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Abstract

We study the issue of duality violations in the V V −AA vacuum polarization
function in the chiral limit. This is done with the help of a model with an
expansion in inverse powers of the number of colors, Nc, allowing us to consider
resonances with a finite width. Due to these duality violations, the Operator
Product Expansion (OPE) and the moments of the spectral function (e.g. the
Weinberg sum rules) do not match at finite momentum, and we analyze this
difference in detail. We also perform a comparative study of many of the different
methods proposed in the literature for the extraction of the OPE parameters and
find that, when applied to our model, they all fare quite similarly. In fact, the
model strongly suggests that a significant improvement in precision can only be
expected after duality violations are included. To this end, we propose a method
to parameterize these duality violations. The method works quite well for the
model, and we hope that it may also be useful in future determinations of OPE
parameters in QCD.

http://arxiv.org/abs/hep-ph/0506004v2


1 Introduction

The Operator Product Expansion (OPE) [1] is of paramount importance in QCD
because it is the short-distance window not only to fundamental parameters of the
Lagrangian such as quark masses and the coupling constant αs, but also to other im-
portant quantities not explicitly appearing in the Lagrangian, such as the condensates.
Moreover, there are cases, like that of the ΠV V − ΠAA vacuum polarization, where
these condensates turn out to be related to electroweak coupling constants governing
the physics of kaon decay and its associated CP violation [2]. It is therefore essential to
understand how the OPE works and what its properties of convergence are. It is clear
that using the expansion in a region without good convergence (or with no convergence
at all) may result in errors in the determination of these important parameters.

The OPE in QCD is believed to be only an asymptotic expansion in inverse powers
of q2 in the complex q2 plane excluding the Minkowski region, Re q2 > 0. However, it
is precisely in the Minkowski region where experimental data are available, so that in
order for the OPE to make contact with the experimental data, one has to learn how
to make the necessary rotation in the complex plane. A famous trick [3], relying on
Cauchy’s theorem, relates the integral of the spectral function (i.e. of the experimental
data) ρ(t) = (1/π) Im Π(t) to that of the corresponding Green’s function Π(q2) of
complex argument q2, over the contour of Fig. 1, chosen counter-clockwise. One finds
[4] ∫ s0

0

dt P (t)
1

π
Im Π(t) = −

1

2πi

∮

|q2|=s0

dq2 P
(
q2
)
Π(q2), (1)

where P (x) is any polynomial. As it stands, Eq. (1) is of course an exact mathematical
statement. The right-hand side of Eq. (1), however, contains the full Green’s function
Π(q2) which is not available in QCD. It is then assumed that, if the contour radius s0
is large enough, use of the expansion ΠOPE(q

2) instead of the exact function will be a
good enough approximation. This is the rationale underlying all modern analyses in
QCD based on the OPE such as e.g. the interesting work of Ref. [5].

The approximation which consists of substituting Π(q2) → ΠOPE(q
2), with s0 large

enough, has been given the name duality. Duality refers to the fact that, if the ap-
proximation were exact and the substitution Π(q2) → ΠOPE(q

2) carried no error, one
could say that the integral of the experimental spectral function Im Π(t) in Eq. (1) is
dual to the OPE. The term duality violation, consequently, refers to any contribution
missed by this substitution.

The question is whether this approximation works for large s0, and if so, how large
s0 should be for duality to apply within a precision of, let us say, 10%? In order to
address this question, it is essential to be able to assess the validity of the approxi-
mation used, lest the extraction of OPE parameters not be afflicted by uncontrolled
systematic errors. Therefore, studying the contribution missed by the replacement
Π(q2) → ΠOPE(q

2) in Eq. (1) is a necessary task in the present era of precision deter-
mination of QCD parameters.

That the OPE can at best only be an asymptotic expansion in the Euclidean region
can be most neatly seen in the case of a two-point Green’s function made of a pair
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Figure 1: This figure shows the contour in the complex plane leading to Eq. (1). The crosses
on the real axis denote the position of the resonance poles in the Nc → ∞ limit, or the cut
arising at finite Nc.

of quark bilinears, such as the vacuum polarization, in the large-Nc limit [6]. This is
because in this limit all meson resonances appear as intermediate physical states with a
vanishing width and, consequently, as poles on the positive real axis in the q2 complex
plane. In contrast, the OPE is a series expansion in inverse powers of q2 (up to loga-
rithms) with no sign of a pole anywhere but at the origin, which means that it cannot
converge on the positive real axis. The OPE can thus at best be asymptotic,1 and even
then only provided the positive real axis, i.e. the Minkowski region, is excluded. The
region of validity of the expansion, therefore, is expected to be some sort of angular
sector around the origin not including the positive real axis. Much less clear are more
detailed properties such as, for instance, what the shape of this angular sector may be.

Presently, the theory of duality violations in QCD is almost non-existing and it is
important to develop it. In the absence of such a theory, we see no other choice but
to resort to models. Somewhat surprisingly, not much work has been devoted to this
issue. To our knowledge, Ref. [7] was the first to point out the importance of duality
violations. That the OPE may also miss other important contributions has recently
been suggested in Ref. [8].

In this work we will study a model of duality violations. We hasten to emphasize
that our model is not QCD. In spite of this, we believe that it shares enough properties
with QCD to be an interesting theoretical laboratory for studying issues related to
duality violations. After all, our goal here is not a detailed numerical study of duality
violations in QCD, but the much more modest one of understanding what the main
features are, and how these violations may manifest themselves. This is not just an
exercise of purely academic interest, however, because the lessons learned from the
model raise questions which must also be addressed in the case of QCD. In addition,
one of the results of our analysis will be a possible method for unravelling duality
violations in QCD itself.

1A convergent expansion always has a circular region of convergence characterized by a non-zero
radius.
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The model starts from the ΠV V −ΠAA vacuum polarization Green’s function, in the
chiral limit, given in terms of a spectrum consisting of two infinite towers of equally-
spaced meson resonances, together with the rho meson and the massless pion, which
are treated separately. Similar models can be found, e.g., in Refs. [7, 9, 10, 11, 12].

The fact that the spectrum is infinite is crucial and underlies all the interesting
properties to be discussed. This infiniteness of the spectrum is deeply rooted in the
1/Nc expansion of QCD. In fact, as a first step, we will take the large-Nc limit and
consider a spectrum of resonances with vanishing width. This has the advantage that
all quantities can be analytically calculated. As a second step, following Ref. [7], we
will give the resonances a width as a subleading 1/Nc effect, while making sure that
known analytical properties of the Green’s function are not spoiled. We will thus be
able to study a rather realistic model, allowing us to draw some conclusions on the
issue of duality violations in the real world.

It is obvious that, in order for Eq. (1) to be useful, an assumption has to be made.
If the asymptotic regime starts at a value of q2 which is higher than the s0 employed
in this equation, the use of the approximate expansion ΠOPE(q

2) will completely miss
all the physics of the full function Π(q2), resulting in so large an error that, in fact, the
approximation will become totally invalid [13]. In the case of our model the asymptotic
regime can only start after the contribution of the two towers of resonances has been
taken into account, which means that the s0 scale has to be larger than the two lowest-
lying states in these towers. The model might overemphasize the effects of duality
violations, but, by the same token, it provides a means to identify the causes of these
effects.

Past experience accumulated over the years suggests that the case of real QCD may
be less drastic than our model as far as the energy scale at which the OPE starts being
a useful approximation is concerned. In other words, previous analyses of QCD which
rely on the use of the OPE do not necessarily have to have systematic errors of the
same size as those encountered in our model. But the model can be used to compare
the different methods of analysis to see if there is one which is more reliable than the
others.

In real life, the values employed for s0 are in the interval ∼ 1.5− 3.0 GeV2 and the
lore is that this is expected to be high enough for the OPE to set in. The agreement
within present errors in the determination of αs from tau decays [5] with those from
other determinations at much larger energy scales [14] can be taken as a confirmation
of this. However, a much more accurate extraction in a new generation of precision
experiments might show discrepancies between the different methods of analysis. In
fact, there is already a glimpse of trouble in the determination of quark masses [15],
which becomes a more serious discrepancy in the terms which appear at higher order
in the OPE, such as condensates [16].2 We expect the lessons on duality violations we
learn from our model to be of help in all these circumstances.

2For a nice summary of results, see Table 1 in Ref. [17]. Since certain electroweak matrix elements
are related to condensates [2], one can also infer the latter from lattice determinations of the former.
See Table 8 in Ref. [18].
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2 Duality violations in the large-Nc limit

We will concentrate on the two-point functions of vector and axial-vector currents

ΠV,A
µν (q) = i

∫
d4x eiqx〈JV,A

µ (x)J† V,A
ν (0)〉 =

(
qµqν − gµνq

2
)
ΠV,A(q

2) , (2)

where, for definiteness, Jµ
V (x) = d(x)γµu(x) and Jµ

A(x) = d(x)γµγ5u(x). Throughout
the paper, we will stay in the chiral limit for simplicity. Both functions, ΠV,A(q

2) in
Eq. (2) satisfy the dispersion relation

ΠV,A(q
2) =

∫ ∞

0

dt

t− q2 − iǫ

1

π
ImΠV,A(t) , (3)

up to one subtraction.
According to the discussion in the introduction, and following Refs. [7, 9], we will

assume the following spectra:

1

π
ImΠV (t) = 2F 2

ρ δ(t−M2
ρ ) + 2

∞∑

n=0

F 2
V (n)δ(t−M2

V (n)) ,

1

π
ImΠA(t) = 2F 2

0 δ(t) + 2

∞∑

n=0

F 2
A(n)δ(t−M2

A(n)) . (4)

Here Fρ is the electromagnetic decay constant of the ρ, andMρ is its mass. FV,A(n) are
the electromagnetic decay constants of resonance n in the vector and axial channels,
whileMV,A(n) are the corresponding masses. F0 is the pion decay constant in the chiral
limit. The dependence on the resonance index n is taken as follows:

F 2
V,A(n) = F 2 = constant , M2

V,A(n) = m2
V,A + n Λ2 , (5)

which is compatible with known properties of the large-Nc limit of QCD [6], as well as
properties of the associated Regge theory [19].

The combination

Π(q2) =
1

2
(ΠV (q

2)−ΠA(q
2)) (6)

thus reads

Π(q2) =
F 2
0

q2
+

F 2
ρ

−q2 +M2
ρ

−

∞∑

n=0

F 2

−q2 +M2
A(n)

+

∞∑

n=0

F 2

−q2 +M2
V (n)

. (7)

Note that the upper end of the integration region in Eq. (3) requires the introduction
of a cutoff, ΛCO, to render the integrals well defined. This cutoff must satisfy chiral
symmetry in order not to introduce any explicit breaking through the regulator. This
is accomplished by demanding that Λ2

CO ∼ NVΛ
2 ∼ NAΛ

2 as NV,A → ∞. Of course,
physical results are independent of the precise details as to how this limit is taken, in
agreement with very general properties of field theory [10].
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One can see this explicitly in Eq. (7). The infinite sums are by itself divergent and
have to be regularized. In order to obtain a convergent result, one has to choose the
same regulator for both axial and vector towers, i.e. NV = NA, in this case. Infinities
then cancel and the two-point function can be expressed in terms of the Digamma
function with the use of the identity

lim
N→∞

{
N∑

n=1

1

z + n
−

N∑

n=1

1

n

}
= −ψ(z)−

1

z
− γE , (8)

where γE is the Euler-Mascheroni constant and ψ(z) is the Digamma function, defined
as

ψ(z) =

∫ ∞

0

(
e−t

t
−

e−zt

1− e−t

)
dt =

d

dz
log Γ(z) . (9)

Thus, it follows that

Π(q2) =
F 2
0

q2
+

F 2
ρ

−q2 +M2
ρ

+
F 2

Λ2

[
ψ

(
−q2 +m2

A

Λ2

)
− ψ

(
−q2 +m2

V

Λ2

)]
. (10)

Furthermore, we will impose the following conditions on our model:

2

3

Nc

16π2
=
F 2

Λ2
, (11)

so that the coefficient of the parton-model logarithm is given by a free-quark loop;

F 2
ρ = F 2

(
m2

V

Λ2
−

1

2

)
, F 2

0 = F 2

(
m2

A

Λ2
−

1

2

)
, (12)

and

−2F 2
ρM

2
ρ + F 2Λ2

(
m4

V

Λ4
−
m2

V

Λ2
+

1

6

)
= F 2Λ2

(
m4

A

Λ4
−
m2

A

Λ2
+

1

6

)
, (13)

so that, as in the case of real QCD, there are effectively no dimension-two or dimension-
four operators in the OPE of Π(q2) (see below). Note that Eqs. (12) and (13) would
not be consistent if Fρ = 0. Since we want our model to be semi-realistic, this is the
reason why we separated the rho meson from the vector tower in Eq. (4). This is also
natural from the point of view of Regge theory, as the rho-meson mass is low enough
to be below the onset of Regge trajectories (presumably at a scale of O(1 GeV )). The
a1 is heavier and thus we include it in the axial tower.3 At any rate, we will see that
what really matters is the analytic properties of the OPE and these depend on the
tower as a whole, rather than on the properties of any individual resonance.

Knowledge of the spectrum (4) allows us to calculate the full Green’s function
Π(q2) explicitly. Defining the spectral function ρ(t) = (1/π) Im Π(t) one has that
(with Q2 = −q2)

Π(−Q2) =

∫ ∞

0

dt

t +Q2 − iǫ
ρ(t) =⇒

large Q2>0
ΠOPE(−Q

2) ≈
∑

k=1,2,3,...

C2k

Q2k
, (14)

3We could also have separated the a1, but that would introduce unnecessary free parameters
without any crucial change in the analytic properties of the OPE.
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where the 1/Q2 expansion in the second equation above is akin to the Operator Product
Expansion in QCD. Note that a naive expansion in powers of t/Q2 under the integral
sign is not an allowed mathematical operation. Consequently, in order to obtain the
correct 1/Q2 expansion due care must be exercised. The correct OPE can be derived
by using (the derivative of) Eq. (9) and the expansion

exz
z

ez − 1
=

∞∑

n=0

Bn(x)
1

n!
zn , (15)

wherein Bn(x) are the Bernoulli polynomials. In this way one arrives at the following
expressions for the OPE coefficients C2k:

C2k = −F 2
0 δk,1 +

(−1)k+1

[
F 2
ρM

2k−2
ρ −

1

k
F 2Λ2k−2

{
Bk

(
m2

V

Λ2

)
−Bk

(
m2

A

Λ2

)}]
. (16)

In particular, the first few coefficients read4

C2 = +F 2
ρ − F 2

0 − F 2

{
B1

(
m2

V

Λ2

)
− B1

(
m2

A

Λ2

)}
,

C4 = −F 2
ρM

2
ρ +

1

2
F 2Λ2

{
B2

(
m2

V

Λ2

)
−B2

(
m2

A

Λ2

)}
,

C6 = +F 2
ρM

4
ρ −

1

3
F 2Λ4

{
B3

(
m2

V

Λ2

)
−B3

(
m2

A

Λ2

)}
,

C8 = −F 2
ρM

6
ρ +

1

4
F 2Λ6

{
B4

(
m2

V

Λ2

)
−B4

(
m2

A

Λ2

)}
, (17)

and the first few Bernoulli polynomials are

B0(x) = 1 , B1(x) = x−
1

2
, B2(x) = x2 − x+

1

6
,

B3(x) = x3 −
3

2
x2 +

1

2
x , B4(x) = x4 − 2x3 + x2 −

1

30
. (18)

As already stated, the OPE cannot be obtained by naively expanding at large Q2

under the integral sign in Eq. (14). We emphasize that this feature is not specific to
our model and is, in fact, also true in QCD. Note that, if a naive 1/Q2 expansion
were valid in QCD, there could be no logQ2 dependence in C2k and all anomalous
dimensions would have to vanish, which is obviously not the case. Our model does
share with QCD the property of a non-trivial expansion in 1/Q2 but, in the large-Nc

limit, it still misses all these log’s. With the introduction of finite widths in the next
section, this drawback will be somewhat ameliorated.

It thus follows from the previous discussion that the moments

Mn(s0) =

∫ s0

0

dt tnρ(t) (19)

4In fact, C2,4 vanish identically because of the conditions (11,13).
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are not the coefficients of the OPE, C2k. In order to obtain the actual relation be-
tween Mn(s0) and C2k, it is convenient to first calculate the Laplace transform of the
dispersion relation (14)

Π(−Q2) =

∫ ∞

0

dτ e−τQ2

ρ̂(τ) with ρ̂(τ) =

∫ ∞

0

dt e−tτ ρ(t) . (20)

Plugging in the 1/Q2 expansion of Eq. (14) and identifying Laplace transforms on both
sides, one obtains

∞∑

k=1

C2k

(k − 1)!
τk−1 =

∫ ∞

0

dt e−tτρ(t) , (21)

and therefore, finally,

C2k = lim
τ→0

{
(−1)k−1

∫ ∞

0

dt tk−1 e−tτρ(t)

}
. (22)

As an exercise one can use the expression (22) to recover our results in Eq. (17). It
is the slow fall-off with t of ρ(t) which is responsible for all the complications and, in
particular, the duality violations. If ρ(t) were falling off faster than any power at large
t, one could take the τ → 0 inside the integral, and the naive 1/Q2 expansion of the
dispersion integral in Eq. (14) would be valid.

In actual fact, the calculation of the moments (19) yields

M0(s0) = C2 − F 2
[
B1(xV )− B1(xA)

]
,

M1(s0) = −C4 − F 2
[
B1(xV )−B1(xA)

]
s0 +

1

2
F 2Λ2

[
B2(xV )−B2(xA)

]
,

M2(s0) = C6 − F 2
[
B1(xV )− B1(xA)

]
s20 + F 2Λ2

[
B2(xV )−B2(xA)

]
s0

−
1

3
F 2Λ4

[
B3(xV )−B3(xA)

]
,

M3(s0) = −C8 − F 2
[
B1(xV )−B1(xA)

]
s30 +

3

2
F 2Λ2

[
B2(xV )−B2(xA)

]
s20

−F 2Λ4
[
B3(xV )− B3(xA)

]
s0 +

1

4
F 2Λ6

[
B4(xV )− B4(xA)

]
, (23)

where the C2k are given in Eqs. (17), and we have defined 0 < xV,A < 1 as the fractional
parts of (s0 −m2

V,A)/Λ
2, respectively. The above expressions are valid when s0 > m2

V ,
i.e., when both the vector and axial towers are included. In these expressions, the
points xV,A = 0, 1 should be excluded because they correspond to the singularities of
the delta functions in the spectrum, cf. Eq. (4). We have kept the coefficients C2,4

for illustrative purposes, even though they actually vanish because of the constraints
(11-13). Perhaps several comments to explain the pattern in the result of Eq. (23) are
in order.

First, these expressions clearly show that there is no s0 at which the moments
equal the OPE coefficients, C2k, and consequently, in the world of Nc → ∞ described
by our model, there is no such thing as a true “duality point.” There are always
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Figure 2: From left to right: M0, M1 (first row), M2 and M3 (second row), defined in
Eq. (19), as functions of the energy scale, s0 (in GeV2).

duality violations in the form of a polynomial in the variables xV,A. As can be seen in
Fig. 2, these violations are step-function “oscillations” around the corresponding OPE
coefficient. Note that the OPE coefficients C6,8 are numerically negligible (using the
parameters in Eq. (24) below) compared to the oscillations shown in Fig. 2 for the
corresponding moments M2,3.

Looking at Eqs. (23), one sees that there is some recursiveness, i.e. higher moments
depend on the duality violation already existing in lower moments. Also, higher mo-
ments have higher powers of s0 modulating their duality violations, so the oscillations
grow larger for higher moments. This means that the larger the s0 at which one is
computing the moments (19), the worse the duality violation. All this behavior is
clearly shown in Fig. 2, where we have taken as the values for our parameters the set5

F0 = 85.8 MeV , Fρ = 133.884 MeV , F = 143.758 MeV , (24)

Mρ = 0.767 GeV, mA = 1.182 GeV, mV = 1.49371 GeV , Λ = 1.2774 GeV .

Second, as we have said, the end points xV,A = 0, 1 are to be excluded from the
result shown in Eq. (23). They correspond to the singularities of the delta functions in
Eq. (4), i.e. to the position of the meson masses, and cause the appearance of step-like
discontinuities at the same location in all the moments Mn(s0). At the jump produced
by, e.g., the kick of a vector resonance after the drop produced by an axial-vector one,
Fig. 2 shows how one crosses the value of the corresponding coefficient of the OPE.
However, since the slope at these points is infinite, there is no way to predict the C2k

coefficient from the value of the corresponding moment.

5This choice is dictated by the fact that, when a nonvanishing width will be included in the next
section, the spectral function resembles qualitatively the experimental data. See Fig. 5 below. This
choice of parameters also satisfies Eqs. (11-13).
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One might think that the introduction of a finite width could drastically improve the
present situation at large Nc. However, this is not really true in the model. Although
introducing a finite width certainly changes the slope to make it finite, it also moves
the location of the duality points from one moment to the next. As we will discuss in
more detail in the next section, the net result is that it is still very difficult to make
accurate predictions.

The best way to try to understand the relationship between the moments and
the coefficients of the OPE is through the use of Cauchy’s theorem, Eq. (1). As
already discussed in the introduction, the replacement Π(q2) → ΠOPE(q

2) would be
valid if the OPE were a convergent expansion with a radius of convergence including
the circumference |q2| = s0. However, in QCD the OPE is not a convergent expansion
anywhere on the Re q2 > 0 axis. Since this crucial property is shared by our model, we
can now use the model to study how Eq. (1) should be modified when the expansion
ΠOPE(q

2) is used instead of the exact function, Π(q2).
To this end, let us define D[n](s0) from the equation

∫ s0

0

dt tn ρ(t) = −
1

2πi

∮

|q2|=s0

dq2 q2n ΠOPE(q
2) +D[n](s0) . (25)

Obviously, the term D[n](s0) measures the amount of duality violation and we would
like to obtain a more explicit expression for it in our model.

In order to do this, note that the OPE in our model is related to the large |z|
expansion of the Digamma function,

ψ(z) ∼ log z −
1

2z
−

∞∑

n=1

B2n

2n z2n
, | arg(z)| < π , (26)

which is not a valid expansion on the negative real axis in the complex z plane. We
may, nevertheless, obtain a valid expansion in this region if we use the “reflection”
property of the Digamma function

ψ(z) = ψ(−z)− π cot(πz)−
1

z
, (27)

which is valid for any complex number z. Using Eq. (27), the appropriate expansions
for large values of |q2| in the whole q2 plane then read

Π(q2) ≈

{
ΠOPE(q

2) +O
(
e−2π|q2|/Λ2

)
, Re q2 ≤ 0 ;

ΠOPE(q
2) + ∆∞(q2) +O

(
e−2π|q2|/Λ2

)
, Re q2 ≥ 0 ,

(28)

where

∆∞(q2) =
πF 2

Λ2

{
cot

[
π
−q2 +m2

V

Λ2

]
− cot

[
π
−q2 +m2

A

Λ2

]}
, (29)

and the subscript “∞” refers to the Nc → ∞ limit. Let us emphasize again that the
appearance of ∆∞(q2) in Eq. (28) gives rise to a violation of duality which does not
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+i s0

−i s0

−i ǫ

+i ǫ

Figure 3: Contour used for the definition of the functions D
[n]
oscill.(s0) and D

[n]
const.(s0) in

Eqs. (32,33).

go away as |q2| → ∞ (in particular it contains simple poles on the positive real axis
in the q2 plane). This duality violation comes on top of the expected exponentially
suppressed contributions, which we have exhibited explicitly in Eq. (28), and which
originate from the fact that the OPE, in those regions where it is valid, is only an
asymptotic expansion.6

Consequently, up to an exponentially small contribution, the duality violation D
term can be written as an integral over the semicircle |q2| = s0 with Re q2 ≥ 0 (taken
counter-clockwise) of the function ∆∞(q2),

D[n](s0) = −
1

2πi

∫

|q2| = s0
Re q2 ≥ 0

dq2 q2n ∆∞(q2) +O
(
e−2πs0/Λ2

)
. (30)

Furthermore, Eq. (30) can be rewritten in the form of a spectral integral in the
following way. The integral over the contour in Fig. 3 vanishes, since it encloses no
singularity. It follows that the duality violation function D[n](s0) in Eq. (30) can also
be expressed, up to exponentially small terms O(e−2πs0/Λ2

), as

D[n](s0) = D
[n]
oscill.(s0) +D

[n]
const.(s0) , (31)

with

D
[n]
oscill.(s0) =

∫ s0

0

dt tn
1

π
Im ∆∞(t + iε) (32)

D
[n]
const.(s0) = −

1

2πi

{∫ −iǫ

−is0

+

∫ is0

iǫ

}
dq2 q2n ∆∞(q2) . (33)

In these expressions, the integral (32) is taken over the positive real axis, in the complex
q2 plane, whereas the integrals (33) are taken over the imaginary axis (with ǫ → 0+).

6See the Appendix.
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We see that expression (32) is of the form of a spectral integral, just like the left-hand
side of Eq. (25). In fact, for Nc → ∞, Im ∆∞(q2 + iε) is also a sum of delta functions
with poles precisely located according to the spectrum given by the towers of Eqs. (5).
This follows from the expansion for the cotangent,

π cot (πz) =
1

z
+ 2z

∞∑

n=1

1

z2 − n2
. (34)

Physically, the function D
[n]
oscill.(s0) is responsible for balancing all the oscillations

which are present in the spectral integral on the left-hand side of Eq. (25) but which
are missed by the contour integral of the OPE on the right-hand side. The function
D

[n]
const.(s0), on the other hand, does not have any oscillating component, and is domi-

nated by the region of small q2, decaying exponentially fast in s0 to a constant. One
has

D
[n]
const.(s0) = C[n]

∞ + O
(
e−2πs0/Λ2

)
, (35)

with, in our Nc = ∞ model,7

C[n]
∞ =

F 2Λ2n

n+ 1

{
Bn+1

(
m2

V

Λ2

)
− Bn+1

(
m2

A

Λ2

)}
− F 2

(
m2

V − Λ2
)n

. (36)

Using this result for n = 0, 1, 2, 3 in Eq. (33) together with Eqs. (32), (31) and (25)
one may recover the results of Eq. (23) for the moments M0,1,2,3. Again, the total
contribution to D[n](s0) in Eq. (25) does not vanish, even in the s0 → ∞ limit.

Since duality violations are caused by the lack of convergence near the positive
real axis in the q2 plane, a possible strategy to eliminate them might be to use suitable
polynomials P (t) in Eq. (25) which suppress the contribution precisely from this region
in q2 by having a zero at q2 = s0. Such polynomials have been referred to as “pinched
weights” in Ref. [20].

This is confirmed by our large-Nc model, and it is related to the recursiveness
present in the different moments in Eq. (23). For instance, a pinched weight of the
form (1 − t/s0) automatically cancels the duality violating oscillation proportional
to B1(xV ) − B1(xA) between the moments M0 and M1. The cancelation, however,
is not complete and this pinched weight leaves behind an oscillation proportional to
[B2(xV )−B2(xA)]/s0 which, although suppressed at high s0, does not vanish completely.

One can actually exploit this feature a little further and, by inspection of Eq. (23),
one easily sees that P3 = (1 − t/s0)

3 is the pinched weight which best suppresses the
duality violating oscillations among the moments M0,1,2,3 since it only leaves behind a
term proportional to [B4(xV ) − B4(xA)]/s

3
0. This is illustrated in Fig. 4, where it is

shown how much of a reduction in the oscillations of the left-hand side of Eq. (25) is
achieved by the pinched weight P3 in comparison with other pinched weights previously
proposed in the literature [20], i.e. P1 = (1−3t/s0)(1−t/s0)

2 and P2 = (t/s0)(1−t/s0)
2.

Figure 4 also shows that the OPE curve more or less interpolates through the
oscillations in the spectral integral. As one can see, there are points at which the

7In order to obtain this result, note that in our model 1 <
m

2

V

Λ2 < 2, whereas
m

2

A

Λ2 < 1, cf. Eq. (24).
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Figure 4: Integrals of the pinched weights,
∫ s0
0 dt P1,2,3(t)ρ(t) defined in the text (solid lines,

from left to right and top to bottom) and the corresponding OPE prediction (dashed lines) as
a function of s0 (in GeV2). These integrals are expressed in units of 10−2 GeV2.

oscillation happens to cross the OPE curve so that, at these points, all duality violations
effectively vanish. Based on this, one could imagine guessing the OPE coefficients by
some sort of averaging over one full oscillation. Regretfully, this behavior sensitively
depends on the fact that we are considering the Nc → ∞ limit. The inclusion of a
finite width essentially wipes out any oscillating signal and one is left without any clue
as to where to take the average.

In the next section we will discuss in detail the inclusion of a finite width as well
as those features which survive the passage to this more realistic setting.

3 Duality violations at finite Nc

Since the issue of duality violations hinges strongly on the analytic properties of the
OPE and the corresponding Green’s functions, it is clear that the introduction of a finite
width has to be done with some care in order not to spoil these analytic properties.

Moreover, in QCD finite widths appear as a consequence of subleading effects in
the 1/Nc expansion. It is clear that if one knew how to properly include all these
1/Nc effects, one would incorporate just the right 1/Nc corrections to give resonances
a finite width, while at the same time preserving the relevant analytic properties of
Π(q2). Among those properties, the most important one for us will be the existence
of a cut in the complex plane only for Re q2 > 0. A simple Breit-Wigner function, for
instance, is not good enough.

However, the solution of QCD in the large-Nc limit is unknown, let alone the 1/Nc

12



corrections, so it is clear that one has to model these effects in some simple way in
order to make progress. This is what has been done in Ref. [7]. The hope is that
the conclusions drawn from such a model will not depend in any crucial way on the
particular details but rather on the generic properties of the model.

With this philosophy in mind we follow Ref. [7] and introduce a subleading 1/Nc

width, writing the vacuum polarization Π(q2) as

Π(q2) =

(
1−

a

πNc

)−1
{
−
F 2
0

z
+

F 2
ρ

z +M2
ρ

−

∞∑

n=0

F 2

z +M2
A(n)

+

∞∑

n=0

F 2

z +M2
V (n)

}
,

(37)
where now the variable z denotes the combination

z = Λ2

(
−q2 − iǫ

Λ2

)ζ

, ζ = 1−
a

πNc
, (38)

and MV,A(n) are given in Eq. (5). As in the zero-width case, the infinite sums can be
expressed in terms of the Digamma function, and one obtains

Π(q2) =
1

ζ

{
−
F 2
0

z
+

F 2
ρ

z +M2
ρ

+
F 2

Λ2

[
ψ

(
z +m2

A

Λ2

)
− ψ

(
z +m2

V

Λ2

)]}
. (39)

Obviously, in the Nc → ∞ limit we recover the results of the previous section. The
conditions of Eqs. (11), (12) and (13) impose now the absence of any log z, 1/z and 1/z2

terms in the large Q2 = −q2 > 0 expansion of the Green’s function Π(q2) in Eq. (39).
The choice of values for the parameters in Eq. (24) plus the choice

a = 0.72 (40)

for the new parameter a produces the spectral function which is plotted in Fig. 5.
As can be seen in this figure, the model is not able to reproduce the experimental
data in detail, but the qualitative agreement is good enough for our purposes. We
remind the reader that our model is not meant to extract physical parameters, but
only as a laboratory for testing different methods which are currently in use for the
determination of the coefficients of the OPE from the data.

In the limit Nc → ∞ one recovers for Im Π(q2) the result with Dirac deltas of the
previous section, Eq. (4). However, at small but finite a/Nc, the dependence of every
resonance propagator on q2 through the new variable z produces a complex pole with
an imaginary part, and thus a width ΓV,A(n) given by

ΓV,A(n) =
a

Nc
MV,A(n)

(
1 +O

(
a

Nc

))
, (41)

and, mutatis mutandis, for the ρ as well. This behavior for Γ is the one expected on
general grounds [7] and, as one can see, forces ΓV,A(n) to vanish as Nc → ∞, although
it should be noted that the width also grows with the resonance number n.
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Figure 5: Comparison of the data from ALEPH and OPAL (overlaid on a single plot and
including the kinematical factors of τ decay) with the model, 1

π Im Π(q2) from Eq. (39) (solid
blue line), as a function of q2 (in GeV2). As it is the case with the experimental data, the
pion contribution, F 2

0 /z in Eq. (39) has been subtracted away.

Given that the change produced by the widths amounts to the replacement (38),
the expansion of the Green’s function Π(q2) at large values of the momentum |q2| is
similar to that in Eq. (28):

Π(q2) ≈

{
ΠOPE(q

2) +O
(
e−2π|q2/Λ2|ζ

)
, Re q2 ≤ 0 ,

ΠOPE(q
2) + ∆(q2) +O

(
e−2π|q2/Λ2|ζ

)
, Re q2 ≥ 0 ,

(42)

except that now

∆(q2) =
πF 2

Λ2

1

ζ

{
cot

[
π

(
−q2

Λ2

)ζ

+ π
m2

V

Λ2

]
− cot

[
π

(
−q2

Λ2

)ζ

+ π
m2

A

Λ2

]}
, (43)

with ζ = 1− a
πNc

. Similarly, the OPE is given by an expansion as in Eq. (14) but the
coefficients (16) are shifted by a logQ2-dependent term. For small a/Nc, the Wilson
coefficients read

C2k(Q
2)Nc=3 = CNc=∞

2k

(
1 +

a

πNc
+

ka

πNc
log

Q2

Λ2
+O

(
a2

N2
c

))
, (44)

where the CNc=∞
2k are those given in Eq. (16). We will find it convenient to explicitly

separate the log dependence and decompose these coefficients as [20]

C2k(Q
2)Nc=3 = a2k + b2k log

Q2

Λ2
+O

(
a2

N2
c

)
. (45)

The b2k would model the existence of anomalous dimensions in real QCD were it
not for the fact that the latter, unlike the b2k, do not vanish in the large-Nc limit.
We do not consider this to be a serious drawback of the model, however, and the
1/Nc contributions in Eq. (44) still mimic the αs(mτ ) contributions to the anomalous
dimensions which exist in real QCD. Even though the 1/Nc corrections in Eq. (44)
grow larger with increasing dimension of the operator, at least for the first terms there
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is a sense in which the Nc → ∞ limit is close to the world at Nc = 3 in the OPE.
Plugging in our set of numbers (24, 40), the OPE coefficients are

a2 = b2 = 0 = a4 = b4

a6 = −2.8× 10−3GeV6 , b6 = −5.9× 10−4GeV6 ,

a8 = +1.8× 10−3GeV8 , b8 = +5.1× 10−4GeV8 . (46)

The small 1/Nc correction to the Green’s function Π(q2) in the Euclidean (cf.
Eq. (44)) is in complete contradistinction to what happens to the spectral function
Im Π(t) in the Minkowski region, t > 0. As emphasized in Ref. [7], the reason for
this is that the limits Nc → ∞ and t → ∞ do not commute in this region. Defining
q2 = t > 0, one obtains to leading order in a/Nc for the variable z of Eq. (38) in this
region,

z = −t

(
1−

a

πNc
log

(
t

Λ2

)
+ i

a

Nc
+O

(
a2

N2
c

))
. (47)

Taking imaginary parts of the reflection property for the ψ function in Eq. (27), at
large values of the momentum t > 0 one obtains that

Im Π(t) = Im ΠOPE(t) + Im ∆(t) , (48)

where

Im ΠOPE(t) =
3a

Nc

b6
t3

(
1 +O

(
a

Nc

))
+O

(
1

t4

)
, (49)

and

Im ∆(t) =
4πF 2

Λ2
e−

2πa
Nc

t

Λ2 sin

(
π
2t−m2

A −m2
V

Λ2

)
sin

(
π
m2

V −m2
A

Λ2

)(
1 +O

(
a

Nc

))

+ O
(
e−

4πa
Nc

t

Λ2

)
. (50)

The imaginary part in Eq. (49) can be gotten from the imaginary part of the logarithm
in the OPE expansion in Eq. (44) and is also familiar from the QCD case, except for
the 1/Nc suppression. Analogously, the cancelation of the t−1 and t−2 terms is due to
the absence of the corresponding 1/Q2 and 1/Q4 terms in the OPE in the Euclidean
region.

The contribution shown in Eq. (50) is completely missed by the OPE and stems
from the duality-violating function ∆(q2) in Eq. (43). We call the reader’s attention
to the Nc factor in the denominator of the exponent in Eq. (50). The expression in
this equation is obtained in the large t limit when Nc is kept finite. That is to say, for
finite Nc, the isolated poles of ∆∞(q2) on the real axis (Fig. 3) become a cut. If, on the
contrary, the limit Nc → ∞ is taken first, then the expression (50) is not valid and one
obtains the infinite sum of delta functions of the previous section instead. It follows
that the two limits Nc → ∞ and t→ ∞ do not commute in the Minkowski region. We
expect this effect to be quite generic, and we thus believe the exponentially damped
oscillation shown in Eq. (50) to be more general than our particular model [7].
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In general, although Eqs. (25,30) are still valid, the behavior of the duality-violating
function ∆(q2) changes drastically with respect to its counterpart ∆∞(q2), showing an
exponential fall-off at large |q2| on the half plane Re q2 ≥ 0. One has now that

∆(q2) ∼
|q2| large

e
−2π

(
|q2|

Λ2

)ζ ∣∣ sin
{
ζ(ϕ−π)

}∣∣
, q2 = |q2| eiϕ ,

{
0 ≤ ϕ ≤ π

2
3π
2
≤ ϕ ≤ 2π

. (51)

We see in particular that the limit Nc → ∞ (i.e. ζ → 1) makes the values ϕ =
0, 2π exceptional: when Nc = ∞, the exponential fall-off on the real axis completely
disappears. This is of course consistent with Eq. (50).

The exponential fall-off exhibited in Eq. (51) implies now that the function D[n](s0)
vanishes exponentially at large s0 as

D[n](s0) ∼ O
(
e−

2πa
Nc

s0
Λ2

)
. (52)

Again we note the singular limit Nc → ∞ in this expression: in the previous section
we saw that D[n](s0) → “undamped oscillations,” if the limit Nc → ∞ is taken before
s0 is taken to infinity.

For finite Nc, one has

D[n](s0) = D
[n]
oscill.(s0) +D

[n]
const.(s0) ∼

s0 large
O
(
e−

2πa
Nc

s0
Λ2

)
, (53)

D
[n]
oscill.(s0) =

∫ s0

0

dt tn
1

π
Im ∆(t + iε) ∼

s0 large
−C[n] +O

(
e−

2πa
Nc

s0
Λ2

)
, (54)

D
[n]
const.(s0) = C[n] + O

(
e−2π

s0
Λ2

)
. (55)

We are using the hierarchy

e−
2πa
Nc

s0
Λ2 ≫ e−2π

s0
Λ2 , (56)

which is very well satisfied for large values of s0. Note the more stringent bound on
the corrections to Eq. (55), which results from the fact that D

[n]
const.(s0) is defined as an

integral over ∆(q2) for values of q2 far away from the positive real axis.8

Combining Eqs. (53-55) in the s0 → ∞ limit, it follows that

C[n] = −

∫ ∞

0

dt tn
1

π
Im ∆(t+ iε) , (57)

and, inserting this result into Eq. (53), we obtain

D[n](s0) = −

∫ ∞

s0

dt tn
1

π
Im ∆(t + iε) + O

(
e−

2πs0
Λ2

)
(58)

as the final expression in the finite width case, for the duality violations in Eq. (25).

Since Im ∆(t + iε) ∼ O(e−
2πa
Nc

t

Λ2 ) (cf. Eq. (50)), the integral in Eq. (58) is indeed of

order e
−

2πs0
NcΛ2 , in agreement with Eq. (53).

8See the Appendix for the derivation of Eq. (55).
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Figure 6: From left to right: M0, M1 (solid curves, first row), M2 and M3 (solid curves,
second row), defined in Eq. (19), together with the OPE prediction (dashed curves) as given
by the corresponding terms in squared brackets in Eqs. (59-62), as functions of the energy
scale, s0 (in GeV2).

Returning to Eq. (25), we obtain for the OPE coefficients the following set of
equations:

∫ s0

0

dt ρ(t) +

[
b6
2s20

−
b8
3s30

+ ...

]
= D[0](s0) (59)

∫ s0

0

dt t ρ(t) +

[
b6
s0

−
b8
2s20

+ ...

]
= D[1](s0) (60)

∫ s0

0

dt t2ρ(t)−

[
a6 + b6 log

s0
Λ2

+
b8
s0

+ ...

]
= D[2](s0) (61)

∫ s0

0

dt t3ρ(t) +

[
a8 + b8 log

s0
Λ2

− b6s0 +
b10
s0

+ ...

]
= D[3](s0) (62)

...∫ s0

0

dt t7ρ(t) +

[
a16 + b16 log

s0
Λ2

−
b6s

5
0

5
+
b8s

4
0

4
+ . . .+

b18
s0

+ ...

]
= D[7](s0) , (63)

where the right-hand side is given by Eq. (58). The results for the lowest moments
(19) and the corresponding OPE (the terms explicitly shown in squared brackets in
Eqs. (59-62)) are plotted in Fig. 6.

We draw the following conclusions from Eqs. (59-63): First, it is clear that the
b coefficients of the OPE also contribute to these equations. The pattern is simple
and governed by dimensional analysis: a higher order b contributes to the equation
determining a lower order a accompanied by inverse powers of the scale s0. On the
other hand, a lower order b contributes to the equation determining a higher order a
accompanied by positive powers of s0.
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Even though in real QCD the b coefficients are order αs effects with respect to the
a’s, the fact that they may appear multiplied by positive powers of s0 tells us that, in
general, it is safer not to neglect them from the start, unlike what is done at present
in common practice. A possible exception is the term b6, which is the only one which
has been calculated [21] and which seems to be small enough to be safely disregarded.
Since this term is the only one accompanied by positive powers of s0 in Eqs. (59-62),
it might not be too unreasonable to neglect the b terms in these equations in a first
approximation. However, for higher moments, this practice may be dangerous. Notice
that an s40 term amounts to a factor of almost 100 GeV8 for s0 = m2

τ = 3.15 GeV2 so
that, for instance, the term b8s

4
0 in the last Eq. (63) might not be negligible even if b8

is small.
Second, and most important, the right-hand sides of Eqs. (59-63) do not vanish in

general, except in the limit s0 → ∞. As it is obvious from these equations, the D
terms may potentially pollute the extraction of the OPE coefficients. Consequently,
in any precise determination of OPE coefficients it is unavoidable to take this duality
violation into account.

In order to further appreciate this point, let us close our eyes, neglect the duality
violations D altogether, and apply the different methods which have been employed in
the literature so far.

For instance, let us start with finite-energy sum rules. The method consists in
determining a duality point s∗0 from the condition M0,1(s

∗
0) ≃ 0, which is then to be

used in M2,3(s
∗
0) to predict the combinations appearing in Eqs. (61,62), namely

A6(s
∗
0) ≡ a6 + b6 log

s∗0
Λ2

+
b8
s∗0

+ ... ,

A8(s
∗
0) ≡ a8 + b8 log

s∗0
Λ2

− b6s
∗
0 +

b10
s∗0

+ ... (64)

In our model the first duality point happens to sit at s∗0 = 1.472 GeV2, yielding the
predictions

AFESR
6 = −4.9 · 10−3 GeV6 , AFESR

8 = +9.3 · 10−3 GeV8 , (65)

which can be compared to the correct values

A6(1.472 GeV2) = −2.4 · 10−3GeV6 , A8(1.472 GeV2) = +2.6 · 10−3GeV8 . (66)

There is a second duality point around 2.4 GeV2 fulfilling eitherM0(s
∗
0) = 0 orM1(s

∗
0) =

0, but not both. Choosing the one which satisfies M1(s
∗
0) = 0, for instance, one gets

s∗0 = 2.363 GeV2 and this yields

AFESR
6 = −2.0 · 10−3 GeV6 , AFESR

8 = −1.6 · 10−3 GeV8 , (67)

to be compared to

A6(2.363 GeV2) = −2.8 · 10−3GeV6 , A8(2.363 GeV2) = +3.4 · 10−3GeV8 . (68)
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Figure 7: Difference between the integrals of the pinched weights,
∫ s0
0 dt P1,2,3(t)ρ(t) and the

corresponding OPE contribution from Eqs. (59-62) (in units of 10−3 GeV2), as a function of
s0 (in GeV2), from left to right and top to bottom, respectively.

As we see, in going from the first to the second duality point, A6 is reduced by a
factor 2 and A8 changes sign. Interestingly enough, this is precisely the trend seen in
the corresponding determinations in the literature [22, 23].

From the comparison of both results (65) and (67), it seems that there is no dramatic
advantage to making the prediction using the second duality point rather than the first,
even though at the second point s0 has a larger value.9 Moreover, while going to a
larger s0 is in principle better because the duality violations D[n](s0) become smaller,
if this is done while keeping all the b coefficients to zero, i.e. taking the A’s above as
estimates for the a’s, then the growth of the moments M2,3(s0) with s0 — they are
actually divergent because of Eq. (49) — is numerically absorbed by a wrong shift in
a6,8. As we see in Eqs. (65) and (67), this may invalidate the advantage of choosing a
larger s0. Furthermore, in the real world the experimental error bars are much bigger
at larger s0, the QCD value of b6 is very small and that of b8 is unknown. This makes
it difficult to know exactly what explains the difference between the results obtained
in the literature using finite-energy sum rules [22, 23, 17].10

Let us next consider pinched weights, which have been suggested [20, 25] as a
way to reduce the amount of duality violations. However, the use of pinched weights
is no guarantee that one can do away with the duality violations altogether. For
instance, we have followed Ref. [20] and fitted the OPE coefficients to the combination
of moments obtained with the pinched weights P1 = (1 − 3t/s0)(1 − t/s0)

2 and P2 =

9The prediction for A6 at the second s∗0 is somewhat better than at the first, but this is no longer
the case for A8.

10Reference [24] finds numerical agreement with Ref. [23] but, in fact, it does not have the second
duality point the analysis of Ref. [23] is based on.

19



(t/s0)(1− t/s0)
2, neglecting duality violations. We have done this with 20 points in the

window 1.5 GeV2 ≤ s0 ≤ 3.5 GeV2. The upper end in this window was identified by
noting that the tau mass roughly coincides with the mass of the ρ(1700) in QCD, and
in our model this resonance happens to be at m2

ρ′′ ≃ 3.8 GeV2. The result from the fit
can be interpreted as some sort of average over the window in s0 of the combinations
A6,8 in Eq. (64), and yields

Apinch
6 = −3.8 × 10−3 GeV6 , Apinch

8 = 6.5× 10−3 GeV8 . (69)

As one can see, the error made is again rather large (particularly in the case of A8)
and, in fact, comparable to that using finite-energy sum rules in Eqs. (65, 67). We did
not see any clear improvement in precision by changing details of the fit such as, e.g.,
the window of s0 values used.

Since pinched weights suppress duality violations, one may try to design “good”
pinched weights which have as small duality violations as possible. Assuming a general
expression for the duality violations of the form (cf. Eq. (50))

1

π
Im∆(t) = κ e−γt sin (α + βt) , (70)

for certain values of the parameters κ, γ, α and β, one could ask which is the pinched
weight, involving moments not higher thanM3, which minimizes the amount of duality
violations. As before, the answer to this question is P3 = (1 − t/s0)

3. The reason is
that, given the general form in Eq. (70), one finds that P3’s residual oscillation is
damped by the factor s−3

0 e−γs0 , while in the case of P1,2 the damping factor is only
s−2
0 e−γs0 . This is a behavior reminiscent of the Nc = ∞ case in the previous section.11

Figure 7 shows the difference between the integral of the pinched weights P1,2,3 and
their corresponding OPE contribution from Eqs. (59-62) as a function of s0. If there
were no duality violations these curves should be a flat zero. As this figure shows, P3

has the smallest duality violations.
In Ref. [17] a Laplace sum rules analysis was done. Neglecting the b coefficients one

obtains for the a coefficients of the OPE the equations

aL6 − aL10
τ 2

12
+ ... =

6

τ 2

∫ s0

0

dt e−tτ ρ(t) +
2

τ

∫ s0

0

dt t e−tτ ρ(t) ,

aL8 + aL10
τ

2
+ ... = −

12

τ 3

∫ s0

0

dt e−tτ ρ(t)−
6

τ 2

∫ s0

0

dt t e−tτ ρ(t) . (71)

Requiring stability under variations in the Laplace variable τ one can determine aL6,8.
12

In Fig. 8 we have plotted the true values for a6,8 from Eq. (46) together with the τ
dependence of aL6 , a

L
8 – neglecting aL10 and higher. The upper limit in the Laplace

integral has been chosen to be the second duality point from the previous finite-energy
sum rules analysis of Eq. (67), s∗0 ≃ 2.35 GeV2, but there is no qualitative change if the

11This is a general result. For moments not higher than Mn the optimal pinched weight is (1−t/s0)
n

and the residual oscillation is modulated by s−n

0
e−γs0 .

12Obviously, the true a coefficients (46) are independent of τ .
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Figure 8: Plot of the coefficients aL6 (solid curve, left) and aL8 (solid curve, right), together
with the corresponding true values a6,8 (dashed horizontal lines) from Eqs. (46) (all in units
of 10−3), as a function of the Laplace variable, τ (in GeV−2).

first duality point (65) is used instead. As it can be clearly seen, no sign of stability in
τ is found. (We do not expect this to change qualitatively if a10, b6 etc. are included.)
This is unlike what is found in QCD [17] and may be another sign of what we already
said in the introduction concerning the model’s tendency to maximize the violations
of duality.

Finally, we also used the MHA method [26]. In this case one truncates the spectrum
to a finite number of resonances whose parameters are adjusted so that the low- and
high-energy expansions of the Π(q2) function in the large-Nc limit are reproduced. In
this way one constructs an interpolator for the function Π(q2), called ΠMHA(q

2) with
which it is possible to calculate, e.g., the integrals which determine the relevant cou-
plings governing semileptonic kaon decays. However, in the present case the situation
is slightly different because one wishes to use ΠMHA(q

2) to predict coefficients of the
high-energy expansion, and not as an interpolator for an integrand.

The function ΠMHA(q
2) is constructed as13

Π(q2)MHA =
F 2
0

q2
+

F̃ 2
V

M̃2
V − q2

−
F̃ 2
A

M̃2
A − q2

, (72)

with the parameters M̃V , M̃A, F̃V , F̃A to be determined from the conditions C2,4 = 0
and the values of L10 and the pion electromagnetic mass difference in the large-Nc

limit, as taken from the model in the previous section, Eq. (10).
They are given by the following expressions:

L10 = −
1

4
F 2
0

M̃2
A + M̃2

V

M̃2
V M̃

2
A

= −(5.2± 0.5) · 10−3 (73)

m+
π −m0

π =

(
3α

8π2mπF 2
π

)
F 2
0

M̃2
AM̃

2
V

M̃2
A − M̃2

V

log

(
M̃2

A

M̃2
V

)
= (4.2± 0.4) · 10−3 GeV ,

where α ≃ 1/137 is the electromagnetic coupling constant, and the error has been
estimated on account of the large-Nc approximation of the model. Equations (73) fix

13See Ref. [27] for a more elaborated version of this method applied to QCD, in which also a ρ′ is
included.
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the parameters in Eq. (72) to be

M̃V = 0.70± 0.01 GeV , M̃A = 1.00± 0.03 GeV

F̃V = 122± 6 MeV , F̃A = 84± 7 MeV . (74)

Feeding expression (72) with these values one has a prediction for the full vacuum
polarization function. In the Euclidean region the prediction is very good for a broad
range of intermediate values of q2. For example, at q2 = −1 GeV2 the error between
Π(q2) and ΠMHA(q

2) is only ∼ 3% 14.
Expanding Eq. (72) in inverse powers of q2, we obtain the following prediction for

the OPE coefficients:

aMHA
6 = −(3.6± 0.3)× 10−3 GeV6 , aMHA

8 = (5.4± 0.7)× 10−3 GeV8 , (75)

to be compared to the results in Eq. (46). Again, no dramatic improvement is found as
compared to previous methods. As with other methods, the prediction for a8 is worse
than that for a6.

In summary, the errors in the determinations of OPE coefficients from the different
methods tend to be large in the present model. No method can be claimed to be more
precise than the others, and the error made is comparable in size to the spread of values
among the different methods.

It is difficult to say what happens in the case of QCD. For a6, the spread of values
in QCD found in the literature is not as bad as in the case of our model. This could
be related to the fact that the size of the coefficient b6 relative to a6 is much smaller
in QCD than it is in the model. But also in QCD the discrepancies are clearly more
serious for a8 and higher coefficients [17].

One of the lessons from our analysis of the model is that one should not ignore
duality violations represented by the D terms in Eqs. (59-63). In Fig. 9, we have
plotted these D terms (solid lines). As one can see, they show zeros at certain values
of s0 ∼ 1.5, 2.4, 3.4, ... GeV. These zeros correspond to values of s0 where the duality
violations vanish and they are therefore the optimal points which one would like to
use as duality points in any finite-energy sum rule analysis. However, the location
of these zeros is not precisely determined because, as Fig. 9 shows, the zeros are not
universal but move from one spectral moment to the next. This is one of the reasons
why the finite-energy sum rule determination of OPE coefficients in Eqs. (64-68) has
large errors. Consequently, as such duality violations are likely to be present in QCD
as well, we will now use the model to show how these D terms may be included in a
realistic analysis also in QCD.

Our basic assumption will be that our result (58) together with the functional
form of a damped oscillation as in Eq. (50) are rather generic results which go beyond
our particular model. This assumption seems reasonable15 as these general features
basically depend on large Nc and on the hierarchy of exponentials (56) controlling the
different contributions in Eqs. (52-55). In turn, this depends only on the fact that
large-Nc duality violations are concentrated on the real axis in the complex q2 plane.

14See also Ref. [11].
15See also Ref. [7].
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Therefore, let us start by assuming a duality violation of the form given in Eq. (70),
with parameters κ, γ, α and β to be determined. We remind the reader that in
Eqs. (59,60) the b terms are suppressed by inverse powers of s0. Therefore, in a first
approximation, it may be reasonable to completely neglect the b terms in these two
equations and, through Eq. (58), extract these parameters κ, γ, α and β by means of
a simultaneous fit to Eqs. (59,60). Then the rest of coefficients a6,8,... and b6,8,... can be
obtained from Eqs. (61-63) in a straightforward way.

Just to illustrate how this would work in our model, we have determined the param-
eters in Eq. (70) by doing this simultaneous fit in the window 1.5 GeV2 ≤ s0 ≤ 3.5 GeV2

with 20 equally-spaced points, with the following result:

κ = 0.026 , γ = 0.591 GeV−2 , α = 3.323 and β = 3.112 GeV−2 . (76)

Fig. 9 shows in the upper row the result of the fit to Eqs. (59,60). As one can see, the
overall fit is quite good. And since it improves in the intermediate region of the fitting
window where both D[0] and D[1] have a zero, this suggests that a good strategy is to
determine the OPE at these zeros. This is what we will do next.

In the lower row of Fig. 9, the dashed curve is the result for D[2,3](s0) from the fitted
function (70) and the solid curve is the result for the left-hand side of Eqs. (61,62), as
calculated from the true values of the model.

Armed with Eq. (70) and the values of the parameters from the fit (76), we predict
a duality point s∗0 at which D[2](s∗0) = 0, within the window of our fit, to be at s∗0 =
2.350 GeV2. Although similar, this value is not quite the same as the one obtained in
the finite-energy sum rules analysis before, which was 2.363 GeV2. This small difference
has a large impact on the determination of the OPE due to the steepness of the slope in
the plot of Fig. 9 (lower curves), resulting in the large error quoted in the finite-energy
sum rule analysis of Eqs. (67,68).

At this s∗0 = 2.350 GeV2, on the other hand, one finds from Eq. (61) that the OPE
contribution is given by

a6 + b6 log
s∗0
Λ2

+
b8
s∗0

−
b10
2s∗0

2
=

∫ s∗0

0

dt t2ρ(t) (77)

= −0.00251 GeV6 ,

whereas the exact number for the combination on the left-hand side of Eq. (77) obtained
in the model is−0.00281 GeV2, i.e. a∼ 10% error.16 The same analysis can be repeated

16We have repeated the analysis including the true values for the coefficients b6 and b8 in the fit to
Eqs. (59,60). In this case the error becomes 14%.
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Figure 9: Upper row: Plot of the left-hand side (solid line) and fit of the right-hand side
(dashed line) of Eqs. (59,60), neglecting the b coefficients, as a function of s0 (in GeV2).
Lower row: Plot of the left-hand side (solid line) and right-hand side predicted by the fit
(dashed line) of Eqs. (61,62), as a function of s0 (in GeV2).

for the combinations appearing in the rest of Eqs. (62, 63). For instance, we obtain

a8 + b8 log
s∗0
Λ2

− b6 s
∗
0 +

b10
s∗0

(78)

= −

∫ s∗0

0

dt t3ρ(t) = 0.00329 GeV8 (s∗0 = 2.307 GeV2) ,

and

a16 + b16 log
s∗0
Λ2

−
b6s

∗
0
5

5
+
b8s

∗
0
4

4
−
b10s

∗
0
3

3
+
b12s

∗
0
2

2
− b14s

∗
0 +

b18
s∗0

(79)

= −

∫ s∗0

0

dt t7ρ(t) = 0.0179 GeV16 (s∗0 = 2.130 GeV2) ,

to be compared to the exact values on the left-hand sides of Eqs. (78) and (79) which
are 0.00344 GeV8 and 0.0161 GeV16, representing ∼ 4% and ∼ 11% errors, respectively.
The gain in precision with respect to previous methods is clear.

4 Conclusion

We have developed a model of duality violations that shares many properties with
QCD, including the fact that resonances in the real world have a non-vanishing width.
Of course, an analysis of duality violations in a model cannot replace a similar analysis
in QCD. For example, the precision of the determination of combinations of OPE coef-
ficients in Eqs. (77-79) is not necessarily an indication of what can be achieved in QCD.
However, we do believe that the lessons from our model analysis are also relevant for
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QCD. First, the properties of the model that lead to duality violations are also present
in QCD [7], notably the fact that the OPE in both is (at best) asymptotic. Second,
because of the semi-realistic properties of the model, our analysis gives a good indica-
tion of the nature of systematic errors which result from making the various ansätze

which have been proposed in the literature in order to deal with duality violations.
We think that it should prove useful to attempt an analysis of the duality violations
represented by the D[n] (cf. Eqs. (59-63)), using an ansatz similar to that of Eq. (70),
also in the QCD case. In addition, we would like to call the reader’s attention to the
additional contributions to the “OPE side” of duality relations, represented by the b2n
in Eqs. (59-63). While some of the b2n may be small in the case of QCD, there are
contributions proportional to positive powers of s0, which enhance the effects of the
b2n coefficients. To the best of our knowledge, this issue has not been taken into ac-
count in any of the previous determinations in the literature of higher-dimension OPE
coefficients from duality. In a realistic analysis of the data, the procedure probably
should be refined to determine all the a and b coefficients of the OPE, as well as the
parameters κ, γ, α and β of Eq. (70) parameterizing the duality violations, by means
of a simultaneous fit to all Eqs. (59-63), in a manner similar to that of Ref. [20].

Finally, in real life one will also have to deal with experimental error bars, of course.
For example, the experimental error bars in Fig. (5) are large in the large-s0 region, and
this will further complicate a precision determination of OPE coefficients. However,
we hope to have made it clear that much can be learned from considering models such
as the one analyzed in this paper, and that some of the lessons can be applied to the
real-world case of QCD. At the very least, an analysis like the one presented here offers
a way to estimate systematic effects.
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Appendix

The OPE of our model stems from the asymptotic expansion of the ψ(z) function in
Eq. (26). Using the identity for Bernoulli numbers

B2n = 2 (−1)n+1 (2n)!

(2π)2n
ζ(2n) , n = 1, 2, 3, ... (80)
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where ζ(2n) is Riemann’s zeta function, one can estimate the minimal error, δ, for this
expansion as

δ ∼
B2n∗

2n∗z2n∗ (81)

where n∗ is the optimal value in the sum (26). This n∗, in turn, can be estimated as
the value at which two consecutive terms in the sum (26) are approximately equal.
This results in n∗ ∼ πz.

Consequently, after using Stirling’s expression for the factorial, one obtains for the
minimum error in the asymptotic expansion (26)

δ ∼ e−2πz , (82)

where, here, z ∼
(

|q2|
Λ2

)ζ
at large |q2|, and ζ = 1 − a

πNc
for finite Nc. The estimate

(82) is also valid for the function ΠV V − ΠAA, because there is no cancelation in the
difference after inclusion of the right pre-factors. The result (82) is what appears in
Eqs. (28) and (42) in the main text.

We use the opportunity to also give some details of the derivation of Eq. (55). From

its definition (33), D
[n]
const.(s0) can be written as

D
[n]
const.(s0) = C[n] +

1

2πi

{∫ −is0

−i∞

+

∫ i∞

is0

}
dq2 q2n ∆(q2) . (83)

The two integrals can be estimated by using the large-q2 behavior of ∆(q2), if s0 is
large. Referring back to Eq. (43), we note that

cot

[
π

(
−q2

Λ2

)ζ

+ π
m2

Λ2

]
= 2e−2y sin(2x)± i

(
1 + 2e−2y cos(2x)

)
+O

(
e−4y

)
, (84)

where the plus (minus) sign should be used on the positive (negative) imaginary axis,
and where we defined

x = π

∣∣∣∣
q2

Λ2

∣∣∣∣
ζ

cos(ζπ/2) + π
m2

Λ2
, (85)

y = π

∣∣∣∣
q2

Λ2

∣∣∣∣
ζ

sin(ζπ/2) .

It is then straightforward to estimate each integral by using the bounds | sin(2x)| ≤ 1,
| cos(2x)| ≤ 1, and taking ζ → 1. The unsuppressed ±i in Eq. (84) cancels between
the vector and axial channels, and we obtain the result given in Eq. (55).
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