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Abstract

We present a code to compute the relic density of dark matter in the Next-to-
Minimal Supersymmetric Standard Model (NMSSM). Dominant corrections to the
Higgs masses are calculated with nmhdecay as well as theoretical and collider con-
straints. All neutralino annihilation and coannihilation processes are then computed
with an extended version of micrOMEGAs, taking into acount higher order corrections
to Higgs vertices. We explore the parameter space of the NMSSM and consider in
particular the case of a bino LSP, of a mixed bino-higgsino LSP and of a singlino LSP.
As compared to the MSSM, neutralino annihilation is often more efficient as it can take
place via (additional) Higgs resonances as well as annihilation into light Higgs states.
Models with a large singlino component can be compatible with WMAP constraints.

1 Introduction

In any supersymmetric (susy) extension of the Standard Model (SM) with conserved R-
parity, the lightest susy particle (LSP) constitutes a good candidate for cold dark matter.
Recent measurements fromWMAP [1] have constrained the value for the relic density of dark
matter within 10% (.0945 < Ωh2 < .1287 at 2σ). The forthcoming PLANCK experiment
should reduce this interval down to 2%. It is therefore of the utmost importance to calculate
the relic density as accurately as possible in any given susy model, in order to match this
experimental accuracy. This has been done in the context of the Minimal Supersymmetric
Standard Model (MSSM), with the publicly available program micrOMEGAs [2]. This code
computes the relic density of the lightest neutralino LSP by evaluating the thermally av-
eraged cross section for its annihilation as well as, when necessary, for its coannihilation
with other susy particles. It then solves the density evolution equation numerically, without
using the freeze-out approximation.

The impact of the WMAP constraints on the parameter space of the MSSM has been
widely studied [3]. In the mSUGRA inspired version of the MSSM, one needs rather special
conditions among parameters to have a large enough annihilation cross-section and meet the
constraints of WMAP. This is because the LSP is usually a bino and the main mechanism
for annihilation is into fermion pairs and requires the presence of a light slepton. Given the
direct constraints on light sleptons and on light neutralinos as well as on the light Higgs
mass, this possibility is valid into a small corner of parameter space. Within mSUGRA
models, to satisfy the WMAP constraint one must then appeal to specific processes such as
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coannihilation processes, rapid annihilation through Higgs exchange or some non negligible
higgsino component of the neutralino LSP. The latter condition is satisfied in the so-called
focus point region of mSUGRA models. On the other hand, in the general MSSM with
no assumption on GUT scale physic and free parameters at the electroweak (EW) scale, it
is much easier to satisfy the upper bound on relic density from WMAP. All models with
a mixed bino/higgsino or mixed bino/wino LSP annihilate much more efficiently and this
even for heavy sfermions. In fact the annihilation is so efficient that the relic density often
lies below the WMAP range, thus implying some additional dark matter component. Large
higgsino component of the neutralino LSP means enhanced couplings to the Z boson and
to the pseudo-scalar Higgs boson A, thus favouring annihilation channels into fermion pairs.
Large wino component means more efficient couplings to gauge bosons favouring annihilation
channels into W pairs. Furthermore coannihilation channels with a heavier neutralino and/or
chargino are also enhanced for either higgsino or wino-like LSP’s. In the limit where all
sfermions are heavy the important parameters that enter the computation are those of the
neutralino sector M1,M2, µ, tanβ as well as the pseudo-scalar Higgs mass mA. The trilinear
couplings A

f̃
can play a role for the relic density as they influence the mass of the lightest

Higgs.
It is well known, however, that the MSSM faces a naturalness problem – the so-called µ

problem [4] – arising from the presence of a susy conserving mass term for the Higgs fields in

the superpotential, µĤuĤd. The only natural values for the µ parameter are either zero or the
Planck scale. The first is experimentally excluded while the second reintroduces the hierarchy
problem. The Next-to-Minimal Supersymmetric Standard Model (NMSSM) [5] provides an

elegant solution to the µ problem via the introduction of a gauge singlet superfield Ŝ in
the Higgs sector. Assuming the simplest possible scale invariant form of the superpotential,
which contains the dimensionless λŜĤuĤd coupling, the scalar component S of the singlet
acquires naturally a vacuum expectation value (vev) of the order of the susy breaking scale,
giving rise to an effective µ ≡ λ〈S〉 of order the EW scale. The NMSSM is the simplest
susy extension of the SM in which the EW scale originates from the susy breaking scale
only. Another nice feature of the NMSSM is that the fine tuning problem originating from
the non-observation of a neutral Higgs boson at LEP, is less severe than in the MSSM [6]. A
possible cosmological domain wall problem [7] can be avoided by introducing suitable non-
renormalizable operators [8] that do not generate dangerously large singlet tadpole diagrams
[9]. In addition to the MSSM fields, the NMSSM contains an extra scalar and pseudo-scalar
neutral Higgs bosons, as well as an additional neutralino, the singlino. The phenomenology
of the model can be markedly different from the MSSM [10]. The upper bound on the mass
of the lightest Higgs state is larger than in the MSSM, up to 180 GeV [11]. Moreover, a very
light Higgs boson (as light as a few GeV) is not experimentally excluded [12]. Similarly, a
very light neutralino with a large singlino component may have escaped LEP searches [13].
All these properties could impact significantly the relic density computation in the NMSSM.

Up to now there has been only a few studies of the relic density of dark matter in the
NMSSM [14], although a detailed analysis of dark matter direct detection in this model was
recently carried out [15]. In this paper we present a code that calculates the relic density
of dark matter in the NMSSM. This code provides an interface between nmhdecay and
micrOMEGAs. The FORTRAN code nmhdecay allows a precise calculation of the particle
spectrum in the NMSSM, as well as a complete check of all the available experimental con-
straints from LEP [16]. The parameters are then fed into a new version micrOMEGAs extended
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to the NMSSM, which calculates all relevant cross-sections for neutralino annihilations and
coannihilations and computes the relic density.

The paper is organized as follows: we first describe the model, summarize the main
features of nmhdecay and discuss the implementation of the NMSSM into CompHEP/CalcHEP
and micrOMEGAs. In section 3 we give results for typical case studies. Conclusions are given
in section 4.

2 Overview of the NMSSM and nmhdecay

Extending the calculation of the lightest neutralino relic density from the MSSM to the
NMSSM, requires first to compute the neutralino as well as the Higgs boson masses and
mixings in this model. To achieve this task, we used the FORTRAN program nmhde-

cay [16], which conventions we will review now. We then discuss the implementation of
the model into CompHEP/CalcHEP and micrOMEGAs, as well as the interface between both
codes. We finally give a summary of the experimental and theoretical constraints taken into
account.

2.1 General Set Up

In addition to the standard MSSM Yukawa couplings for quarks and leptons, the NMSSM
superpotential contains two additional terms involving the Higgs doublet superfields, Ĥu and
Ĥd, and the gauge singlet Ŝ

W = λŜĤuĤd +
1

3
κŜ3 . (2.1)

As mentioned in the introduction, the superpotential in eq. (2.1) is scale invariant, and
the EW scale appears only through the soft SUSY breaking terms in Lsoft, which in our
conventions are given by

−Lsoft = m2
Hu
|Hu|2 +m2

Hd
|Hd|2 +m2

S|S|2

+(λAλHuHdS +
1

3
κAκS

3 + h.c.)

−1

2
(M2λ2λ2 +M1λ1λ1 + h.c.) . (2.2)

We denote the Higgs vevs vu, vd and s such that

H0
u = vu +

HuR + iHuI√
2

, H0
d = vd +

HdR + iHdI√
2

, S = s+
SR + iSI√

2
. (2.3)

One can derive three minimization conditions for the Higgs vevs and use them to re-express
the soft breaking Higgs masses in terms of λ, κ, Aλ, Aκ, vu, vd and s. It is also convenient
to define the quantities

µ = λs , ν = κs , tanβ =
vu
vd

and v2 = v2u + v2d . (2.4)
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2.2 Higgs Sector

In the basis (HuR, HdR, SR) one obtains the following mass matrix for the neutral scalar
Higgs states:

M2
S,11 = M2

Z sin2β + µ cotβ(Aλ + ν) ,

M2
S,22 = M2

Z cos2β + µ tanβ(Aλ + ν) ,

M2
S,12 =

(
λ2v2 − M2

Z

2

)
sin2β − µ(Aλ + ν) ,

M2
S,33 =

λ2v2Aλ sin2β

2µ
+ ν(Aκ + 4ν) ,

M2
S,13 = λv(2µ sinβ − (Aλ + 2ν) cosβ) ,

M2
S,23 = λv(2µ cosβ − (Aλ + 2ν) sinβ) . (2.5)

After diagonalization by an orthogonal 3 × 3 matrix Sij one obtains 3 neutral scalars hi

(ordered in mass). Similarly, in the basis (HuI , HdI , SI), the neutral pseudo-scalar mass
matrix reads

M2
P,11 = µ cotβ(Aλ + ν) ,

M2
P,22 = µ tanβ(Aλ + ν) ,

M2
P,12 = µ(Aλ + ν) ,

M2
P,33 =

λ2v2 sin2β

2µ
(Aλ + 4ν)− 3Aκν ,

M2
P,13 = λv cosβ(Aλ − 2ν) ,

M2
P,23 = λv sinβ(Aλ − 2ν) . (2.6)

Eliminating the Goldstone mode by the rotation:




HuI

HdI

SI


 =




cosβ − sinβ 0
sinβ cosβ 0
0 0 1







A
G
SI


 (2.7)

the 2× 2 pseudo-scalar mass matrix in the basis (A, SI) has the following matrix elements

M′2

P,11 =
2µ

sin2β
(Aλ + ν) ,

M′2

P,22 =
λ2v2 sin2β

2µ
(Aλ + 4ν)− 3Aκν ,

M′2

P,12 = λv(Aλ − 2ν) . (2.8)

It can be diagonalized by an orthogonal 2 × 2 matrix P ′

ij , yielding 2 neutral pseudo-scalars
ai (ordered in mass). Finally, the charged Higgs mass is given by

m2
h± =

2µ

sin2β
(Aλ + ν) +M2

W − λ2v2 . (2.9)
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In the MSSM limit (λ → 0, µ fixed) one obtains 2 quasi pure singlet states with masses

m2
S = ν(Aκ + 4ν) , m2

P = −3Aκν . (2.10)

In the doublet sector, one can define

m2
A = M′2

P,11 =
2µ

sin2β
(Aλ + ν) . (2.11)

In the limit mA ≫ MZ , the masses of one scalar, one pseudo-scalar and the charged Higgs
states are ≈ mA. The mass of the lightest scalar Higgs is bounded by

m2
h1

≤ M2
Z cos22β + λ2v2 sin22β . (2.12)

In order to calculate the relic density, one needs the Feynman rules for triple Higgs
interactions, in case the LSP annihilates into a Higgs pair through s-channel Higgs boson
exchange. We give here the coupling of a non-singlet scalar hi to 2 quasi pure singlet pseudo-
scalars P :

ghiPP =
√
2λ2v (Si1 sinβ + Si2 cosβ) +

√
2λκv (Si2 sinβ + Si1 cosβ) . (2.13)

The complete formulae for the triple Higgs interactions can be found in ref. [16].

2.3 Neutralino Sector

In the basis (B̃, W̃ , H̃u, H̃d, S̃) the 5× 5 neutralino mass matrix reads

Mχ̃0 =




M1 0 MZ sinθW sinβ −MZ sinθW cosβ 0
0 M2 −MZ cosθW sinβ MZ cosθW cosβ 0

MZ sinθW sinβ −MZ cosθW sinβ 0 −µ −λv cosβ
−MZ sinθW cosβ MZ cosθW cosβ −µ 0 −λv sinβ

0 0 −λv cosβ −λv sinβ 2ν




.

(2.14)

This matrix is diagonalized by a unitary matrix, N . The lightest neutralino LSP can then
be decomposed as

χ̃0
1 = N11B̃ +N12W̃ +N13H̃u +N14H̃d +N15S̃ . (2.15)

Further, we shall talk about the bino, higgsino and singlino fractions of the LSP, which we
define as N2

11, N
2
13 +N2

14 and N2
15 respectively.

In the limit λ → 0, the singlino is a quasi pure state with mass

mS̃ = 2ν . (2.16)

For the relic density calculation, the coupling of the LSP to the Z boson is relevant.
This coupling depends only on the higgsino components of the LSP and is proportional to
N2

13 −N2
14. The couplings of the LSP to the scalar and pseudo-scalar Higgs states will enter

the computation of LSP annihilation through a Higgs resonance or t-channel annihilation
into Higgs pairs. The Feynman rule for the LSP-scalar-scalar vertex reads

gχ̃0
1
χ̃0
1
hi

= g(N12 −N11 tanθW )(Si1N13 − Si2N14)

+
√
2λN15(Si1N14 + Si2N13) +

√
2Si3(λN13N14 − κN2

15) . (2.17)
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The first term is equivalent to the χ̃0
1χ̃

0
1h coupling in the MSSM by replacing S11 = S22 =

cosα and S12 = −S21 = sinα while the last two terms are specific of the NMSSM. The
second term is proportionnal to the the singlino component of the LSP while the last one
is proportionnal to the singlet component of the scalar Higgs. The latter involves either
the higgsino component of the LSP or its singlino component. When the LSP has a very
small singlino component, then as in the MSSM, coupling to the scalars requires a mixed
bino/higgsino LSP. Typically in models with a very light scalar Higgs, this one has an
important singlet component and the coupling to the LSP is given by the last term in
eq. (2.17). Similarly, the LSP coupling to a pseudo-scalar reads

igχ̃0
1
χ̃0
1
ai

= g(N12 −N11 tanθW )(Pi1N13 − Pi2N14)

−
√
2λN15(Pi1N14 + Pi2N13)−

√
2Pi3(λN13N14 − κN2

15) . (2.18)

2.4 Radiative Corrections

Similarly to the MSSM, radiative corrections to the Higgs masses in the NMSSM can be
relatively large [11]. As said earlier, in order to calculate the Higgs spectrum, we used the
program nmhdecay [16]. Let us review now the accuracy with which radiative corrections
are computed for the Higgs sector in this program.

First, we assume that the Yukawa couplings and the soft terms are defined at the susy

breaking scale Q = MSUSY, corresponding to an average of the squark masses. Quantum
fluctuations at higher scales are assumed to be integrated out through the standard renor-
malization group evolution of the parameters from a fundamental scale like MGUT down to
the scale Q. The effective Lagrangian at the scale Q can be assumed to be of the standard
susy form plus soft terms. The full effective action then reads

Γeff =
∑

i

Zi DµHiD
µHi − Veff(Hi) . (2.19)

It is obtained from the effective Lagrangian at the scale Q by adding all quantum effects
arising from fluctuations at scales <∼Q. (Here, Hi denotes all the Higgs fields, Hu, Hd and
S.) These quantum effects can be classified according to powers of the various couplings,
and powers of potentially large logarithms.

Let us start with the corrections to the effective potential. It is somehow more convenient
to classify the corrections to the (lightest) scalar Higgs mass, which is essentially the second
derivative of the effective potential. At tree level, one can rewrite eq. (2.12) as

m2
h1

∼ (g2 + λ2)v2 (2.20)

where g denotes the weak gauge couplings (we do not distinguish between large and small
tanβ here).

The dominant one loop corrections to m2
h1

originate from top, stop, bottom and sbottom
loops. The corresponding corrections δm2

h1
to m2

h1
are of order

δtm
2
h1

∼ h4
tv

2 ln
(
Q2/m2

t

)
, δt̃m

2
h1

∼ h4
t v

2 ,

δbm
2
h1

∼ h4
bv

2 ln
(
Q2/m2

b

)
, δ

b̃
m2

h1
∼ h4

bv
2 . (2.21)
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These contributions to the effective potential are computed exactly, without expanding in
large logarithms or squark mass splittings. We also take into account the one loop pure weak
(leading log) contributions of the order g4 ln(Q2/M2

Z).
The dominant two loop corrections to the effective potential are of the form

δ2m
2
h1

∼ (h6
t + h4

tαs)v
2 ln2

(
Q2/m2

t

)
. (2.22)

Here, only the leading (double) logarithms are included, i.e. we neglect single logs as well
as terms involving bottom and sbottom loops, proportional to powers of hb.

Next, we review the contributions to the wave function normalization constants Zi in
eq. (2.19). If evaluated for external momenta of O(mt) (the order of the Higgs masses), top
and bottom quark loops yield contributions to Zi of the form

Zu ∼ 1 + h2
t ln

(
Q2/m2

t

)
, Zd ∼ 1 + h2

b ln
(
Q2/m2

t

)
. (2.23)

After rescaling the Higgs fields so that their kinetic energies are canonically normalized,
these effects generate contributions δZm

2
h1

which take the form

δZm
2
h1

∼ (g2 + λ2)(h2
t + h2

b) ln
(
Q2/m2

t

)
. (2.24)

Once the Higgs mass matrices are diagonalized, one may find eigenstates with masses
mH substantially larger than mt. The Z factors are then evaluated at external momenta of
O(mH), i.e. at the pole of the propagators. Hence for mH ≫ mt the logarithms ln(Q2/m2

t ) in
eq. (2.23) is replaced by ln(Q2/m2

H), with coefficients depending on Higgs mixing matrices.

2.5 Implementation into CompHEP/CalcHEP and micrOMEGAs

The power of micrOMEGAs [2] is that given a set of parameters in the MSSM or in the NMSSM
it first isolates the LSP before generating, for any given situation including those where
coannihilations occur, all the necessary matrix elements of all relevant processes. Moreover
an automatic procedure for looking for s-channel poles is incorporated into the program
such that a more precise integration routine can be used in the event one is close to a pole.
This way, any kind of annihilation or coannihilation that may be imagined is readily dealt
with. This is possible thanks to the high level of automation based on the computation of
cross sections through CompHEP/CalcHEP [17]. Moreover an important advantage is the ease
with which a complicated model such as the NMSSM with its many fields and parameters,
and therefore an extremely long list of defining Feynman rules, can be implemented in this
package [18]. The gruesome task of having to code all possible vertices that appear in the
NMSSM in order to generate the matrix elements is taken care of by yet another automatic
procedure that only requires to define the Lagrangian in a very compact form, through
multiplets and superfields. This step is performed by LANHEP [19], a program that generates
the complete set of particles and vertices once given a Lagrangian [20]. The modification of
micrOMEGAs to go from the MSSM to the NMSSM is done essentially through a modification
of the model file through LANHEP.

One drawback, though, is that CompHEP/CalcHEP only deals with tree-level matrix ele-
ments while for the NMSSM, some parameters, especially in the Higgs sector (notably the
lightest Higgs mass and coupling to bb̄) receive important radiative corrections. For the code
to be of any use, these important radiative corrections need to be taken into account. They
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are introduced in a gauge invariant and consistent way through an effective Lagrangian ap-
proach. For the case at hand, to parametrize the radiative corrections to the Higgs masses
and couplings, we write a general dimension four CP conserving effective scalar potential
that involves the two Higgs doublets Hu, Hd and the singlet S as

Vrad = λ1(HuH
∗

u)
2/2 + λ2(HdH

∗

d)
2/2 + λ3(HuH

∗

u)(HdH
∗

d)

+ λ4(ǫHuHd)(ǫH
∗

uH
∗

d) + λ5((ǫHuHd)
2 + (ǫH∗

uH
∗

d)
2)/2

+ λs
1(HuH

∗

u)SS
∗ + λs

2(HdH
∗

d)SS
∗ + λs

s(SS
∗)2/2

+ λs
5((ǫHuHd)S

2 + (ǫH∗

uH
∗

d)S
∗2)/2 + λs

p(S
4 + S∗4) . (2.25)

With this effective potential, corrections to both the scalar/pseudo-scalar masses and the
trilinear and the quartic Higgs vertices can be expressed in terms of the ten λ’s. The Higgs
mass matrices eqs. (2.5,2.6) can be rewritten as

M2
S,11 → M2

S,11 + 2λ1 v2 sin2β − λs
5

2
s2 cotβ ,

M2
S,22 → M2

S,22 + 2λ2 v2 cos2β − λs
5

2
s2 tanβ ,

M2
S,12 → M2

S,12 + (λ3 + λ4 + λ5) v
2 sin2β +

λs
5

2
s2 ,

M2
S,33 → M2

S,33 + 2(λs
s + 4λs

p) s
2 ,

M2
S,13 → M2

S,13 + 2λs
1 vs sinβ + λs

5 vs cosβ ,

M2
S,23 → M2

S,23 + 2λs
2 vs cosβ + λs

5 vs sinβ (2.26)

and

M2
P,11 → M2

P,11 − 2λ5 v2 cos2β − λs
5

2
s2 cotβ ,

M2
P,22 → M2

P,22 − 2λ5 v2 sin2β − λs
5

2
s2 tanβ ,

M2
P,12 → M2

P,12 − λ5 v2 sin2β , (2.27)

M2
P,33 → M2

P,33 − λs
5 v2 sin2β − 16λs

p s2 ,

M2
P,13 → M2

P,13 − λs
5 vs cosβ ,

M2
P,23 → M2

P,23 − λs
5 vs sinβ . (2.28)

Finally, the charged Higgs mass eq. (2.9) can be rewritten as

m2
h± → m2

h+ − (λ4 + λ5) v
2 +

λs
5 s2

sin2β
. (2.29)

Starting from the results for the corrected Higgs masses and mixing angles provided by
nmhdecay, we then solve for the λ’s. Having extracted these parameters LANHEP readily
derives the corresponding scalar trilinear and quartic Higgs vertices. This is an extension
of the procedure that was shown in detail in [21]. In the present implementation the full
corrections from nmhdecay to the Higgs masses are included. Consequently the Higgs
self-couplings are effectively corrected at the same leading order. As concerns these self-
couplings, the results differ somehow from those one would obtain from nmhdecay. This is
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due to the fact that, in nmhdecay, only the one loop leading logarithms coming from third
generation quarks/squarks loops are taken into account in the Higgs self couplings. This said
the vertex which receives the largest correction, that is the one involving the lightest scalar
h1h1h1, does not contribute significantly to neutralino pair annihilation. On the other hand,
as we will see next, the h2a1a1 vertex often enters processes of neutralino annhilation. For
these vertices higher order corrections typically do not exceed a few percent when expressed
in terms of corrected masses.

2.6 Parameter Space Handling

At the EW scale, the free parameters in the Higgs sector are (at tree level): λ, κ, m2
Hu

,
m2

Hd
, m2

S, Aλ and Aκ. Using the three minimization conditions of the Higgs potential, one
can eliminate the soft Higgs masses in favour of MZ , tanβ and µ = λs. We thus consider as
independent parameters the following set of variables

λ, κ, tanβ, µ, Aλ, Aκ . (2.30)

The soft terms in the squark and slepton sector (which enter the radiative corrections in the
Higgs sector) are also fixed at the EW scale. Since the gaugino soft masses M1 and M2 enter
the neutralino mass matrix, we will keep them as free parameters in our analysis.

We set all these parameters in the program nmhdecay [16]. For each point in the
parameter space, the program nmhdecay first checks the absence of Landau singularities
for λ, κ, ht and hb below the GUT scale. For mpole

t = 175GeV, this translates into λ < .75,
κ < .65, and 1.7 < tanβ < 54. nmhdecay also checks the absence of an unphysical global
minimum of the scalar potential with vanishing Higgs vevs.

nmhdecay then computes scalar, pseudo-scalar and charged Higgs masses and mixings,
taking into account one and two loop radiative corrections as mentioned in section 2.4, as
well as chargino and neutralino masses and mixings. Finally, all available experimental
constraints from LEP are checked:
1) In the neutralino sector, we check that the lightest neutralino does not contribute too
much to the invisible Z width (Γ(Z → χ̃0

1χ̃
0
1) < 1.76 MeV if mχ̃0

1
< MZ/2, and that

σ(e+e− → χ̃0
1χ̃

0
i ) < 10−2 pb if mχ̃0

1
+mχ̃0

i
< 209 GeV (i > 1) and σ(e+e− → χ̃0

i χ̃
0
j) < 10−1 pb

if mχ̃0
i
+mχ̃0

j
< 209 GeV (i, j > 1). In the chargino sector, we check that the lightest chargino

is not too light (mχ̃±

1
< 103.5 GeV).

2) In the charged Higgs sector, we impose mh± > 78.6 GeV.
3) In the neutral Higgs sector, we check the constraints on the production rates (reduced
couplings) × branching ratios versus the masses, for all of the CP-even states h and CP-odd
states a, in all the channels studied at LEP (cf ref. [16] for details).

For points which violate either a theoretical constraint (Landau Pole or unphysical global
minimum) or an experimental constraint, a warning is issued by nmhdecay. The Higgs
masses and mixings calculated in nmhdecay are then fed into micrOMEGAs. The input
parameters of the NMSSM needed by micrOMEGAs are listed in table 1, while the input
parameters of the standard model are specified in ref. [2]. We assume that the masses of
the first two generations of sfermions are equal. micrOMEGAs recomputes the masses of
charginos, neutralinos and sfermions at tree-level. In the present version the soft terms for
sfermions are used and masses and mixings are computed at tree-level. It is straightforward
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to replace this with some external program (such as nmhdecay) that calculates all masses
for susy particles, as was done in the case of the MSSM. micrOMEGAs then calculates the
LSP relic density, taking into account all possible annihilation and coannihilation diagrams.
For triple Higgs vertices, the main corrections are included as outlined in section 2.5. For
Higgs couplings to quarks, leading QCD corrections are taken into account using the running
quark masses.

name comment name comment
hL λ Mli, i=2,3 masses of left sleptons
hK κ Mri, i=2,3 masses of right sleptons
tb tanβ Mqi, i=2,3 masses of left squarks
mu µ Mui, i=2,3 masses of right u-squarks
hLs Aλ Mdi, i=2,3 masses of right d-squarks
hKs Aκ

MG1 M1 Al τ̃ trilinear coupling

MG2 M2 Ab b̃ trilinear coupling

MG3 M3 At t̃ trilinear coupling

Table 1: Input parameters for micrOMEGAs nmssm.

3 Results

In this section, we discuss constraints on the parameter space of the NMSSM originating
from the WMAP results on dark matter relic density. To avoid having to deal with a large
number of parameters, we assume very heavy sfermions (m

f̃
= 1 TeV) and fix the trilinear

sfermion mixing A
f̃
= 1.5 TeV. Thus annihilation into fermion pairs through t-channel

sfermion exchange and coannihilation with sfermions are suppressed. In the gaugino sector,
we assume universality at the GUT scale, which at the EW scale corresponds to M2 = 2M1

and M3 = 3.3M2. The parameters of our model are thus λ, κ, µ, tanβ,Aλ, Aκ and M2.
These parameters are free parameters at the EW scale. For the SM parameters, we assume
αs = 0.118, mpole

t = 175 GeV and mb(mb) = 4.24 GeV.
We concentrate on models which can differ markedly from the MSSM predictions, in

particular models with tanβ ≤ 5 for which annihilation through a Higgs resonance is marginal
in the MSSM. First we study the behaviour of Ωh2 as a function of µ and M2. Then, picking
values for µ, M2 corresponding to typical cases, we present contour plots in the λ, κ plane,
where the difference between the MSSM (which we recover at small λ) and the NMSSM
appears explicitly. The parameters Aλ, Aκ are also critical as they affect the masses of the
Higgs states and therefore the regions of parameter space where rapid annihilation through
a Higgs resonance can take place. Finally, we present some choices of parameters for which
the LSP is mainly singlino and the relic density still agrees with the WMAP constraints.
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3.1 MSSM-like case: dependence in µ−M2

To give an overview of the behaviour of the relic density in the µ, M2 plane, in fig. 1 we
consider a model with λ = 0.1, κ = 0.1, tanβ = 5, Aλ = 500 GeV, Aκ = 0. For this choice of
parameters the singlino component of the LSP is small so that apart from the Higgs sector
and the heavy neutralinos, the model is MSSM-like. Since the parameters are not specially
tuned to encounter Higgs resonances one expects the predictions for the relic density to be
rather similar to the MSSM. The LEP exclusion region arises from the limit on chargino
pair production. For this choice of parameters the LEP limits on the Higgs sector does not
play a role. Compatibility with WMAP is found in two different regions of the µ, M2 plane,
similar to the ones obtained in the MSSM at small to intermediate values of tanβ.
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Figure 1: Contour plots for Ωh2 = 0.02, 0.0945 < Ωh2 < 0.1287 (WMAP constraint) and
Ωh2 = 1 in the µ, M2 plane for λ = 0.1, κ = 0.1, tanβ = 5, Aλ = 500 GeV and Aκ = 0. The
hatched region is excluded by LEP constraints on charginos.

The first region corresponds to a very thin band whith µ ≫ M2, just at the boundary
of the region ruled out by the LEP constraint on charginos. Although in this case the LSP
is mostly a bino, efficient annihilation is possible via s-channel scalar Higgs (h1) exchange.
However some fine-tuning is required to adjust the mass of the LSP to half the mass of h1.
We will come back to this bino LSP scenario in section 3.2

The second region is a band where µ >∼ M1 = M2/2. There, the LSP is mostly bino with
just enough higgsino component to annihilate efficiently into gauge boson pairs (WW,ZZ).
This is essentially s-channel annihilation via scalar Higgs or Z exchange as well as t-channel
chargino/neutralino exchange. The higgsino fraction necessary to obtain Ωh2 ≈ 0.1 increases
with the LSP mass, from 25% when mχ̃0

1
= 140 GeV to 50% when mχ̃0

1
= 400 GeV. When µ
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andM2 are large enough so that mχ̃0
1
> mt, annihilation into top quark pairs also contributes

significantly. The onset of the top pair annihilation shows up as a kink on the WMAP allowed
band. Finally, note that for M2 < 200 GeV and µ ≈ M2 the relic density is above WMAP.
This is because on the one hand the LSP bino component is large and on the other hand
the gauge boson pair channel is not kinematically available. In section 3.4 we will study this
mixed bino/higgsino case in more details.

To the left of the last region, the LSP is mainly higgsino and annihilation into gauge
boson pairs is efficient. For a higgsino LSP, coannihilation processes with charginos and
neutralinos also contribute significantly. Therefore, the relic density is very small in this
region. However, increasing the singlino content of the LSP may rise the relic density inside
the WMAP allowed range. We will come back to this possibility in section 3.5.

To the right of the WMAP allowed band, the LSP bino component is large while no
Higgs state has the appropriate mass for a s-channel resonance (recall that we assume heavy
sfermions, so annihilation to fermions through t-channel sfermion exchange is suppressed).
Hence, for our choice of parameters, the relic density is large in this region of the µ,M2

plane. However, for different choices of parameters, one may find areas where s-channel
Higgs resonances bring the relic density down in this region. We will present such scenarios
in section 3.3.
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Figure 2: a) Ωh2 as a function of µ for λ = 0.1, κ = 0.1, Aλ = 500 GeV, Aκ = 0,M2 =
230 GeV, tanβ = 5 (full) and tanβ = 2, 20 (dash). b) Relative contribution of the main
annihilation channels for the case tanβ = 5. Here V V includes both WW and ZZ channels
and qq is the sum over all the quarks.

To illustrate more precisely the main mechanisms at work for the LSP annihilation, we
fix M2 = 230 GeV and plot the relic density as a function of µ in fig. 2. The relative
contributions of the most important channels are also displayed. At small values of µ,
the LSP mass is below MW and the main annihilation channel is into qq̄ pairs through Z
exchange. The bb̄ channel is enhanced as it receives an additional contribution from h1

exchange. As µ increases, so does the LSP mass. Annihilation into gauge boson pairs rises

12



sharply and the relic density drops. The WW mode is typically 4 times larger than the ZZ
mode. For larger µ, the LSP becomes less higgsino and the relic density increases (recall that
the LSP coupling to gauge bosons depends only on its higgsino components). A subdominant
contribution arises from the h1a1 channel. This mode is kinematically accesssible over the
whole region probed since the scalar mass is mh1

≈ 118 GeV, the pseudo-scalar mass is
ma1 ≈ 20 GeV and the LSP mass range is 75 < mχ̃0

1
< 109 GeV. For µ > 200 GeV, the

Zh1 annihilation channel becomes kinematically accessible. While this channel accounts for
up to 10% of all annihilations, this contribution is not sufficient to bring the relic density
within the WMAP range.

In fig. 2a we also show the relic density for tanβ = 2, 20. Changing tanβ affects the LSP
mass as well as its bino/higgsino fraction, thus having a large impact on the relic density.
First, the LSP mass increases with tanβ. This explains why at small µ (where one can be
below the WW threshold) the relic density is smaller at large tanβ. On the other hand, the
bino component of the LSP increases with tanβ. Hence, for µ>∼180 GeV (where the WW
channel is kinematically open for all values of tanβ) annihilation is more efficient at low
values of tanβ.

3.2 Bino LSP, annihilation through h1

0.01 0.1 1

λ

0.001

0.01

0.1

1κ

Figure 3: Region in the λ, κ plane for which 0.0945 < Ωh2 < 0.1287 (blue) for µ = 700 GeV,
M2 = 111 GeV, Aλ = 500 GeV, Aκ = 0, tanβ = 5 and contour curve for Ωh2 = 1 (red).
The theoretically/experimentally excluded regions are also displayed: LEP Higgs exclusion
(grey), Landau pole (vertical lines), negative Higgs mass squared (horizontal lines) and non-
physical global minima of the scalar potential (black).
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If µ ≫ M2, the LSP is almost a pure bino (more than 99%), and the relic density is large
(t-channel sfermion exchange is suppressed for heavy sfermions and annihilation through
s-channel Z requires some higgsino component) unless annihilation proceeds through a s-
channel Higgs resonance. In this case, the relic density is very sensitive to the mass difference,
mh1

− 2mχ1
[22, 23]. For λ = κ = 0.1, tanβ = 5, Aλ = 500 GeV, Aκ = 0, µ = 700 GeV, and

M2 = 111 GeV (corresponding to the first WMAP allowed region in fig. 1) we have such a
h1 resonance. We first examine the dependence of Ωh2 on the specific NMSSM parameters
λ, κ in fig. 3. In this plane, small values of κ/λ are excluded by either LEP Higgs searches,
an unphysical global minimum of the scalar potential or a negative mass squared for the
lightest pseudo-scalar. Large values of κ give rise to a Landau pole and are also excluded.
Most of the remaining parameter space is allowed by the WMAP constraints.
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Figure 4: a) Ωh2 vs λ for µ = 700 GeV,M2 = 111 GeV,κ = 0.01, 0.1, 0.5, Aλ = 500 GeV,
Aκ = 0 and tanβ = 5. b) Relative contribution of the main annihilation channels for the
case κ = 0.5.

Next we fix κ and study the variations of Ωh2 as a function of λ in fig. 4. We also display
the relative contributions of the most important channels. For λ = 0.01, κ = 0.1, one has
mχ̃0

1
= 54 GeV and mh1

= 117 GeV so that mh1
− 2mχ̃0

1
= 9 GeV. A tiny higgsino fraction

(<∼10−5) is then sufficcient to give the right amount of relic density (Ωh2 = 0.113). As λ
increases, mh1

decreases whereas mχ̃0
1
remains almost constant. Hence the mass difference

decreases and the relic density drops sharply. When the LSP mass is above the light Higgs
resonance there is no efficient mechanism for LSP annihilation and the value of the relic
density shoots up. Note that for κ = 0.5, Ωh2 first increases with λ before dropping, due to
a small increase of the h1 mass with λ, and so of mh1

− 2mχ̃0
1
. This corresponds to the small

region at large κ where the relic density is above the WMAP limit in fig. 3.
The main annihilation channels are characteristics of the dominant decay modes of the

h1. For small λ, the main channels are χ̃0
1χ̃

0
1 → bb̄ and τ τ̄ . When λ increases, the channel

χ̃0
1χ̃

0
1 → a1a1 becomes dominant, a1 being a light quasi pure singlet pseudo-scalar. This is

due to the fact that the h1a1a1 coupling increases with λ, as can be seen from eq. (2.13).
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On the other hand, the a1 mass also increases with λ (cf. MP,33 in eq. (2.6) with Aκ = 0),
so that for λ>∼0.4 this channel becomes kinematically forbidden and the main channels are
again bb̄ and τ τ̄ .

3.3 Annihilation Through Resonances

One of the new features of the NMSSM is its much richer scalar/pseudo-scalar Higgs sector
as compared to the MSSM. Thus, one expects new possibilities for having Ωh2 ≈ 0.1 cor-
responding to annihilation of the LSP through a Higgs resonance. Starting from a point to
the right of the WMAP allowed band in fig. 1 (where the relic density is large) we will now
vary the Higgs sector parameters Aλ, Aκ to see whether it is possible to find resonances. Aλ

directly determines the heavy Higgs doublet mass mA, eq. (2.11), whereas Aκ influences the
Higgs singlet masses, eq. (2.10). The neutralino sector does not depend on these parameters.
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Figure 5: Ωh2 vs Aλ for µ = 300 GeV,M2 = 300 GeV,κ = 0.1, λ = 0.1, Aκ = −50 GeV
and tanβ = 5. b) Masses of LSP, of scalars (dash) and pseudo-scalars (full) c) Relative
contribution of the main annihilation channels.

First, we fix λ = 0.1, κ = 0.1, µ = M2 = 300 GeV and Aκ = −50 GeV and we vary Aλ.
Results for Ωh2, the LSP and Higgs masses, as well as the the main channels contributing
to the LSP annihilation are displayed in fig 5. For this choice of parameters the LSP mass
is mχ̃0

1
= 142 GeV with a bino fraction of 92%, a higgsino fraction of 7%, and a negligible

singlino component. Thus the relic density is rather high, Ωh2 = 1.3 for Aλ = 0. The
main annihilation channel is into gauge boson pairs. Subdominant channels are into h1h1,
Zh1 as well as fermion pairs. As Aλ decreases, so does mA and for Aλ ≈ −250 GeV, the
masses of the the heavy scalar and pseudo-scalar Higgs doublets, h2 and a2, are such that
ma2 = mh2

= 2mχ̃0
1
. The relic density then drops sharply. The main decay modes of both a2

and h2 being bb̄ and τ τ̄ , the dominant LSP annihilation channel near the resonance is into
fermion pairs. When Aλ ≈ −300 GeV and one moves away from the s-channel resonance,
the LSP still annihilates efficiently into h1a1 or Zh1 through a2 exchange. The relic density
again falls into the WMAP allowed range. However, in this region h1 is excluded by LEP.

Next, we fix Aλ = 0 and vary Aκ, keeping all the other parameters as above. Results for
Ωh2, the LSP and Higgs masses, as well as the the main annihilation channels are displayed
in fig 6. Note however that the Aλ range in fig 6c is not the same as in fig 6a-b. The
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Figure 6: Ωh2 vs Aκ for µ = 300 GeV,M2 = 300 GeV,κ = 0.1, λ = 0.1, Aλ = 0 and tanβ = 5.
b) Masses of LSP, of scalars (dash) and pseudo-scalars (full) c) Relative contribution of the
main annihilation channels.

LSP has the same characteristics as in the previous case. For Aκ ≈ −950 GeV, the scalar
(singlet) h2 is such that mh2

= 2mχ̃0
1
, and for Aκ ≈ −90 GeV, the pseudo-scalar (singlet)

a1 is such that ma1 = 2mχ̃0
1
. Far from these resonances, Ωh2 is large and the preferred

annihilation channel is into W pairs. The h2 resonance is associated with an increase in
the annihilation channel χ̃0

1χ̃
0
1 → h1h1. However LSP annihilation through this resonance is

not efficient enough to bring the relic density within the WMAP range. This is because the
coupling χ̃0

1χ̃
0
1h2, eq. (2.17), is suppressed for a bino LSP and a singlet Higgs. Near the a1

resonance, the pseudo-scalar annihilates mainly into bb̄ as shown in fig. 6c. Although the
χ̃0
1χ̃

0
1h2 coupling, eq. (2.18), is also suppressed, annihilation is more efficient through a1 than

through h2 because of the p-wave suppression factor for a scalar exchange.

3.4 Mixed bino/higgsino: µ ≈ M2 in the NMSSM

We now consider in more details the mixed bino/higgsino case with µ = 220 GeV, M2 =
320 GeV, tanβ = 5, Aλ = 500 GeV and Aκ = 0 (corresponding to the second WMAP allowed
region in fig. 1). In fig. 7 we plot the Ωh2 dependence on the specific NMSSM parameters
λ, κ. Theoretically and experimentally excluded regions are similar to those obtained in
fig. 3. In the limit λ → 0, the singlino decouples. According to eq. (2.16), µ being fixed, the
singlino mass is proportional to κ/λ. Hence, for small λ and κ/λ >∼ 1/3, the singlino is heavy
and the LSP is a mixed bino (70%) and higgsino (30%), with a mass mχ̃0

1
= 140 GeV. Its

relic density is within the WMAP bounds, the main annihilation channel being into WW ,
as explained in section 3.1. Smaller values of κ/λ lead to a singlino LSP whose relic density
is very large unless one has recourse to some special annihilation mechanism, as will be
explained in section 3.5. In the singlino region, one can already see two clear resonances
bringing the relic density down for λ ≈ 0.1 and κ ≈ 0.01. One corresponds to an h2 resonance
and the other to a Z resonance. However, these are located in a region ruled out by Higgs
searches at LEP.

At larger values of λ and κ, one can see a third resonance as well as a decrease of the
relic density below the WMAP allowed region. To see more precisely what occurs in this
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Figure 7: Contour plots for Ωh2 = 0.02 (dash), Ωh2 = 1 (full) and region for which 0.0945 <
Ωh2 < 0.1287 (blue) in the λ, κ plane for µ = 220 GeV, M2 = 320 GeV, Aλ = 500 GeV,
Aκ = 0 and tanβ = 5. Theoretically and experimentally excluded regions are labeled as in
fig. 3.
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Figure 8: a) Ωh2 vs λ for µ = 220 GeV,M2 = 320 GeV, κ = 0.2, Aλ = 500 GeV, Aκ = 0 GeV,
tanβ = 5 (full) and tanβ = 2, 20 (dashed). b) Components of the LSP c) Masses of LSP,
of scalars (dash) and of pseudo-scalars (full) d) Relative contribution of main channels for
neutralino annihilation.
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area of the parameter space, we fix κ = 0.2 and plot Ωh2 as a function of λ in fig. 8. We also
plot the LSP components, the LSP and Higgs spectrum, and the main annihilation channels.
At small values of λ, one can see from fig. 8b that the singlino almost decouples and one
recovers the MSSM. The value of Ωh2 for λ → 0 and tanβ = 5, fig. 8a, is equal to the MSSM
prediction for equivalent parameters. The main annihilation channel, fig. 8d, isWW through
Z exchange, with subdominant Zh1 and h1h1 contributions coming from h1 exchange. As λ
increases, the relic density decreases until one encounters the h2 resonance for λ ≈ 0.3, fig 8c.
The relic density then drops and the main annihilation channels reflect the h2 decay modes,
with a dominant a1a1 final state. Above the resonance, Ωh2 keeps decreasing as the LSP
becomes dominantly singlino. Recall that for µ and κ fixed, the singlino diagonal mass term,
eq. (2.14) goes like 1/λ while the singlino mixings are proportional to λ. This result for the
relic density is counter-intuitive, since for a singlino LSP, annihilation should be suppressed
and relic density large. The main annihilation channel in this case is h1a1 through t-channel
χ̃0
1 exchange. The decrease of Ωh2 with λ can then be understood by an increase of the

χ̃0
1χ̃

0
1h1 and χ̃0

1χ̃
0
1a1 couplings as given in eqs. (2.17,2.18) for a singlino LSP. However, this

area of the parameter space is excluded by Higgs searches at LEP, as shown in fig. 7. We
will investigate in section 3.5 whether it is possible to find regions in the parameter space
with a singlino LSP allowed both by LEP and WMAP constraints.

A similar dependence of Ωh2 on λ is observed for different values of tanβ, in fig. 8a. The
mass of the LSP varies with tanβ, so the value of λ for which resonant annihilation occurs
is shifted. As we have discussed in section 3.1, when the main annihilation channel is into
gauge boson pairs, annihilation is more efficient at low values of tanβ where the LSP is less
bino-like. For tanβ = 2 however, no decrease of Ωh2 occurs at large values of λ. This is due
to the fact that both the χ̃0

1χ̃
0
1a1 and χ̃0

1χ̃
0
1h1 couplings are much weaker for low values of

tanβ.

3.5 Singlino LSP

We explore now scenarios satisfying both LEP and WMAP constraints with a predominantly
singlino LSP. For this we scanned over the whole parameter space of the NMSSM in the
range λ < 0.75, κ < 0.65, 2 < tanβ < 10, 100 < µ < 500 GeV, 100 < M2 < 1000 GeV,
0 < Aλ < 1000 GeV and 0 < −Aκ < 500 GeV. We found three classes of models: a mixed
singlino/higgsino LSP that annihilates mainly into h1a1 and V V , an almost pure singlino
that annihilates through a Z or Higgs resonance and a singlino where dominant channels are
coannihilation ones. In table 2 we show a selection of benchmark points along these lines.

The first scenario is one for which µ ≪ M2 and the LSP is a mixed higgsino/singlino.
We give two different examples in table 2. For point 1, the LSP is 88% singlino and 12%
higgsino, with a mass of 122 GeV. The main annihilation mode is h1a1 through t-channel χ̃0

1

exchange, h1 and a1 being both mainly singlet (88% and 99% respectively). As we have seen
in section 3.4 this is due to the enhanced couplings χ̃0

1χ̃
0
1a1(h1) for large values of λ. The

annihilation into h1a1 being too efficient for large values of tanβ, we chose tanβ = 2 for this
point. Annihilation of the higgsino component into W pairs accounts for the subdominant
channel. For point 2, the LSP mass is 148 GeV and the main annihilation channel is WW ,
which necessitates some sizeable higgsino component (29% here). The subdominant channel
h1a1 implies the singlino component of the LSP (69%). The singlino fraction cannot be
maximal here since there are no important annihilation channels for a pure singlino when λ
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Point 1 2 3 4 5 6

λ 0.6 0.24 0.4 0.23 0.31 0.0348
κ 0.12 0.096 0.028 0.0037 0.006 0.0124
tanβ 2 5 3 3.1 2.7 5
µ [GeV] 265 200 180 215 210 285
Aλ [GeV] 550 690 580 725 600 50
Aκ [GeV] -40 -10 -60 -24 -6 -150
M2 [GeV] 1000 690 660 200 540 470

mχ̃0

1

[GeV] 122 148 35 10 15 203

N2

13
+N2

14
0.12 0.29 0.12 0.03 0.06 0.02

N2

15
0.88 0.69 0.87 0.95 0.94 0.96

mχ̃0

2

[GeV] 259 199 169 87 182 214

mχ̃±

1

[GeV] 258 193 171 139 196 266

mh1
[GeV] 117 116 36 22 34 115

S2

13 0.88 0.04 0.98 1.00 1.00 0.04
mh2

[GeV] 128 158 117 114 113 163
S2

23
0.11 0.96 0.01 0.00 0.00 0.96

ma1
[GeV] 114 59 56 18 15 214

P
′
2

12 0.99 1.00 0.99 1.00 0.99 1.00

Ωh2 0.1092 0.1179 0.1155 0.1068 0.1124 0.1023
ha (73%) V V (75%) qq (65%) qq (93%) aa (92%) χ̃0

2
χ̃0

2
→ X (81%)

V V (13%) ha (17%) ll (35%) ll (7%) qq (7%) χ̃0

1
χ̃0

2
→ X (15%)

Channels Zh (8%) hh (5%) ll (1%) χ̃0

1
χ̃±

1
→ X (2%)

hh (3%) Zh (2%) qq (2%)
qq (2%)
ll (1%)

Table 2: Benchmark points with a singlino LSP satisfying both LEP and WMAP constraints
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is not so large and the channel h1a1 is not dominant.
We give in table 2 the characteristics of three typical scenarios with light singlinos. The

only efficient annihilation mode for a very light singlino (below 50 GeV) is via a Z or a Higgs
resonance. For point 3, the LSP is 87% singlino with a mass of 35 GeV and annihilates
through a Z exchange. In this scenario, although the singlino component dominates, a
12% higgsino component is sufficient to ensure efficient annihilation through the Z. As
for the main annihilation channels they are characteristic of the Z decay modes, mainly
into quark pairs and lepton pairs. Neutralinos of 30 GeV that satisfy the WMAP upper
bound were also found in SUGRA models with non-universal gaugino masses [24]. Because
the scalar/pseudo-scalar Higgs states in the NMSSM can be much below the Z mass while
passing all the LEP constraints, we expect to find even lighter singlino LSP’s in models
where 2mχ̃0

1
≈ mh. We show two examples (point 4 and 5) of such models in table 2. In

both cases the LSP annihilates via a light scalar dominantly singlet (S2
13 ≈ 1). This scalar

decays either into bb̄ (point 4) or, when kinematically accessible, into a1a1 (point 5), the a1
being also mainly singlet. The Higgs sector of such models is of course severely constrained
by LEP, in particular the limit on the SM-like scalar, here the second scalar, h2. For this
reason most scenarios with light singlinos have tanβ ≈ 3 which is the value for which the
lightest visible (ie non singlet) Higgs mass, mh2

, is maximized [11]. Note that a light singlino
requires κ ≪ λ and not too large value for µ. The singlino masses for point 4 and 5 are
respectively 10 GeV and 15 GeV. We found points in the parameter space with singlinos as
light as a few GeV.

For κ <∼ λ ≪ 1, the LSP is heavy with a large singlino component. No efficient anni-
hilation mechanism is then available. However coannihilation with heavier neutralinos and
charginos can be very efficient especially for a higgsino-like NLSP. Point 6 in table 2 gives
an example of such a scenario. The LSP is 96% singlino with a mass of 204 GeV. The mass
difference with the NLSP χ̃0

2 is 11 GeV. The coannihilation channels are overwhelmingly
dominant. The χ̃0

2 higgsino component is just enough (28%) for efficient annihilation. The
main channels are χ̃0

2χ̃
0
2(χ̃

0
1) → tt̄, bb̄ and correspond to annihilation through h3 and a2 ex-

change. For this point, h3 and a2 belong to the heavy Higgs doublet with mA ≈ 470 GeV,
so that we are close to a (double) resonance. Such a resonance is not necessary though, in
order to have efficient χ̃0

2 annihilation. We also found points in the parameter space with a
heavy singlino where the dominant channel was χ̃0

2χ̃
0
2(χ̃

0
1) → V V through Z exchange.

4 Conclusions

In the NMSSM, the same mechanisms as for the MSSM are at work for neutralino anni-
hilation: into fermion pairs through s-channel exchange of a Z or Higgs, into gauge boson
pairs through either Z/h s-channel exchange or t-channel exchange of heavier neutralinos or
charginos. The new feature of the NMSSM is the presence of additional Higgs states, which
means additional regions of parameter space where rapid annihilation through a s-channel
resonance can take place. We found that annihilation through a Higgs resonance is dom-
inant in large regions of the parameter space and this even at low to intermediate values
of tanβ. Furthermore, new channels also open up since light Higgs state can be present.
For example annihilation channels into Zh, hh, ha or even aa can contribute significantly to
the relic density. These proceed through s-channel Z/h/a exchange or t-channel neutralino
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exchange. Despite the additional annihilation channel available because of a richer Higgs
sector, annihilation of neutralinos is not always favoured in the NMSSM. In general the
singlino component of the LSP tends to reduce the annihilation cross-section. Therefore one
expects that the relic density of dark matter strongly constrain models with a large singlino
component. We found however regions of the parameter space where a singlino LSP gives
the right amount of dark matter, either for large λ, s-channel resonances into a Z or a Higgs,
or coannihilation with χ̃0

2, χ̃
±

1 .
For a bino LSP, compatibility with the WMAP result can be recovered in the NMSSM.

This however requires tuning the parameters of the model such that 2mχ̃0
1
is only a few GeV

below the mass of a Higgs boson. In models where M2 = 2M1 as we have discussed here,
this would also mean that one has a chargino mostly wino with a mass mχ̃±

1
≈ 2mχ̃0

1
≈ mh1

.
Such a degeneracy between the chargino mass and the Higgs mass could be measured at
the ILC. If the Higgs boson is mostly doublet, it might be hard to disentangle the NMSSM
from the MSSM. If it is singlet, mass relation between the NMSSM Higgs states would be
different from what expected in the MSSM. A mostly singlet Higgs state could eventually
be observable at the LHC with high luminosity [25].

In the case of a mixed bino/higgsino LSP, annihilation relies, as in the MSSM, on s-
channel Z exchange and t-channel neutralino/chargino exchange. If the singlino state is not
heavy and decouples, ie λ not too small and κ not too large, the five neutralino states might
be visible at the LHC/ILC. This would be a clear signature of the NMSSM.

Finally, in the singlino LSP case, µ cannot be too large. One therefore would expect
visible higgsinos at the LHC. The singlino LSP would however appear at the end of the
decay chain in any sparticle pair production process, which might complicate the detection
task as it was the case at LEP [13].

As a concluding remark, one should mention that, if one assumes minimal flavour struc-
ture, b → sγ might impose strong constraints on the NMSSM parameter space, especially
for large values of λ where the charged Higgs mass, eq. (2.9), could be lighter than in the
MSSM. A complete study of the constraints coming from flavour physics should be the next
step of the phenomenological study of the NMSSM.
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