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Probing Lorentz violation with Doppler-shift experiments
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This work analyzes Doppler-effect experiments in terms of a general framework for violations of
Lorentz symmetry: the Standard-Model Extension. These experiments are found to be sensitive
to heretofore unprobed combinations of Lorentz-violation coefficients associated with protons and
electrons. New bounds at the level of 10−11 and 10−8 for proton coefficients and 10−2 for electron
coefficients emerge from a recent experiment.

PACS numbers: 03.30.+p,06.30.Ft,11.30.Cp,11.30.Er

I. INTRODUCTION

The Doppler effect of light is one of the classic tests
of special relativity [1], particularly symmetry under
Lorentz transformations. Modern experiments agree
with relativistic predictions to a very high degree of pre-
cision [2]. However, the possibility of Lorentz symmetry
violation due to Planck-scale physics [3, 4] makes contin-
uing study of the relativistic Doppler shift an important
endeavor.
This work uses the nongravitational sector of the

Standard-Model Extension (SME), a general framework
for violations of particle Lorentz symmetry, to analyze
Doppler-effect experiments. Most previous analyses have
used a limited test model [5] that can describe only a
single type of matter aside from the photon, and that
is likely a special case of the SME [6]. Analysis of the
most recent Doppler experiment [2] has been performed
[7] within the context of the photon sector of the SME,
describing sensitivity to a combination of photon parame-
ters; the photon sector is neglected in most of the current
paper. Analysis within the context of the fermion sector
of the SME has yet to be performed. Herein is presented
such an analysis, yielding new bounds on a set of proton-
and electron-associated coefficients for Lorentz violation.
This work also indicates modifications to current experi-
ments that could yield sensitivity to a much broader class
of coefficients.
Theoretical analyses of the SME include its possible

origin in spontaneously broken Lorentz symmetry [8],
its definition [9], its spin-statistics relation and micro-
causal structure [10], its renormalizability [11], its ex-
tension to gravitational physics [12], and its hamilto-
nian for free Dirac fermions [13, 14]. Phenomenologi-
cal studies of the SME include analyses of the electron
sector [15, 16], atomic clocks [17–19], electrodynamics
[6, 16, 20, 21], muon behavior [22], neutral mesons [23],
neutrinos [24], the Higgs field [25], and more. Most of
these phenomenological studies have been applied to ex-
isting experiments, including those with the electron sec-
tor [26], atomic clocks [27], electrodynamics [28], muon
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behavior [29], neutral mesons [30], and neutrinos [31].
This paper is organized as follows. Section II collects

many small discussions: the ingredients of a Doppler-
effect experiment, qualitative reasons for expecting such
experiments to be sensitive to Lorentz violation, defini-
tion of the key experimental quantity of interest, and rel-
evant coordinate systems for detailed analysis. Section
III describes the signals that would appear in Doppler
experiments were Lorentz symmetry to be violated in ac-
cordance with the SME. The general results are applied
to the completed Heidelberg experiment in Sec. IV. Sec-
tion V discusses a few ways that future experiments could
yield sensitivity to a broader set of Lorentz-violation coef-
ficients. A summary appears in Sec. VI, and an Appendix
contains some calculational details.

II. BASICS

Observer Lorentz symmetry is maintained in the SME,
and hence conventional relationships hold between mea-
surements made in different inertial frames of the same
physical quantity. However, due to violation of parti-
cle Lorentz symmetry, analysis of experimental condi-
tions has an extra subtlety. To wit: Since measurements
made in identical experimental setups moving with re-
spect to each other do not measure the same physical
quantity, but rather different instances of similar physical
quantities, they may not obey conventional relationships.
For example, the rest-frame frequency associated with an
atomic transition depends on the particular frame of the
atom, in contrast to the conventional Lorentz-symmetric
case.

A. Experimental basics

Doppler-shift experiments involve three main ingredi-
ents. The first ingredient consists of two groups of atoms,
one group at rest in the lab frame and the other forming a

beam with velocity ~β in the lab frame. The same transi-
tion should be studied in each group. A pair of coordinate
frames, the lab frame S and the moving atoms’ rest frame
S̄, form the second ingredient. The third ingredient is a
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set of three transition-frequency measurements:

νlab= frequency associated with the atoms at rest
in the lab frame, measured in the lab frame (and
hence in their own rest frame),

ν̄beam= frequency associated with the beam atoms,
measured in the beam frame (and hence in their
own rest frame), and

νbeam= frequency associated with the beam atoms,
measured in the lab frame (not their own rest
frame).

General considerations of Lorentz symmetry give qual-
itative insight into relationships within each of two pairs
of the measurements. First, consider νbeam and ν̄beam.
These are measurements of the same transition in the
same atoms, but measured in different frames, so they
are related by an observer Lorentz transformation. Since
the SME preserves observer Lorentz symmetry, νbeam and
ν̄beam obey their conventional Doppler relationship in this
theory.
Next, consider νlab and ν̄beam. These are not mea-

surements of the same quantity. However, since they
are measurements of the same type of thing (a partic-
ular transition in a particular type of atom), they are
related by a particle Lorentz transformation [32]. Since
the SME breaks particle Lorentz symmetry, they do not
obey their conventional relationship, namely, equality.
Doppler-effect experiments effectively probe the ratio of
these two frequency measurements, bounding the amount
by which it differs from unity.
In practice, νbeam is not a single frequency measure-

ment. Two different beam-atom transition frequencies
are measured in the lab frame: νp, the frequency of light
measured by a laser running parallel to the beam in the
lab frame, and νa, the frequency of light measured by a
laser running antiparallel to the beam in the lab frame.
In conventional physics, a nice identity relates these to
the beam transition frequency as measured in the beam
frame: νaνp = ν̄2

beam
. This relationship is based only on

observer Lorentz transformations, and therefore holds in
both conventional physics and the SME. Because of this,
the analysis may be performed as if the frequencies ν̄beam
and νlab are directly measured, even though the actual
experiments deal with frequencies νa, νp, and νlab.
The key experimental quantity is the ratio νaνp/ν

2
lab

.
Due to the identity mentioned above, this can be ex-
pressed as the square of the ratio of two transition fre-
quencies as measured in their own rest frames, ν̄beam and
νlab. As discussed above, these frequencies are equal in
conventional physics, but may be different whenever par-
ticle Lorentz symmetry is violated. Thus, in conventional
physics, the experimental quantity of interest is exactly
unity. When Lorentz symmetry is violated, however, it
may differ slightly from one. Moreover, for experiments
conducted in a frame that is not strictly inertial (such as
those based on Earth’s surface), the key ratio may vary
with time.

Since particle Lorentz symmetry is at least approxi-
mately valid, the experimental quantity of interest can
conveniently be written as a perturbation around one:

νaνp
ν2
lab

=
ν̄2
beam

ν2
lab

= 1 + ε , (1)

where ε ≪ 1. Section III of this paper describes the size
and time dependence of ε under general experimental
scenarios.
The most stringent bound on ε to date results from a

recent Doppler-effect experiment at the heavy-ion storage
ring TSR in Heidelberg [2]. This experiment limits the
magnitude of ε to

|ε| ∼< 2× 10−9 . (2)

B. Coordinate frames.

Three coordinate frames are necessary for this work.
The first is a nonrotating system (T,X, Y, Z) centered
on the Sun. This frame is approximately inertial over
the course of any realistic Doppler-shift experiment. It
is defined in detail in Section III of Ref. [19].
The second system (t, x, y, z) is fixed in the labora-

tory on Earth’s surface. In it, the x axis points south,
the y axis points east, and the z axis points vertically
upwards. Useful angles in this frame include the angle
η ≈ 23.4◦ between Earth’s equatorial and orbital planes
and the colatitude χ of the laboratory. The angular fre-
quency of Earth’s revolution about the Sun is denoted
Ω⊕, while the rotational frequency of the Earth is de-
noted ω⊕. The current work uses β⊕ ≈ 10−4 to denote
the average speed of Earth with respect to the Sun, and
βL ≈ (1.5 × 10−6) sinχ to denote the average speed of
the lab with respect to Earth’s rotational axis. These
first two systems and transformations between them are
defined in detail in Appendix C of Ref. [6].
The third frame (t̄, x̄, ȳ, z̄) is the rest frame of the beam

atoms. These axes are defined to move with speed β
along the lab-frame y-axis. The ȳ axis is chosen to be
parallel to the y axis. The z̄ axis points along the quan-
tization axis of the beam atoms, which is assumed to be
rotated around the y axis by angle θ away from the z axis.
Thus, for an experiment conducted at a colatitude χ, the
angle between Earth’s rotation axis and the quantization
axis is given by ξ = χ + θ. The current work doesn’t
include generalization to beams moving with arbitrary
orientation: such generalization is straightforward and
has little effect on the analysis aside from computational
messiness. The x̄ axis is defined so as to complete the
right-handed system.
This work keeps only terms up to second order in β for

two reasons: First, for all existing Doppler-effect experi-
ments to date, β ≪ 1. In the most recent experiment [2],
for example, β ≈ 0.064. Second, the types of Lorentz vi-
olation to which Doppler-effect experiments are sensitive
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are unaffected by inclusion of higher-order terms. More-
over, at most first-order terms in β⊕ and βL are kept
since each is much smaller than β.

III. SME PREDICTIONS

In this section, the behavior of the key experimental
quantity is described as predicted by the SME. First, the
shift to an atom’s transition frequency is considered in
an approximately inertial frame instantaneously at rest
with the atom. Next, the frequencies of atoms moving
at constant velocity with respect to each other are com-
pared. The section concludes with the consequences of
the motion of the atoms as they rotate with Earth and
ride Earth around the Sun.

A. Approximately inertial frame

In the SME, new interactions cause shifts in atomic
energy levels with respect to conventional values [17].
The energy-level shift δE to an atomic state with total-
angular-momentum quantum number F and projection
number mF takes the form δE(F,mF ) = m̂FEd(F ) +
m̃FEq(F ). In this expression, m̂F and m̃F are ratios
of Clebsch-Gordan coefficients while Ed(F ) and Eq(F )
aremF -independent dipole- and quadrupole-type energy-
level shifts.

In turn, this generally induces transition-frequency
shifts of the form

ν = νSM + δν ,

δν =
1

2π

∑

w

[
(m̂Fβw − m̂′

Fβ
′

w)b̃
w
3

+(m̂F δw − m̂′

F δ
′

w)d̃
w
3

+(m̂Fκw − m̂′

Fκ
′

w)g̃
w
d

+(m̃F γw − m̃′

F γ
′

w)c̃
w
q

+(m̃Fλw − m̃′

Fλ
′

w)g̃
w
q

]
, (3)

where ν denotes any transition frequency measured in the
atom’s own rest frame, assuming that the tensor compo-
nents are evaluated in that frame; νSM is the conven-
tional (i.e., according-to-the-standard-model) frequency;
and δν is the shift induced by the SME. The sum is
over the particle types proton, neutron, and electron.
The quantities βw, . . . , λw that describemF -independent
properties of the atoms are described in the paragraphs
surrounding Eqs. (10) through (12) of Ref. [17]. Finally,

b̃w3 , . . . , g̃wq are the specific combinations of Lorentz-
violation tensor components that appear in studies of
atomic systems; explicit definitions of them appear as
Eq. (9) of Ref. [17].

B. Comparison of lab and beam atoms

Expression (3) holds for both νlab and ν̄beam, with the
tensor components evaluated in the lab and beam frames,
respectively. Since tensor components generally depend
on the frame in which they’re evaluated, it usually per-
tains that b̃3̄ 6= b̃3, c̃q̄ 6= c̃q, etc. Thus, since they de-
pend on tensor components evaluated in different frames,
δν̄beam 6= δνlab and hence ν̄beam 6= νlab.
Since Doppler-effect experiments involve the same

transitions in the same atomic species (albeit measured
in different frames), the values of m̂F , m̃F , and βw, . . . ,
λw that appear in δν̄beam and δνlab are identical. Thus,
the experimental quantity of interest becomes

ν̄2beam
ν2
lab

= 1 +
2

νSM
(δν̄beam − δνlab)

= 1 +
1

πνSM

∑

w

[
(m̂Fβw − m̂′

Fβ
′

w)(b̃3̄ − b̃3)

+(m̂F δw − m̂′

F δ
′

w)(d̃3̄ − d̃3)

+(m̂Fκw − m̂′

Fκ
′

w)(g̃d̄ − g̃d)

+(m̃F γw − m̃′

F γ
′

w)(c̃q̄ − c̃q)

+(m̃Fλw − m̃′

Fλ
′

w)(g̃q̄ − g̃q)
]

. (4)

This quantity varies with time as Earth rotates. Its exact
time dependence is calculated in Section III C.
Some of the coefficients that appear in Eq. (4) are given

in the lab frame, while others are given in comoving beam
coordinates. Conventional Lorentz boosts may be used
to express the beam components in terms of the lab-
frame components. To second order in the beam speed
β and expressed entirely in lab-frame coordinates, the
combinations of coefficients in Eq. (4) are

b̃3̄ − b̃3 = β [−md32 +mg122 +mg100 −H10]

+β2
[
− 1

2
md30 +mg120 +mg102 −

1

2
H12

]
,

d̃3̄ − d̃3 = β
[
md23 +

1

2
md32 −

1

2
H10

]

+β2
[
1

4
md30 +

1

2
md03 −

1

4
H12

]
,

g̃d̄ − g̃d = β [2mg122 + 2mg100]

+β2 [2mg120 + 2mg102] ,

c̃q̄ − c̃q = β [mc20 +mc02]

+β2 [mc11 + 2mc22 +mc33] , and

g̃q̄ − g̃q = β [−mg211 + 2mg233 +mg200]

+β2
[
1

2
mg101 +

1

2
mg202 −mg303

]
. (5)

C. Noninertial frame

As the coefficients that appear in Eq. (5) are tensor
components in a frame attached to Earth’s surface, they
vary as Earth rotates and accelerates through the non-
rotating Sun frame. Thus, it is best to re-express the
key experimental quantity in terms of tensor components
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in the Sun frame, thereby explicitly displaying its time
dependence. In this section, c̃q̄ − c̃q is first discussed
in detail, then relevant information for all coefficients is

summarized.

In terms of nonrotating-frame components,

c̃q̄ − c̃q = cosω⊕T⊕

{
β
[
c̃TY

]
+ ββ⊕

[
cηcΩT c̃− − 1

3
cηcΩT c̃Q − sηcΩT c̃X + sΩT c̃Z

]
+ β2βL

[
2c̃TY

]}

+ sinω⊕T⊕

{
β
[
− c̃TX

]
+ ββ⊕

[
− sΩT c̃− − 1

3
sΩT c̃Q + sηcΩT c̃Y + cηcΩT c̃Z

]
+ β2βL

[
− 2c̃TX

]}

+ cos 2ω⊕T⊕

{
β2

[
− 1

2
c̃−

]
+ ββL

[
− c̃−

]
+ β2β⊕

[
− 1

2
sΩT c̃TX − 1

2
cηcΩT c̃TY

]}

+ sin 2ω⊕T⊕

{
β2

[
− 1

2
c̃Z

]
+ ββL

[
− c̃Z

]
+ β2β⊕

[
1

2
cηcΩT c̃TX − 1

2
sΩT c̃TY

]}

+
{
β2

[
1

6
c̃Q

]
+ ββL

[
1

3
c̃Q

]
+ β2β⊕

[
3

2
sΩT c̃TX − 3

2
cηcΩT c̃TY − sηcΩT c̃TZ

]}
. (6)

ω⊕T⊕

dep. c̃Q c̃X c̃Y c̃Z c̃− c̃TX c̃TY c̃TZ

c̃q̄ − c̃q cosω⊕T⊕ ββ⊕ ββ⊕ · ββ⊕ ββ⊕ · β ·

sinω⊕T⊕ ββ⊕ · ββ⊕ ββ⊕ ββ⊕ β · ·

cos 2ω⊕T⊕ · · · · β2 β2β⊕ β2β⊕ ·

sin 2ω⊕T⊕ · · · β2
· β2β⊕ β2β⊕ ·

const. β2
· · · · β2β⊕ β2β⊕ β2β⊕

TABLE I: Dependance of c̃q̄ − c̃q on the lab’s rotational fre-
quency ω⊕ as Earth rotates, on Sun-frame tilde coefficients,
and on various speeds.

In this and later equations, the abbreviations cx := cosx
and sx := sinx are used. Further, the combination Ω⊕T
is shortened to ΩT . The individual terms in this ex-
pression have been sorted into five pieces based on their
variation at Earth’s relatively rapid rotational frequency
ω⊕:

c̃q̄ − c̃q = C1 cosω⊕T⊕ + S1 sinω⊕T⊕

+ C2 cos 2ω⊕T⊕ + S2 sin 2ω⊕T⊕ +K0 , (7)

where the coefficients of these sinusoids and the piece K0

include both terms that vary at the relatively slow fre-
quency Ω⊕ of Earth’s motion around the Sun and terms
that are truly constant. All combinations of Sun-frame
components c̃Q, c̃TX , etc. in this and later expressions
are defined in Appendix B of [19].
The relevant content of Eq. (6) deals with the ω⊕ time

dependence, the set of nonrotating-frame parameters on
which it depends, and the suppression of each of these
parameters by products of various speeds. Exact depen-
dence on order-one factors such as sines and cosines of
ξ or η only changes sensitivity by factors of order unity,
and is therefore relatively unimportant.
The relevant content is summarized in Table I. Each

column corresponds to a different Sun-frame tilde com-
bination of coefficients for Lorentz violation, while each
row corresponds to a type of time dependence. The
entries in the table give the suppression factor for the
dominant contribution of each Sun-frame tilde combina-
tion to each type of time dependence. For example, the
− 1

3
ββ⊕cηcΩT c̃Q cosω⊕T⊕ term in Eq. (6) is represented

by the upper-left ββ⊕ entry in Table I. Note that the
1

3
ββLc̃Q constant term is not represented in the table, as

it is dominated by the 1

6
β2c̃Q term.

Detailed expressions like Eq. (6) for other coefficients
are unwieldy and give no particular insight. The rele-
vant information is displayed two ways. First, the time
and Sun-frame-component dependence is summarized in
Tables II and III, which are entirely analogous to Table
I.

Second, the detailed results in the limits βL → 0, β⊕ →
0 are given. This corresponds to neglecting relativistic
effects associated with the lab’s motion through space.
It is equivalent to assuming that the lab has a constant
velocity, but rotates about an axis parallel to Earth’s.
Since βL ≪ β and β⊕ ≪ β in any current experiment,
all highest-order effects are represented. The coefficient
differences listed in Eq. (5), when expressed in Sun-frame
components, are given in the Appendix.

IV. THE HEIDELBERG HEAVY-ION

EXPERIMENT

The recent experiment at the Heidelberg heavy-ion
storage facility [2] used saturation spectroscopy within
7Li+ ions moving at speed β ≈ 0.064 to probe the
Doppler effect. The experiment effectively averaged over
all of the ∆mF = 0 transitions between the 3P2(F = 7/2)
and 3S1(F = 5/2) levels, to each of which the analysis of
Sec. III may be applied. Thus, the measured frequency
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ω⊕T⊕ dep. b̃X b̃Y b̃Z d̃X d̃Y d̃Z g̃TX g̃TY g̃TZ g̃− g̃DX g̃DY g̃DZ g̃Q H̃XT H̃Y T H̃ZT

b̃3̄ − b̃3 cosω⊕T⊕ β2 ββ⊕ ββ⊕ · ββ⊕ · β2 ββ⊕ ββ⊕ ββ⊕ β2 ββ⊕ ββ⊕ · β β2β⊕ β2β⊕

sinω⊕T⊕ ββ⊕ β2 ββ⊕ ββ⊕ · · ββ⊕ β2 ββ⊕ ββ⊕ ββ⊕ β2 ββ⊕ · β2β⊕ β β2β⊕

cos 2ω⊕T⊕ ββ⊕ ββ⊕ · ββ⊕ ββ⊕ · ββ⊕ ββ⊕ β2 ββ⊕ ββ⊕ ββ⊕ · · · · ·

sin 2ω⊕T⊕ ββ⊕ ββ⊕ · ββ⊕ ββ⊕ · ββ⊕ ββ⊕ ββ⊕ β2 ββ⊕ ββ⊕ · · · · ·

const. ββ⊕ ββ⊕ β2 ββ⊕ ββ⊕ · ββ⊕ ββ⊕ · · ββ⊕ ββ⊕ β2 ββ⊕ β2β⊕ β2β⊕ β

d̃3̄ − d̃3 cosω⊕T⊕ · ββ⊕ · β2 ββ⊕ ββ⊕ · · · · · · · · β β2β⊕ β2β⊕

sinω⊕T⊕ ββ⊕ · · ββ⊕ β2 ββ⊕ · · · · · · · · β2β⊕ β β2β⊕

cos 2ω⊕T⊕ ββ⊕ ββ⊕ · ββ⊕ ββ⊕ · · · · · · · · · · · ·

sin 2ω⊕T⊕ ββ⊕ ββ⊕ · ββ⊕ ββ⊕ · · · · · · · · · · · ·

const. ββ⊕ ββ⊕ · ββ⊕ ββ⊕ β2
· · · · · · · · β2β⊕ β2β⊕ β

g̃d̄ − g̃d cosω⊕T⊕ β2 ββ⊕ ββ⊕ · · · β2 ββ⊕ ββ⊕ ββ⊕ β2 ββ⊕ ββ⊕ · · · ·

sinω⊕T⊕ ββ⊕ β2 ββ⊕ · · · ββ⊕ β2 ββ⊕ ββ⊕ ββ⊕ β2 ββ⊕ · · · ·

cos 2ω⊕T⊕ ββ⊕ ββ⊕ · · · · ββ⊕ ββ⊕ β2 ββ⊕ ββ⊕ ββ⊕ · · · · ·

sin 2ω⊕T⊕ ββ⊕ ββ⊕ · · · · ββ⊕ ββ⊕ ββ⊕ β2 ββ⊕ ββ⊕ · · · · ·

const. ββ⊕ ββ⊕ β2
· · · ββ⊕ ββ⊕ · · ββ⊕ ββ⊕ β2 ββ⊕ · · ·

g̃q̄ − g̃q cosω⊕T⊕ ββ⊕ · ββ⊕ · · · ββ⊕ β2 ββ⊕ ββ⊕ ββ⊕ · ββ⊕ ββ⊕ · · ·

sinω⊕T⊕ · ββ⊕ ββ⊕ · · · β2 ββ⊕ ββ⊕ ββ⊕ · ββ⊕ ββ⊕ ββ⊕ · · ·

cos 2ω⊕T⊕ ββ⊕ ββ⊕ · · · · ββ⊕ ββ⊕ ββ⊕ β2 ββ⊕ ββ⊕ · · · · ·

sin 2ω⊕T⊕ ββ⊕ ββ⊕ · · · · ββ⊕ ββ⊕ β2 ββ⊕ ββ⊕ ββ⊕ · · · · ·

const. ββ⊕ ββ⊕ ββ⊕ · · · ββ⊕ ββ⊕ · · ββ⊕ ββ⊕ ββ⊕ β2
· · ·

TABLE II: Dependance of b̃3̄− b̃3, d̃3̄ − d̃3, g̃d̄ − g̃d, g̃q̄ − g̃q on the lab’s rotational frequency ω⊕ as Earth rotates, on Sun-frame
tilde coefficients, and on various speeds (continued in Table III).

shift in each group of atoms is

〈δν〉 = 1

6

+5/2∑

mF=−5/2

[
δE(F = 7

2
,mF )− δE(F = 5

2
,mF )

2π

]

= 1

12π

+5/2∑

mF=−5/2

[
m̂FEd(F = 7

2
) + m̃FEq(F = 7

2
)

−m̂′

FEd(F = 5

2
)− m̃′

FEq(F = 5

2
)
]

. (8)

Since m̂F is linear in mF , all Ed contributions to this
sum cancel each other out. Using the fact that any sum
of m̂F or m̃F over a complete set of mF = −F, · · · ,+F is
zero [17], the F = 5

2
parts of this sum contribute nothing.

Finally, the Eq(F = 7

2
) sum can be explicitly tallied to

give

〈δν〉 = − 1

6πEq(F = 7

2
) = − 1

6π

∑

w

(
γw c̃

w
q + λw g̃

w
q

)
.

(9)

The key experimental quantity for the Heidelberg exper-
iment is then

ν̄2
beam

ν2
lab

= 1−
1

3πνSM

∑

w

[
γw(c̃

w
q̄ − c̃wq ) + λw(g̃

w
q̄ − g̃wq )

]
.

(10)
Though calculation of the γw and λw parameters for

nucleons may in general be quite involved [17], the nu-
clear Schmidt model suffices for this work. For 7Li+

in the F = 7

2
state, the Schmidt model gives γp ≈

− 1

15
× 10−2 and γn = 0, while standard atomic cal-

culations lead to γe ≈ − 1

15
× 10−5. For each particle

species, Schmidt model and standard atomic calculations
give λw = 0, so g̃q̄ − g̃q makes no contribution.
An expression for c̃q̄− c̃q in terms of nonrotating-frame

components is given by Eq. (6). The Heidelberg exper-
iment effectively averaged frequency measurements over
several days [33], so the contributions proportional to
sines and cosines involving sidereal frequency ω⊕ all av-
erage to approximately zero [34]. Hence, the effective
value of c̃q̄ − c̃q is

c̃q̄ − c̃q = β2β⊕

(
3

2
sΩT c̃TX − 3

2
cηcΩT c̃TY − sηcΩT c̃TZ

)

+β2
(
1

6
c̃Q

)
+ ββL

(
1

3
c̃Q

)
. (11)
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ω⊕T⊕ dep. d̃XY d̃Y Z d̃ZX d̃Q d̃+ d̃− b̃T g̃T g̃c g̃XY g̃XZ g̃Y X g̃Y Z g̃ZX g̃ZY

b̃3̄ − b̃3 cosω⊕T⊕ β2β⊕ · · β2β⊕ β2β⊕ β2β⊕ β2β⊕ β2β⊕ β2β⊕ ββL · · β2β⊕ · β2β⊕

sin ω⊕T⊕ · β2β⊕ β β2β⊕ β2β⊕ β2β⊕ β2β⊕ β2β⊕ β2β⊕ · β2β⊕ ββL · β2β⊕ ·

cos 2ω⊕T⊕ β · · · · · β2β⊕ β2β⊕ β2β⊕ β2β⊕ · β2β⊕ · ββL ββL

sin 2ω⊕T⊕ · · · · · β β β β β2β⊕ · β2β⊕ · β2β⊕ β2β⊕

const. β · β2β⊕ β2β⊕ β2β⊕ · · · · β2β⊕ · β2β⊕ · ββL ββL

d̃3̄ − d̃3 cosω⊕T⊕ β2β⊕ β β2β⊕ β2β⊕ β2β⊕ β2β⊕ β2β⊕ β2β⊕ · β β β2β⊕ β2β⊕ β2β⊕ β2β⊕

sin ω⊕T⊕ β2β⊕ β2β⊕ β β2β⊕ β2β⊕ β2β⊕ β2β⊕ β2β⊕ · β2β⊕ β2β⊕ β β β2β⊕ β2β⊕

cos 2ω⊕T⊕ β · · · · · · · · · · · · β β

sin 2ω⊕T⊕ · · · · · β · · · · · · · · ·

const. β β2β⊕ β2β⊕ β2β⊕ β2β⊕ · β2β⊕ β2β⊕ · β2β⊕ β2β⊕ β2β⊕ β2β⊕ β β

g̃d̄ − g̃d cosω⊕T⊕ · · · · · · β2β⊕ β2β⊕ β2β⊕ β · · β2β⊕ · β2β⊕

sin ω⊕T⊕ · · · · · · β2β⊕ β2β⊕ β2β⊕ · β2β⊕ β · β2β⊕ ·

cos 2ω⊕T⊕ · · · · · · β2β⊕ β2β⊕ β2β⊕ β2β⊕ · β2β⊕ · β β

sin 2ω⊕T⊕ · · · · · · β β β β2β⊕ · β2β⊕ · β2β⊕ β2β⊕

const. · · · · · · β2β⊕ β2β⊕ · β2β⊕ · β2β⊕ · β β

g̃q̄ − g̃q cosω⊕T⊕ · · · · · · β2β⊕ β2β⊕ β2β⊕ · β2β⊕ β β β2β⊕ ·

sin ω⊕T⊕ · · · · · · · · β2β⊕ β β · β2β⊕ · β2β⊕

cos 2ω⊕T⊕ · · · · · · β β β β2β⊕ · β2β⊕ · β2β⊕ β2β⊕

sin 2ω⊕T⊕ · · · · · · β2β⊕ β2β⊕ β2β⊕ β2β⊕ · β2β⊕ · β β

const. · · · · · · β β · β2β⊕ β2β⊕ β2β⊕ β2β⊕ β2β⊕ β2β⊕

TABLE III: Dependance of b̃3̄− b̃3, d̃3̄− d̃3, g̃d̄− g̃d, g̃q̄ − g̃q on the lab’s rotational frequency ω⊕ as Earth rotates, on Sun-frame
tilde coefficients, and on various speeds (continued from Table II).

Note that this result could be derived from Table I,
though several order-one factors would be missing. Also
missing would be the last term. However, since it is dom-
inated by the next-to-last term, it is irrelevant. It is ne-
glected in the following calculations.
The key quantity for the Heidelberg experiment is then

ν̄2beam
ν2
lab

= 1−
1

3πνSM

∑

w=p,e

γw

[
1

6
β2c̃wQ + β2β⊕

(
3

2
sΩT c̃

w
TX

− 3

2
cηcΩT c̃

w
TY − sηcΩT c̃

w
TZ

)]
.(12)

Due to experimental data being taken over a small num-
ber of days, cΩT and sΩT are each approximately con-
stants of order one, as are cη and sη. Comparison with
Eq. (2) and expression of the coefficient combinations in
terms of original SME coefficients (i.e., in terms of “non-
tilde” coefficients) leads to rough bounds

|cpXX + cpY Y − 2cpZZ | ∼< 10−11 ,

|cpTJ + cpJT | ∼< 10−8 (J = X,Y, Z) ,

|ceXX + ceY Y − 2ceZZ | ∼< 10−5 , and

|ceTJ + ceJT | ∼< 10−2 (J = X,Y, Z) .(13)

Though detailed calculations have not been performed,
more realistic nuclear models likely give similar-size
bounds to many other parameters, including c̃Q for the
neutron and (g̃q̄ − g̃q)-associated coefficients for both the
proton and neutron.

Nearly all of these bounds are new — only cXX+cY Y −
2cZZ for the electron has been previously bounded. They
complement recent bounds on certain electron cMN com-
binations [16], spin-torsion and Penning-trap bounds on
other electron coefficients [26], and dipole-type bounds
on proton and electron coefficients derived from clock-
comparison experiments [17, 27].

This work neglects effects from the photon sector of
the SME. However, such effects [7] can be readily ap-
pended to this analysis. Under the assumptions and no-
tation of this work, photon contributions to the key ex-
perimental quantity would appear as an additional term
4ββ⊕sηsξcΩT κ̃tr in Eq. (12). This leads to the bound on
κ̃tr quoted in the earlier work.
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V. FUTURE EXPERIMENTS

There are two broad classes of changes that could be
made to future Doppler-effect experiments to increase the
set of coefficient sensitivity while using the same atomic
species. The first involves study of a different set of tran-
sitions, while the second involves the time dependence of
frequency measurements.
First, an experiment studying a different set of transi-

tions could be sensitive to several dipole-type coefficient
differences that appear in Eq. (4). The different transi-
tion set could be a reduced subset of ∆mF = 0 transi-
tions, or a set of ∆mF 6= 0 transitions. Calculations like
those that appear in Sec. IV of the current work may
be used to determine the set of coefficient differences to
which a given experiment is sensitive. For example, the
standard clock transition mF = 0 → mF

′ = 0 is inca-
pable of measuring any Lorentz-violation effects.
Changes of the first type would induce the relevance

of more rows of Tables II and III. Without incorporat-
ing the time-dependence change described below, only
those associated with time-constant contributions would
appear. This could lead to sensitivity to all Sun-frame
combinations except g̃TZ , g̃−, g̃c, and d̃− from Tables II
and III and c̃X , c̃Y , c̃Z , and c̃− from Table I. Sensitivity
to these coefficient combinations requires implementation
of the second change.
Second, timing information could be kept to allow

study of the key experimental quantity as the lab rotates
and accelerates through the Sun frame. This would lead
to sensitivity to the sinusoidal rows of Table I. Combi-
nation of this change together with the first could lead
to sensitivity to the sinusoidal rows of Tables II and III
as well.

VI. SUMMARY

This work describes an analysis of Doppler-shift ex-
periments in the context of Lorentz violation, conducted
within the framework of the Standard-Model Extension.
Included are effects up to second order in the beam
atoms’ speed with respect to the lab, first order in Earth’s
speed with respect to the Sun. and first order in the lab’s
speed with respect to Earth’s rotational axis. The key
experimental quantity is expressed in terms of combi-
nations of nonrotating-Sun-frame Lorentz-violation coef-
ficients, atomic/nuclear expectation values, geometrical
factors, and time.
The most recent Doppler-shift experiment at the Hei-

delberg storage ring is studied in detail. It is found to
yield constraints on several previously unprobed Lorentz-
violation coefficients associated with protons at the level
of 10−11 and 10−8, and coefficients associated with elec-
trons at the level of 10−2. Bounds on many other coeffi-
cients for neutrons and protons would likely result from
more detailed nuclear calculations.
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APPENDIX: LAB-FRAME COEFFICIENT

DIFFERENCES

Below are given the coefficient differences listed in Eq.
(5) in the limits β⊕ → 0, βL → 0, when expressed in
Sun-frame components.

b̃3̄ − b̃3 = cosω⊕T⊕

{
β
[
− cξH̃XT

]
+ β2

[
1

2
sξ b̃X + 1

2
sξg̃DX − 1

2
sξg̃TX

]}

+ sinω⊕T⊕

{
β
[
cξ d̃ZX − cξH̃Y T

]
+ β2

[
1

2
sξ b̃Y + 1

2
sξg̃DY + 1

2
sξg̃TY

]}

+ cos 2ω⊕T⊕

{
β
[
− 1

2
sξd̃XY

]
+ β2

[
1

2
cξg̃TZ

]}

+ sin 2ω⊕T⊕

{
β
[
1

2
sξd̃− + 1

2
sξ b̃T − sξg̃c −

1

2
sξg̃T

]
+ β2

[
− 1

2
cξg̃−

]}

+
{
β
[
− 1

2
sξd̃XY + sξH̃ZT

]
+ β2

[
1

2
cξ b̃Z + 1

2
cξg̃DZ

]}
, (A.1)

d̃3̄ − d̃3 = cosω⊕T⊕

{
β
[
cξd̃Y Z + 1

2
cξg̃XY − cξg̃XZ − 1

2
cξH̃XT

]
+ β2

[
1

2
sξd̃X

]}

+ sinω⊕T⊕

{
β
[
− 1

2
cξ d̃ZX + 1

2
cξg̃YX − cξg̃Y Z − 1

2
cξH̃Y T

]
+ β2

[
1

2
sξd̃Z

]}

+ cos 2ω⊕T⊕

{
β
[
3

4
sξd̃XY + 3

4
sξg̃ZX − 3

4
sξg̃ZY

]}

+ sin 2ω⊕T⊕

{
β
[
− 3

4
sξd̃−

]}

+
{
β
[
− 1

4
sξ d̃XY + 1

4
sξg̃ZX + 1

4
sξg̃ZY + 1

2
sξH̃ZT

]
+ β2

[
1

2
cξd̃Z

]}
, (A.2)
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g̃d̄ − g̃d = cosω⊕T⊕

{
β
[
2cξg̃XY

]
+ β2

[
1

2
sξ b̃X + sξg̃DX − sξg̃TX

]}

+ sinω⊕T⊕

{
β
[
2cξg̃YX

]
+ β2

[
1

2
sξ b̃Y + sξg̃DY + sξg̃TY

]}

+ cos 2ω⊕T⊕

{
β
[
sξg̃ZX − sξg̃ZY

]
+ β2

[
cξg̃TZ

]}

+ sin 2ω⊕T⊕

{
β
[
sξ b̃T − 2sξg̃c − sξg̃T

]
+ β2

[
− cξg̃−

]}

+
{
β
[
− sξg̃ZX − sξ g̃ZY

]
+ β2

[
1

2
cξ b̃Z + cξg̃DZ

]}
, (A.3)

c̃q̄ − c̃q = cosω⊕T⊕

{
β
[
c̃TY

]}
+ sinω⊕T⊕

{
β
[
− c̃TX

]}

+ cos 2ω⊕T⊕

{
β2

[
− 1

2
c̃−

]}
+ sin 2ω⊕T⊕

{
β2

[
− 1

2
c̃Z

]}
+
{
β2

[
1

6
c̃Q

]}
, and (A.4)

g̃q̄ − g̃q = cosω⊕T⊕

{
β
[(

1

2
− 3

2
c2ξ

)
g̃YX +

(
1

2
+ 3

2
c2ξ

)
g̃Y Z

]
+ β2

[
− 3

4
s2ξ g̃TY

]}

+ sinω⊕T⊕

{
β
[(

− 1

2
+ 3

2
c2ξ

)
g̃XY +

(
− 1

2
− 3

2
c2ξ

)
g̃XZ

]
+ β2

[
3

4
s2ξ g̃TX

]}

+ cos 2ω⊕T⊕

{
β
[
3

4
s2ξ b̃T + 3

2
s2ξg̃c +

3

4
s2ξg̃T

]
+ β2

[(
− 3

8
+ 3

8
c2ξ

)
g̃−

]}

+ sin 2ω⊕T⊕

{
β
[
3

4
s2ξg̃ZX − 3

4
s2ξg̃ZY

]
+ β2

[(
− 3

8
+ 3

8
c2ξ

)
g̃TZ

]}

+
{
β
[
− 3

4
s2ξ b̃T + 3

4
s2ξg̃T

]
+ β2

[(
1

8
+ 3

8
c2ξ

)
g̃Q

]}
. (A.5)

[1] H.E. Ives and G.R. Stilwell, J. Opt. Soc. Am. 28, 215
(1938).

[2] G. Saathoff et al., Phys. Rev. Lett. 91, 190403 (2003);
G. Gwinner, in Ref. [3]; Modern Physics Letters A 20,
791 (2005).

[3] See, for example, V.A. Kostelecký, ed., CPT and Lorentz
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(1989); V.A. Kostelecký and R. Potting, Nucl. Phys. B
359, 545 (1991).
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55, 6760 (1997); 58, 116002 (1998).
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Bluhm and V.A. Kostelecký, Phys. Rev. D 71, 065008
(2005).
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