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Abstract

Among the various “rare” semi-leptonic decays of B-mesons the B → K∗ℓ+ℓ−

mode is of special interest. This is because it has the highest branching ratio

among all the semi-leptonic B decays within the SM. This channel also provides

us with a very large number of possible observables, such as the Forward Back-

ward (FB) asymmetry, lepton polarization asymmetry etc. Of special interest is

the zero which the FB asymmetry has in this decay mode. In this work we have

studied this zero in the most general model independent framework.
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1 Introduction

The prospect of not just observing, but quantitatively measuring physics beyond the Stan-

dard Model (SM) at the “B-factories” (BELLE, BaBar, LHCb etc.) in a matter of years,

if not months, has elicited much excitement in the high-energy phenomenology community.

The primary reason for this is that data from these “factories” is already streaming in, whilst

other projects capable of probing the frontiers of known physics may not even commence

for several years! With such a valuable resource at hand it is incumbent upon us to propose

the most experimentally viable tests of any possible observables of new physics effects. To

a large extent this has, since the experimental observation of the inclusive and exclusive

B → Xsγ and B → K∗γ decays [1], been done.

Note that the reason for the flavour-changing neutral current (FCNC) transitions of

b → s(d) (which occur only through loops in the SM) having been extensively studied is

that these FCNC decays provide an extremely sensitive test of the gauge structure of the

SM at loop level whilst simultaneously constituting a very suitable tool for probing new

physics beyond the SM. In this quest semi-leptonic processes have a very crucial role to

play, as they are theoretically and experimentally very clean. Furthermore recall that new

physics can manifest in rare decays through the Wilson coefficients, which can take values

distinctly different from their SM counterparts, or through possible new structures in the

effective Hamiltonian.

However, as the number of possible observables for the initially observed FCNC processes

based on the quark level transition b → sγ is reasonably small, the study, both experimental

and theoretical, of processes admitting many observables was required. This led to a focus

on observables related to the quark level process b → s(d)ℓ+ℓ−, which the phenomenological

community has been studying for quite some time now. Many observables, such as the FB

asymmetry, single and double lepton polarization asymmetries associated with the final state

leptons, have been studied. Of the decays based on the b → s(d)ℓ+ℓ− transition we know

that, theoretically, inclusive decays are easier to calculate, however they are far more difficult

to observe than exclusive decays. On the other hand theoretical predictions of exclusive

decays are model dependent. This model dependence is due to the fact that in calculating the

branching ratios and other observables for exclusive decays we face the problem of computing

the matrix element of the effective Hamiltonian responsible for the exclusive decay between

the initial and final hadron states. This problem is related to the non-perturbative sector

of QCD and can be solved only by means of a non-perturbative approach. These matrix

elements have been investigated in the framework of different approaches, such as chiral

theory, relativistic models using the light-front formalism, effective heavy quark theory and

light cone QCD sum rules etc. [2–5].

Many inclusive B → Xs,dℓ
+ℓ− [6, 7] and exclusive B → K(K∗)ℓ+ℓ− [2, 8, 9], B → ℓ+ℓ−γ

[10], B → ℓ+ℓ− [11] processes based on b → s(d)ℓ+ℓ− have been studied in the literature.

But among all these, the processes B → V ℓ+ℓ− are of special interest (where V represents
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a vector particle). For this reason many of its observables, such as the FB asymmetry and

the lepton polarization asymmetries, have been extensively studied [12]. The FB asymmetry

is one of the most important observables in this channel as various B-factories have stated

that they shall soon release data for this asymmetry. The study of the zero of the FB

asymmetry in B → V ℓ+ℓ− processes could also be a very useful probe of the SM. Note that

the importance of the vanishing of the FB asymmetry in B → V ℓ+ℓ− was first discussed

by Burdman [13] and then in further detail in [12] along with elaborations in the technical

reports of various collaborations [14]. In these papers it was emphasized that within the SM

the zero of the FB asymmetry is largely free from hadronic uncertainties and hence could

be a very useful test. This feature is present in B → (K∗, φ, ρ)ℓ+ℓ−. But amongst all these

modes B → K∗ℓ+ℓ− has the highest SM branching ratio. As such this work will analyze the

zero of this asymmetry in the context of B → K∗ℓ+ℓ− for a completely model independent

framework assuming the most general form of the effective Hamiltonian.

It should also be noted that recent results from B-factories are already indicating possible

new physics beyond the SM. The observations regarding B → ππ and B → πK have already

presented a challenge for theory. Although B → ππ can be accommodated within the SM

a problem arises as one tries to fix the B → πK process from the B → ππ one using

SU(3) flavour symmetry. This problem was first pointed out by Buras et al. [15]. Following

this a resolution to this puzzle was also given by many groups [16]. It was proposed that

the introduction of a large phenomenological weak phase in the electroweak penguins could

resolve this puzzle. The presence of a weak phase in the electroweak penguins has already

been studied extensively in many earlier works [17–20]. Results from BELLE and BaBar

regarding CP asymmetries in B → ηKS, B → η′KS, B → φKS are also hinting at the

presence of some new physics. There have been efforts to resolve these discrepancies by

introducing new set of scalar and pseudo-scalar operators with complex mass insertions.

These have all been incorporated into our analysis as we try to explore these scenarios,

especially as to how the presence of weak phases in the electroweak sector and scalar sectors

effect the position of the zero of the FB asymmetry in this decay mode.

As such, the present paper shall be organized along the following lines: In section 2 we

give the most general form of the effective Hamiltonian and present the analytic results of

the branching ratio and FB asymmetry. We shall then conclude our study in section 3 with

a presentation of our numerical analysis along with our discussion of these results, summing

up with some concluding remarks.

2 The Effective Hamiltonian

The processes B → K∗ℓ+ℓ− are based on the quark level process b → sℓ+ℓ− . The most

general model independent (MI) effective Hamiltonian for this quark level transition can be
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written as;

Heff =
( αG√

2π

)

VtsVtb
∗

[

CSL (s̄iσµν
qν

q2
Lb) (ℓ̄γµℓ) + CBR (s̄iσµν

qν

q2
Rb) (ℓ̄γµℓ)

+ Ctot
LL (s̄LγµbL) (ℓ̄Lγ

µℓL) + Ctot
LR (s̄LγµbL) (ℓ̄Rγ

µℓR) + CRL(s̄RγµbR) (ℓ̄Lγ
µℓL)

+ CRR(s̄RγµbR)(ℓ̄Rγ
µℓR) + CLRLR(s̄LbR)(ℓ̄LℓR) + CLRRL (s̄LbR) (ℓ̄RℓL)

+ CRLRL(s̄RbL) (ℓ̄RℓL) + CRLLR(s̄RbL) (ℓ̄LℓR) + CT (s̄σµνb) (ℓ̄σ
µνℓ)

+ iCTEǫ
µναβ(s̄σµνb) (ℓ̄σαβℓ)

]

, (1)

where L = (1 − γ5)/2 and R = (1 + γ5)/2. CX denotes the coefficients of the various four-

Fermi interactions, where the first four of these are already present in the SM. The first two

can be written in terms of the “standard” SM Wilson coefficients as;

CSL = − 2ms C
eff
7 ,

CBR = − 2mb C
eff
7 .

Of the other coefficients two of these, namely CLL and CLR, are also present in the SM.

These can be written in terms of the SM Wilson coefficients as;

Ctot
LL = Ceff

9 − C10 + CLL,

Ctot
LR = Ceff

9 + C10 + CLR.

Ctot
LL and Ctot

LR are the sum of the contributions from the SM and any possible new physics.

CLL and CLR are the respective new physics contributions to Ctot
LL and Ctot

LR.

As we are interested in the process B → K∗ℓ+ℓ− the observables for this processes can

be calculated from the effective Hamiltonian given in eqn(1). For this we also require the

form factors for the B → K∗ transition. The definition of the B → K∗ form factors which

we will use are given in reference [2];

〈K∗(pK∗, ǫ)|s̄γµ(1± γ5)b|B(pB)〉 = −ǫµνλσǫ
∗νpλK∗qσ

2V (q2)

(mB +mK∗)
± iǫ∗µ(mB +mK∗)

×A1(q
2) ∓ i(pB + pK∗)µ(ǫ

∗q)
A2(q

2)

(mB +mK∗)

∓ iqµ
2mK∗

q2
(ǫ∗q)

[

A3(q
2)− A0(q

2)
]

, (2)

〈K∗(pK∗, ǫ)|s̄σµνb|B(pB)〉 = iǫµνλσ

{

− 2T1(q
2)ǫ∗λ(pB + pK∗)σ +

2(m2
B −m2

K∗)

q2

×
(

T1(q
2)− T2(q

2)
)

ǫ∗λqσ − 4

q2

(

T1(q
2)− T2(q

2)

3



− q2

(m2
B −m2

K∗)
T3(q

2)
)

(ǫ∗q)pλK∗qσ
}

, (3)

〈K∗(pK∗, ǫ)|s̄iσµνq
ν(1± γ5)b|B(pB)〉 = 4ǫµνλσǫ

∗νpλK∗qσ T1(q
2)

±2i
{

ǫ∗µ(m
2

B −m2

K∗)− (pB + pK∗)µ(ǫ
∗q)

}

T2(q
2)

±2i(ǫ∗q)
{

qµ −
(pB + pK∗)µq

2

(m2
B −m2

K∗)

}

T3(q
2), (4)

〈K∗(pK∗, ǫ)|s̄(1± γ5)b|B(pB)〉 =
1

mb

[

∓ 2imK∗(ǫ∗q)A0(q
2)
]

. (5)

Using the above definition of the form factors we arrive at the matrix element for B →
K∗ℓ+ℓ− as;

M =
αG

4
√
2π

VtsVtb
∗

[

(ℓ̄γµℓ)
{

− 2Aǫµνλσǫ
∗νpλK∗qσ − iBǫ∗µ + iC(ǫ∗q)(pB + pK∗)µ + iD(ǫ∗q)qµ

}

+ (ℓ̄γµγ5ℓ)
{

− 2Eǫµνλσǫ
∗νpλK∗qσ − iF ǫ∗µ + iG(ǫ∗q)(pB + pK∗)µ + iH(ǫ∗q)qµ

}

+ iQ(ℓ̄ℓ) (ǫ∗q) + iN (ℓ̄γ5ℓ) (ǫ
∗q)

+16CTE (ℓ̄σµνℓ)
{

− 2T1ǫ
∗µ(pB + pK∗)ν +B6ǫ

∗µqν − B7(ǫ
∗q)pµK∗qν

}

+ 4iCT ǫµνλσ (ℓ̄σµνℓ)
{

−2T1ǫ
∗λ(pB + pK∗)σ +B6ǫ

∗λqσ − B7(ǫ
∗q)pλK∗qσ

}

]

, (6)

where

A = (Ctot
LL + Ctot

LR + CRL + CRR)
V

(mB +mK∗)
− 4(CBR + CSL)

T1

q2
,

B = (Ctot
LL + Ctot

LR − CRL − CRR)(mB +mK∗)A1 − 4(CBR − CSL)(m
2

B −m2

K∗)
T2

q2
,

C = (Ctot
LL + Ctot

LR − CRL − CRR)
A2

(mB +mK∗)
− 4(CBR − CSL)

1

q2

[

T2 +
q2

(m2
B −m2

K∗)
T3

]

,

D = 2(Ctot
LL + Ctot

LR − CRL − CRR)mK∗

A3 −A0

q2
+ 4(CBR − CSL)

T3

q2
,

E = (−Ctot
LL + Ctot

LR − CRL + CRR)
V

(mB +mK∗)
,

F = (−Ctot
LL + Ctot

LR + CRL − CRR)(mB +mK∗)A1,

G = (−Ctot
LL + Ctot

LR + CRL − CRR)
A2

(mB +mK∗)
,

H = 2(−Ctot
LL + Ctot

LR + CRL − CRR)mK∗

A3 −A0

q2
,

Q = −2(CLRRL + CLRLR − CRLRL − CRLLR)
mK∗

mb
A0,
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N = −2(CLRLR + CRLRL − CRLLR − CLRRL)
mK∗

mb

A0,

B6 = 2(m2

B −m2

K∗)
T1 − T2

q2
,

B7 =
4

q2

(

T1 − T2 −
q2

(m2
B −m2

K∗)
T3

)

. (7)

The differential decay rate can now be evaluated from the matrix element given in eqn(6)

as;
dΓ

ds
=

G2α2

214π5
|VtbV

∗
ts|2vλ1/2mB∆, (8)

with

∆ =
8

3
λm4

B ŝ
{

(3− v2)|A|2 + 2v2|E|2
}

+
1

3r̂
(3− v2)

{

(λ+ 12r̂ŝ)|B|2 + λ2m4

B|C|2
}

+
1

3r̂

{

λ(3− v2) + 24r̂ŝv2
}

|F |2 + λm4
B

3r̂

{

λ(3− v2)− 3ŝ(ŝ− 2r̂ − 2)(1− v2)
}

|G|2

+
1

r̂
λm2

B ŝ
{

ŝm2

B(1− v2)|H|2 + |N |2 + v2|Q|2
}

− 2

3

λm2
B

r̂

{

(1− r̂ − ŝ)(3− v2)Re(BC∗)

+

(

(1− r̂ − ŝ)(3− v2) +
9

2
ŝ(1− v2)

)

Re(FG∗) + 3ŝ(1− v2)
(

Re(FH∗)−m2

B(1− r̂)

×Re(GH∗)
)}

+
4λmB

r̂
m̂ℓ

{

m2

B ((1− r̂)Re(GN∗) + ŝRe(HN∗))− Re(FN∗)
}

+512λm3

Bm̂ℓT1Re(CTA
∗) +

32mB

r̂
m̂ℓ

{

2(λ+ 12r̂ŝ)B6 − λm2

B(1− r̂ − ŝ)B7

−4(λ+ 12r̂(1− r̂))T1

}

Re(CTEB
∗) +

32

r̂
λm3

Bm̂ℓ

{

− 2(1− r̂ − ŝ)B6 + λm2

BB7

+4(1 + 3r̂ − ŝ)T1

}

Re(CTEC
∗) +

16

3r̂
m2

B ŝ
{

λ2m4

BB
2

7 + 4(λ+ 12r̂ŝ)B2

6

−4λm2

B(1− r̂ − ŝ)B6B7 − 16 (λ+ 12r̂(1− r̂))B6T1 + 8λm2

B(1 + 3r̂ − ŝ)B7T1

}

×
(

v2|CT |2 + 4(3− 2v2)|CTE|2
)

+
256

3r̂
m2

B|T1|2|CT |2
{

ŝv2
(

λ− 12r̂(ŝ− 2r̂ − 2)
)

+8λr̂(3− v2)
}

+
1024

3r̂
m2

B|T1|2|CTE|2
{

12λr̂ + (3− v2)
(

λ(ŝ− 8r̂) + 12r̂(1− r̂2)
)}

,(9)

where λ = 1 + r̂2 + ŝ2 − 2(r̂ + ŝ) − 2r̂ŝ, v =

√

1− 4m̂2
ℓ

ŝ
, r̂ = m2

K∗/m2

B, m̂ℓ = mℓ/mB and

ŝ = q2/m2

B.
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The forward backward asymmetry can then be defined as;

AFB =

∫

1

0

d cos θ
dΓ

dsd cos θ
−
∫

0

−1

d cos θ
dΓ

dsd cos θ
∫

1

0

d cos θ
dΓ

dsd cos θ
+

∫

0

−1

d cos θ
dΓ

dsd cos θ

, (10)

which in the present case shall give us;

AFB =
v
√
λ

∆

[

− 8m2

Bŝ
{

Re(B∗E) +Re(A∗F )
}

+
2

r̂
mBm̂ℓ

{

(r̂ + ŝ− 1)Re(B∗Q)

+m2

BλRe(C∗Q)
}

− 8

r̂
m̂ℓmB

{(

2B6(r̂ + ŝ− 1) +B7m
2

Bλ+ 4(1 + 11r̂ − ŝ)T1

)

×Re(C∗
TF ) +m2

B

(

2B6(r̂ + ŝ− 1) +B7m
2

Bλ+ 4(1 + 3r̂ − ŝ)T1

)(

(r̂ − 1)Re(C∗
TG)

−ŝRe(C∗
TH)

)}

+
4

r̂
m2

B ŝ
{

2B6(r̂ + ŝ− 1) +B7m
2

Bλ+ 4(1 + 3r̂ − ŝ)T1

}

{

2Re(C∗
TEQ) +Re(C∗

TN)
}

− 256m3

Bm̂ℓ

{

B6ŝ+ 2(r̂ − 1)T1

}

Re(C∗
TEE)

]

. (11)

3 Numerical results and discussion

Using the explicit expression of the FB asymmetry given in the previous section we shall

now present our numerical analysis of the dependence of the zeroes of the FB asymmetry on

the various Wilson coefficients. In our numerical analysis we have used the input parameters

listed in Appendix B. Furthermore, we have fixed the value of C7 from the results of the

b → sγ observation. Note that these results only fix the magnitude of C7 and not the sign, as

such we have chosen the SM predicted value of C7 = −0.313. Of the remaining SM Wilsons

we have chosen the value of C10 = −4.56. And for Ceff
9 (in the SM), which has both short

distance and long-distance contributions, we have followed the prescription given in Krüger

and Sehgal [6]. Note that the long-distance contributions correspond to the intermediate cc̄

resonances.

In our effective Hamiltonian, given by eqn(1), there are 12 coefficients. As pointed out

earlier, two of these are related to C7 by the relation

CSL = −2mbC
eff
7 , CBR = −2msC

eff
7 .

Similarly Ctot
LL and Ctot

LR can be related to the SM coefficients Ceff
9 and C10. That is, C

tot
LL =

Ceff
9 − C10 + CLL and Ctot

LR = Ceff
9 + C10 + CLR. Note that as the dependence of the zero

of the FB asymmetry on C7 has already been pointed out in earlier works [13]. We have

taken the values of CSL and CBR as fixed by the experimentally measured value of C7 chosen

above. This leaves the ten remaining coefficients as free parameters.
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Figure 1: The FB asymmetry as a function of the dileptonic invariant mass (s) for various

values of the Wilson coefficients. In the above plots we have chosen |CLL| = |CLR| = |CRL| =
|CRR| = 3 and CT = CTE = 1.5.

As pointed out in section 1, there have been several theoretical proposals indicating that

some of the new results of the B-factories are pointing towards the presence of weak phases

in the electroweak and scalar sectors. The presence of these phases in the electroweak sector

implies the possibility of CLL, CLR, CRL and CRR as being, in general, complex. Similarly

the possibility of the presence of a phase in the scalar sector implies CLRRL, CLRLR, CRLLR

and CRLRL as also being, in general, complex. To incorporate these possibilities in our

simulations we have parameterized these coefficients as;

CX = |CX |eiφX (12)

where X can be LL, LR, RL, RR, LRRL, LRLR, RLRL and RLLR.

The form factor definitions for B → K∗ which we have used are given in appendix A.

Finally, in our numerical analysis we have considered only the final state lepton as being

the muon (µ). Our reason for choosing this is due to the extreme difficulty in detecting an

electron in the final state and that the branching ratio of B → K∗ℓ+ℓ− becomes small within

the SM for τ in the final state.

In our first set of graphs, given in Figure 1, we have plotted the FB asymmetry as a

function of the dilepton invariant mass for various values of the Wilsons. Our SM value of

the zero of the FB asymmetry is s = 4.94. As can be seen from Figure 1 the value of the

zero can be substantially changed for different choices of the Wilsons. We shall demonstrate

this feature further later in this section.

In Figure 2 we have plotted the zero of the FB asymmetry as a function of real-valued

Wilson coefficients. As can be observed from this figure the zero can show substantial

modifications, especially for changes in the tensorial operators, which gives the greatest
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Figure 2: The Zeroes of the FB asymmetry as a function of the Wilsons. The Wilsons here

are taken to be real.

change. But as we shall soon see, substantial modifications to the FB asymmetry zeroes can

arise from the other Wilsons when we include the possible new phases.

The dependence of the zero on both the magnitude and the phase of the Wilsons was

next explored. Note that although all the Wilsons show changes in the zero we have only

shown the results for CLL and CLR, as these two Wilsons show the greatest variation. As

such, in Figure 3 we have shown variation for CLL and in Figure 4 the dependence of the

zero on the magnitude and phase of CLR. From these figures we can not only observe the

dependence of the zero on the magnitude, which further demonstrates the observations of

Figure 2, but also how it can crucially depend on the phase of the Wilson. This point can

be further clarified in next set of graphs.

In Figure 5 we have plotted the zero of the FB asymmetry as a function of the phases

of the Wilsons for different magnitudes. This figure emphasizes how strongly the zero of

the FB asymmetry depends on the phase. The variation from the SM result, in the case

of CLL and CLR (which gives us the greatest variation) can change the asymmetry from 4

to 6.5, a variation of more than 60%. In Figure 6 we have plotted the zero as a function

of the phase of CLRLR and CLRRL. Similar graphs have been plotted in Figure 7 for CRLRL

and CRLLR. As can be seen from these two figures, coefficients corresponding to the scalar

and electroweak operators do indeed demonstrate a dependence of the FB asymmetry on

the phase. However, the dependence of the zero in the case of the electroweak operators is

much greater than the scalar operators.

To illustrate our previous point further our final set of graphs, Figures 8, 9 and 10 show

the contour plots of the zeroes of the FB assuming the presence of two electroweak operators

now having an additional phase. As can be seen from these graphs the presence of a weak
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Figure 3: The Zero of the FB asymmetry as a function of the magnitude and phase of CLL.
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Figure 4: The Zero of the FB asymmetry as a function of the magnitude and phase of CLR.

phase in the electroweak sector can give substantial deviations in the zero of FB asymmetry.

At this point we should like point out that in order to resolve the B → ππ and B →
πK puzzle Buras et al. [15] proposed the presence of a phenomenological weak phase in

the electroweak penguins. This phase in effect modifies the C10 Wilson of the SM. This

modification not only increases the magnitude of C10, by more than two, but also adds

a new large phase; making the Wilson predominantly imaginary. Note that this kind of

phase will not change the zero of the FB asymmetry, as within the SM the zero of the FB

asymmetry does not depend on C10. However, in general, the presence of extra phases in

the electroweak sector will substantially modify the zero of the FB asymmetry.

From our analysis we have demonstrated that the zero of the FB asymmetry will not

only serve as a valuable test of the SM, as emphasized in the earlier works [12, 13], but will
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Figure 5: Plot of the zero of the FB asymmetry with the phases of the Wilsons (for different

magnitudes of these Wilsons). The different panels correspond to (a) CLL (b) CLR (c) CRL

and (d) CRR.

be a useful probe of any possible new physics.
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A Form Factors

The form factor definitions which we have used are as given in Ali. et al. [2];

F (ŝ) = F (0)exp
(

c1ŝ+ c2ŝ
2
)

, (13)

where the values of c1 and c2 are given in Table 1.

10



 4.85

 4.9

 4.95

 5

 5.05

 5.1

 5.15

 0  60  120  180  240  300  360

s 
(G

eV
2 )

φX

SM
|CX| = 1
|CX| = 2
|CX| = 3

Figure 6: Plots of the zero of the FB asymmetry with the phases of various Wilsons (for

different magnitudes of these Wilsons). In the above figure X = LRLR,LRRL.

A1 A2 A0 V T1 T2 T3

F(0) 0.337 0.282 0.471 0.457 0.379 0.379 0.260

c1 0.602 1.172 1.505 1.482 1.519 0.517 1.129

c2 0.258 0.567 0.710 1.015 1.030 0.426 1.128

Table 1: Form factors for the B → K∗ transition.

B Input parameters

mt = 176 GeV , mc = 1.4 GeV , mµ = 0.105 GeV

mB = 5.26 GeV , mb = 4.8 GeV , sin2θw = 0.23 , α = 1/130 , mK∗ = 0.892 GeV.
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