD∗

s
, to the combined data, again with 68% and 90% confidence regions. The χ2 fit

uses the correlation coefficients from [32] and [33] for the respective data, with the different
experiments assumed uncorrelated. The simple pole model (α = 0 or δ = 1) is ruled out
decisively by the data. The single pole model (α → ∞, δ → 1 with α(1− δ) fixed) is not ruled
out with high confidence. Also shown is the 68% confidence region for the parameterization
of F+ in (28) before expansion, using βDK = 1.8 [37], and imposing the physical constraint
0 < 1/γ < m2

D∗

s
/(mD + mK)

2 on the position of the effective pole. With the constraint in

place, the unexpanded fit yields 1 + 1/βDK − δDK = 0.91+0.12
−0.05. A direct measurement of the

quantity δ (as defined in (22)) in [33] yields δDK = −0.7± 1.5± 0.3.

6 Comparison to Theoretical Predictions

Explicit theoretical form-factor calculations are important, most notably for supplying the
overall normalization necessary to extract weak-interaction parameters (|Vub|) from experimen-
tal data (B → πlν). The form factor shape can be tested independently of this normalization,
and also contains important information relating to other processes. Figure 4 shows allowed
parameter regions obtained by fitting recent unquenched B → π lattice data for F+ and F0,
from [34] and [35], to (28), imposing the physical constraint 0 < 1/γ < m2

B∗/(mB +mπ)
2 and

0 < 1/β < m2
B∗/(mB +mπ)

2 on the positions of the effective poles. Also shown is the central
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Figure 4: Theoretical constraints on form-factor shape parameters. Shown are 68% confidence
regions for parameters α and δ for B → π as determined by fitting (28) to unquenched lattice
QCD in [34] (light solid) and [35] (hatched). The triangle indicates the central value from
light-cone sum rules in [36]. Superimposed is the 68% confidence region (dashed line) from
experimental data (see Figure 1).

value for the light-cone sum rule determination from [36]. Superimposed is the region preferred
by the experimental data, as in Figure 1. It may be noted that the lattice determination of
F+(q

2) in [35] employs the BK parameterization, (33) with δ = 0, to interpolate and extrapo-
late the data points at varying light-quark mass to fixed energy prior to performing the chiral
extrapolation to the physical light-quark mass. Similarly, a single pole model is used in [34] to
interpolate to fixed energy before chiral extrapolation. Achieving greater precision warrants
further investigation into whether the form assumed for this extrapolation biases the resulting
chirally-extrapolated form factors. Also, as a result of fitting to a smooth curve prior to chiral
extrapolation, the data points for F+,0(q

2) from [34] and [35] lie on a smooth curve, introducing
significant correlations between different q2 values. The χ2 fit employed in Figure 4 assumes
uncorrelated errors, with statistical and systematic errors added in quadrature.

Under the assumption of the dimensional scaling laws ζ̂π ∼ 1/E2 and Ĥπ ∼ 1/E2, the
identification (30) allows the relative size of ζ̂π and Ĥπ to be probed by measuring the single
form factor F+, using (18). By measuring both F+ and F0, it is possible to isolate the ζ̂π and
Ĥπ components directly, and to test this scaling law. With the form factors parameterized
according to (28), small deviations of α and β from unity allow for violations of the exact
1/E2 scaling that is recovered when α = β = 1 (for any value of δ). Figure 5 shows the
range of slopes for typical parameter values. Parameter β is varied between 1.1 and 1.3; this
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Figure 5: Slope of ζ̂π (5(a)) and Ĥπ (5(b)) at maximum recoil, with F+ and F0 given by (28),
as a function of α. The hatched region is for δ = 0.2, and the solid region for δ = 0.7. The
vertical range within each region corresponds to varying β from β = 1.1 to β = 1.3.

is consistent with the lattice values12 1.18(5) from [34] and 1.18(5) from [35], and also with
the light-cone sum rule result 1.20 from [36]. The magnitude of the slope for ζ̂π in Figure 5(a)
is slightly below 2 for all parameter values, whereas for Ĥπ the result shown in Figure 5(b)
depends more sensitively on the value of δ. Small deviations from the 1/E2 dimensional scaling
law lend confidence to the large-recoil expansion.

7 Discussion

Form factors at large recoil energy are essential to the study of heavy meson decays to ex-
clusive final states. The additional energy scale provided by the heavy quark complicates the
description of these processes relative to the case of exclusive processes involving only light
hadrons. However, in the minimal effective theory (SCETI) obtained after integrating out the
heavy-quark mass, the description follows that of the light-hadron case, with a novel HQET
field replacing one of the light-quark fields. The problem can be made to look more symmetric
by boosting to the Breit frame for the light degrees of freedom. In continuum field theory the
SCET and “moving SCET” descriptions are of course equivalent; however, in lattice simula-
tions, the maximum light-meson energy in the Breit frame, E ′ ∼

√
EΛ, is much smaller than

that in the rest frame of the initial-state heavy meson. The resulting discretization requires
far fewer lattice sites to obtain a given accuracy, and can lead to much more efficient sim-
ulations. This philosophy lies behind the idea of “moving nonrelatvistic QCD” and related

12The fits in [34] and [35] assumed δ = 0, but the value of β is not significantly changed by allowing δ 6= 0.
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approaches [38], which may allow direct simulations of form factors over most or all of the full
kinematic range in B → πlν.

Knowledge of the heavy-quark mass dependence of the form factors, and of the relations
between different form factors, provides a valuable handle that can be used to test lattice
or other theoretical calculations. For example, if FT were calculated on the lattice, (19) is
a model-independent relation that must be satisfied throughout the entire kinematic range.
If the hard-scattering contributions are significant, then there is a nontrivial modification at
large recoil compared to the corresponding HQET relation (2).

Symmetry relations between form factors for B and D mesons near the kinematic endpoint
for D decay can provide a normalization for the B-decay form factors. Relations (21) are
valid throughout the entire kinematic range; again, if the hard-scattering contributions are
significant, there is a nontrivial modification from the corresponding HQET relations (3). The
analysis of B decays to vector final states reveals similar modifications at large recoil to the
HQET scaling laws and symmetry relations; a preliminary discussion was given in [24], and
a more in-depth analysis is left for future work. Precision measurements would require a
detailed study of power corrections, in particular an analysis of the manner in which HQET
power corrections [39] merge with the SCET description; this topic is beyond the scope of the
present work. However, it should be emphasized that, even at leading order in the heavy-quark
expansion, no formal relation exists between form factors FB→π

+ and FD→π
+ near maximum

recoil in the D → π system.
Neglecting scaling violations (and power corrections), the large-recoil scaling laws imply

FB→π
+ (q2 = 0) = (mD/mB)

3/2FD→π
+ (q2 = 0). As emphasized in Section 2, the energy de-

pendence of the hard-scattering part of the form factors is calculable; for this part, a full
renormalization-group analysis including first-order radiative corrections was performed in
[18], using a model B-meson wavefunction. Scaling violations were found to give a small
additional suppression for increasing energy relative to the 1/E2 tree-level scaling. For the
soft-overlap part of the form factors, however, the energy dependence is not perturbatively
calculable. Scaling violations for such nonfactorizable quantities provide an interesting win-
dow on nonperturbative QCD dynamics. Although for practical purposes, this interesting
dynamics can fortunately be avoided through the use of symmetry relations, further direct
analysis of ζ̂π is warranted.

The description in Section 3 used the tree-level approximation for the hard-scale matching
coefficients in the effective theory. Like the HQET relations (2) and (3), the SCET form factor
relations (19) and (21) receive corrections at O(αs), arising as nontrivial matching coefficients
of QCD onto the effective theory at the hard matching scale. These radiative corrections have
been calculated to first order in αs, for C

A in [5, 40], and for CB in [40, 41]. The corrections
could be taken into account trivially for the A-type terms; however, since the modifications
are . 5% for all B → π form factors [41], they can be safely neglected at the current level
of precision. Corrections to CB are more difficult to quantify, since beyond tree level these
coefficients are momentum-fraction dependent, and so knowledge of the shape of the meson
wavefunctions becomes necessary. However, these corrections are . 20% for all B → π form
factors [41]; if, as the data indicate, the hard-scattering terms (Ĥ) are significantly smaller
than the soft-overlap terms (ζ̂), then the effect on the overall form factors is much smaller.
Until evidence of the hard-scattering terms is first seen unambiguously and their properties
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can be studied further, this approximation is sufficient.
The parameterization (33) provides a generalization of several forms commonly used in

studying form factors for heavy-to-light transitions such as B → π. It is the most general
form of F+ with a pole at q2 = m2

B∗ and one additional effective pole. The simple pole
(one pole at m2

B∗) and single pole (one pole, not necessarily at m2
B∗) models are contained

as special cases. Given that the lattice and experimental data cannot yet resolve more than
a single effective pole, branching fraction fits and the resulting Vub determinations should be
very insensitive to the inclusion of even more terms in (27). In particular, with the asymptotic
behavior F+(t) ∼ 1/t at large t, the dispersive integral in (26) is absolutely convergent. This
bounds the magnitude of residues ρi in (27), and prevents contributions from arbitrarily large
t. A more formal study of the convergence properties of the sequence of parameterizations
(27) will be taken up elsewhere [42]. Using the identification (30), it follows that specialization
to the case δ = 0 in (33), as in [25], corresponds to neglect of the hard-scattering component
of the form factor, and is justified only to the extent that this component is shown to be
small. Similar parameterizations can be used in D → π, and in D → K decays, with the
D∗, and D∗

s pole replacing the B∗ pole. It would be especially interesting to fix the value
of δ = 1 + F−(0)/F+(0) in D → π decays. From the identifications (30), this quantity is
independent of the heavy-quark mass at leading power, and neglecting scaling violations.
Since δ is at most a slowly-varying function of the heavy-quark mass, determination of its
value for D → π would give an important indication of its size for B → π.

A related decomposition of the dispersive integral (26) was studied in [43], where a pa-
rameterization in terms of explicit resonance and continuum contributions was put forward.
The semileptonic data can now be used to test such models — e.g., B → π (Figure 1) and
D → K (Figure 3) data definitively resolve contributions other than the B∗ and D∗

s pole
terms, respectively, and D → π (Figure 2) data favors contributions in addition to the D∗

pole, as indicated by α > 0.
A detailed analysis of heavy-to-light form factors provides the basis for more complicated

radiative and hadronic B decays. For instance, at leading order in 1/mb, B → ππ decays can be
related via factorization theorems to B → π form factors, plus hard-scattering corrections [44,
45]. Written in SCET language, the leading-order description is in terms of the same functions
ζ̂π and Ĥπ appearing in the form factors [46]. Knowledge of the parameter δ in (18) should
help in understanding these more complicated processes, where values ranging from δ ∼ 0.1−
0.5 [47, 48] to δ ∼ 1.1− 1.4 [46, 49] have been taken as phenomenological input or suggested
from fits to the B → ππ data. The size and nature of power corrections also warrants further
investigation [50].

More generally, the value of δ should help in deciding between different schools of thought
that have emerged to describe B → π form factors. The first of these may be conveniently
labelled as the “soft-overlap dominance” school, where δ is small, and the hard-scattering
terms at large recoil give small corrections to the symmetry relations derived at small recoil;
the second, “hard-scattering dominance”, school of thought, where δ is large, assumes that the
B → π transition can be treated in much the same way as for light-meson form factors, where
hard-scattering terms are dominant and endpoint contributions are suppressed. Light-cone
sum rules generally belong to the first school, where the hard-scattering terms appear as a
radiative correction [51, 52, 53]. Some care is required in categorizing various approaches in
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the second school, due to different terminologies. In SCET, it is natural to identify the “soft-
overlap” contribution with the “nonfactorizable” ζ̂ , arising from the “A-type” SCETI current,
and satisfying “spin-symmetric” relations (14) appropriate for this leading-order current op-
erator. Similarly, the “hard-scattering” contribution is identified with Ĥ, and is synonymous
with “factorizable”, “B-type” and “symmetry-breaking”. Since ζ̂ involves contributions from
hard gluon exchange in addition to true soft-overlap contributions from endpoint configura-
tions, dominance of hard-gluon exchange is not necessarily the same as dominance of Ĥ over
ζ̂ . The numerical value of δ provides a useful and unambiguous means of comparing the
implications of different approaches.

The heavy-quark expansion for exclusive heavy-meson decay amplitudes yields results such
as the well-known symmetry relations between different form factors, and between different
heavy mesons, which are strictly valid when no other large energy scales are relevant. For
decays into energetic hadrons, hard-scattering contributions involving the spectator degrees of
freedom in the heavy meson involve such a new large scale, whose effects may be treated by the
usual approach to hard exclusive processes in the large-recoil expansion. The scale separations
can be systematically performed using recently-developed effective field theory techniques, and
for the simplest case of heavy-to-light form factors, relations (19) and (21) give the resulting
modifications to heavy-quark symmetry relations appearing at large recoil. The heavy-quark
and large-energy scaling laws can be used to inform extrapolations and parameterizations of
the form factors, e.g. (33). Knowledge of the form factors can in turn be used to disentangle
different contributions to more complicated processes such as B → ππ.
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