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Nowadays it is clear that Quantum Mechanics and General Relativity have
been the two most important paradigms in Fundamental Physics during the
last century. The year 2005 was chosen by the UNESCO as the World Year of
Physics with the aim to commemorate the Einstein’s miraculous year (annus
mirabilis) 1905, where he shocked the scientific community by presenting in
the volume 17 of Annalen der Physik a set of articles [1] about the Photo-
electric Effect, the Brownian Motion and Special Relativity. In the first one
Einstein set the concept of light quanta (Lichtquanten), which was one of the
conceptual cornerstones of Quantum Mechanics, and in the last two he set the
basis of the Theory of Relativity that would give rise to General Relativity
several years later. Professor Galindo, to whom this article is dedicated, has
devoted a great deal of his fruitful scientific career to Quantum Mechanics
and General Relativity as a scholar, researcher and teacher, and from him
several generations of Spanish theoretical physicists benefited. It is really a
honor and a pleasure to have the opportunity to celebrate, almost simultane-
ously, the 70th birthday of Alberto Galindo and the beginning of the World
Year of Physics 2005. We will do that here by reviewing briefly the genesis
and present status of the so called Holographic Principle. This is because ac-
cording to the opinion of many people it could bring some light on the always
obscure connection between Quantum Mechanics and General Relativity, the
big themes of contemporary Fundamental Physics and the academic life of
Alberto Galindo.

1 The Generalized Second Law

One of the most intriguing predictions of General Relativity (GR) is the exis-
tence of horizons in many of its solutions. These horizons establish limits and
boundaries between different sets of events determining the causal structure
of space-time. Probably the most popular solution of the GR Einstein’s 1915
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field equations [2] is the Schwarzschild one, which is believed to represent
the external metric of black-holes (BH). These bizarre objects were already
predicted to exist at the Age of Enlightenment ( [3] and [4] ), but only after
the advent of GR they have a sound theoretical support (the term BH was
coined by Wheeler in 1967). The Schwarzschild metric can be generalized to
the Kerr-Newman (KN) solution [5] which describes the most general sta-
tionary BH exterior and in general has a quite rich structure of horizons and
even connections with multiple universes (see for instance [6] for a detailed
description). The only parameters appearing in this solution are the mass M ,
the angular momentum J and the electric charge Q of the BH. This surprising
result is known in the literature as the no-hair theorem. The proof for four
dimensions can be found for instance in [7] or [8] (the theorem does not apply
to arbitrary number of dimensions). It is quite paradoxical since it means that
the final state of any system collapsing into a BH, no matter how complex
the system could be, will be described by just three parameters.

In any case the area A of the event BH horizon is given in Planck units
by:

A = 4π(R2
+ + a2), (1)

where

R+ = M

(

1 +

√

1 −
Q2 + a2

M2

)

(2)

and a = J/M (we are assuming Q2 + a2 ≤ M2). On the horizon the angular
frequency, the surface gravity and the electric potential are given respectively
by: Ω = 4πa/A, κ = 4π(R+ − M)/A and Φ = 4πR+Q/A.

At the beginning of the seventies, the work of several people made possible
to establish a set of rules concerning the state and evolution of classical BH’s
[9]. These rules can be stated as follows (see for instance [10]):

Rule 0: If the BH is stationary the surface gravity κ on the horizon is
constant.

Rule 1: Under small variations of the parameters of a stationary BH we
have:

dM =
κ

8π
dA + ΩdJ + ΦdQ (3)

Rule 2: Given a system with an arbitrary number of BH’s with area An,
the temporal evolution is such that the variation of total horizon area A does
not decreases with time:

dA =
∑

n

An ≥ 0 (4)

Rule 3: A stationary BH with κ = 0 is not accessible by a finite number
of steps.
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These rules lead to Bekenstein to suggest an analogy between classical
BH and thermodynamics [11]. According to it a stationary BH behaves like a
system in thermodynamic equilibrium so that the rules above correspond with
the laws of thermodynamics. One important consequence of this analogy is
that the BH has an entropy proportional to its horizon area, i. e. SBH = CA.
In addition Bekenstein also enunciated the so called Generalized Second Law
(GSL). According to it whenever a system may suffer a gravitational collapse
the total entropy S must be defined as the sum of the standard matter-entropy
Sm plus the entropy of the BH, that could eventually appear, as defined above,
i.e. S = Sm + SBH . Thus the GSL states that it is this total entropy the one
that is never decreasing when strong gravitational effects must be taken into
account. The GSL, by assigning some entropy to the collapsed matter inside
the BH, obviously solves the no-hair theorem paradox. However this solution
is not complete sice the nature of the exp SBH states given rise to this BH
entropy remains absolutely unknown.

2 The Information Paradox

The BH thermodynamic description given by Bekenstein was suddenly sup-
ported in an impressive way through a semi-classical computation done by
Hawking that showed that BH’s do in fact radiate [12]. The radiation is ther-
mal corresponding to a temperature T = κ/2π which set the constant C to
one quarter so that the BH entropy is given by:

SBH =
A

4
(5)

One of the most important consequences of Hawking radiation is that BH’s
lose mass, shrink their surface and eventually disappear into a cloud of ther-
mal energy. It can be shown that during the process of gravitational collapse
of some system into a BH and its ulterior decay into radiation the GSL ap-
plies, i.e. the total entropy never decreases (in fact it increases). However BH
evaporation poses a new challenge to our scarce knowledge of the quantum
aspects of gravity. The problem was outlined by Hawking as a lost of unitar-
ity in the evolution of the collapsed system (information paradox)[13]. It may
be understood in a very simple way considering the case in which the initial
state of the collapsed matter is a pure quantum state. After the Hawking
evaporation of the BH we are left just with thermal radiation which is not
a pure quantum state and must be described by a density matrix. Therefore
the whole evolution of the system cannot be unitary.

This statement gave rise to a great controversy in the physics community
during the last three decades. Defenders of orthodox quantum theory such
as Coleman, Thorne, Preskill and others have proposed different mechanisms
to scape from any violation of unitarity. For example it has been argued
that, since the Hawking computation is only approximate (semi-classical),
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subtle correlations in the radiation not taken into account, could maintain the
information content of the system. This is for instance what happens if we
burn a volume of the Encyclopædia Britannica. Correlations in the relative
motion of the molecules in the produced smoke encode all the information
contained in the volume. Needless to say that for all practical purposes the
information is completely lost but still the evolution of the system is unitary.

Another solution considered for the information paradox is that, as far as
the final moments of the life of the BH are determined for some unknown
quantum gravity theory, it is possible that after Hawking evaporation always
a remnant is left which stores the information contained in the BH. However it
is difficult to see how a Plank-scale sized object could carry all the information
of, for example, a collapsed star.

There are more creative solutions like the supposition that the BH give
rise to a new universe to which the information flows. In this way unitarity is
preserved in the whole set of universes but it is apparently lost for an observer
outside of the BH.

Finally even Hawking seems to have changed his mind concerning this
issue and recently he has announced [14] a new mechanism that could avoid
unitarity violations in BH evaporation (the details are yet unpublished) .

3 Entropy Bounds

In 1981 Bekenstein proposed the Universal Entropy Bound (UEB) [15] which
states that the entropy S of a complete physical system in asymptotically
flat D = 4 space-time, whose total mass-energy is E, and which fits inside a
sphere of radius R, is necessarily bounded from above:

S ≤ 2πER (6)

This bound can be obtained through a gedanken experiment in which a weakly
self-gravitating object with some entropy content is left with the lesser possible
energy at a BH horizon. Apparently the bound above follows if one wants to
avoid any violation of the GSL. The UEB is important because it is an attempt
to set limits on the entropy of system which is characterized by physical
parameters such as energy and size. This kind of bound could be relevant, at
least in principle, for information theory, both classical and quantum (see [16]
for a recent and very complete review). Since the seminal Shannon’s works
the main topic of information theory has been information transport, or in
other words, channel capacity, noise, redundancy, cryptography and many
other things which have to do with information communication. However the
UEB refers to information storage capacity. Usually this issue is contemplated
under the point of view of the smaller physical system capable to store one
single bit of information like molecules, atoms, photon polarization etc. The
point of view of the UEB is completely different since it offers a more holistic
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kind of bound which applies to the whole memory system independently of its
microscopic structure. Note also that the bound does not contain (in standard
units) the Newton constant at all (it refers only to weakly self-gravitating
systems but this is the case of most of lab and astrophysical systems around
us). On the other hand, from the point of view of present applications, the
UEB is far from being of any practical interest. For example for a standard
music compact disk the UEB set a maximum of storage capacity of about 1068

bits but present technology make possible to put only 1010 bits on it. However,
as a matter of principle, the UEB defines a new fundamental relation between
energy, size and information.

Another kind of bound on the entropy (information) content of non-BH
objects was proposed by Susskind in 1995 [17]. According to it the maximum
entropy Sm of a system that can be enclosed by a spherical surface of area A
is given by:

Sm ≤
A

4
(7)

This bound is known as the Spherical Entropy Bound and it requires the
space-time to be asymptotically flat. The proper definition of A also assumes
that the system has spherical symmetry or that it is weakly gravitating. The
bound is motivated by considering another gedanken experiment called the
Susskind process. One consider a system of mass E inside an area A which is
smaller than the mass M that would produce a BH if fitted in the same area
A. Now we add an infalling spherical shell of mass M −E in order to collapse
the system. Then applying the GSL to the process the bound follows.

The Spherical Entropy Bound can be derived, under some conditions, from
the UEB so in the cases where both can be applied the former is weaker than
the latter. However the Spherical Entropy Bound is much more appropriate
to introduce the main ideas underlaying the Holographic Principle. Note that
this bound is telling us that the maximum information that a system can
store scales basically with the area of its external surface. This is in clear
contradiction with our normal experience according to which the information
capacity scales with the volume.

The Spherical Entropy Bound can also be extended to a much more general
bound called the Space-like Entropy Bound . The formulation of this bound is
the following [18]: Let be a compact portion of equal time spacial hypersurface
in space-time with volume V and boundary B of area A(B), then the total
entropy inside the volume V is bounded by:

S(V ) ≤
A(B)

4
(8)

This bound seem to be the natural generalization of the Spherical Entropy
Bound. It works in many systems but it is easy to find counter examples
where it does not apply, meanly in cosmological scenarios or for strongly
gravitational systems (see [18] for a detailed discussion). The failure of this
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bound lead Bousso to propose a suitable generalization of this bound which
is known as the Covariant Entropy Bound that will be discussed latter.

4 The ’t Hooft Holographic Principle

After almost one decade of lonely efforts outside of the main stream in theoret-
ical physics ’t Hooft [19] (followed by Susskind [17]) presented his Holographic
Principle. This principle changes radically our thinking about the counting of
degrees of freedom of physical systems and the way in which the entropy or
information content is stored.

There is no any well established enunciate of this principle but according
to the ideas of ’t Hooft and Susskind one possible preliminary formulation of
the Holographic Principle could be:

The full physical description some given region R, in an D dimensional
universe, with D − 1 dimensional boundary B = ∂R, can be reflected in
processes taken place in B.

Clearly the above formulation is too vague to be of practical interest but
still the Holographic Principle is regarded as a major clue in the search for
the solution for the Quantum Mechanics versus GR conundrum. In particular
any fundamental theory should incorporate this counterintuitive result.

In fact we have already an example where the Holographic Principle could
be taking place, namely the Maldacena conjecture known as the AdS/CFT
correspondence [20]. According to it, for some given settings, the physics of
a string theory of type IIB, defined on an AdS5 × S5 space, is equivalent
to the physics of a maximally supersymmetric Super Yang-Mills U(N) theory
defined on the boundary of the AdS5 space. Even in the absent of a real proof,
the Maldacena conjecture has passed successfully a great number of checks
and it is generally believed to be true.

In spite of the fact that the Holographic Principle is not yet defined in
a precise way, it is clear that, from a fundamental point of view, the en-
tropy bounds discussed in the previous section are likely to be a more or less
straightforward consequence on this principle. In any case, in the absence of
a well formulated Holographic Principle, entropy bounds can be extremely
useful as heuristic tools for the task of clarify the apparent contradictions
between Quantum Mechanics and GR.

5 The Covariant Entropy Bound

In order to solve the difficulties found in the Space-like Entropy Bound, Bousso
proposed the Covariant Entropy Bound (CEB) [21, 18] . The bound can be
stated as follows: Let B be any spatial D − 2 dimensional hypersurface with
area (volume) A(B). A D − 1 dimensional hypersurface L is called a light-
sheet of B if it is generated by a congruence of null geodesics beginning at B,
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extend orthogonally from B and has negative expansion. Now we define S as
the entropy of any matter illuminated by the B’s light sheet. Then

S(L) ≤
A(B)

4
(9)

In order to clarify the meaning of the CEB note that for any point in B it
is possible to construct four light rays (branches). Two of them go to the
future and two go to the past. On any of these branches, a ray, together with
its neighbors, defines a positive or a negative expansion (rays converging or
diverging). The L set considered in the above formulation of the CEB is the
one corresponding to future going converging congruence. The rays so defined
may end at the tip of a cone (for spherical symmetry) or more generally on a
caustic. After this the rays will start to diverge but this region is considered
to be outside of L. The entropy of the matter traversed by this set of rays
before they reach the caustic is the one bounded according to the Bousso’s
covariant entropy bound.

The CEB can successfully solve the difficulties found by the Space-like En-
tropy Bound, in particular in cosmological and strong gravitating scenarios. In
fact it holds in a wide range of situations and no physically realistic counter
example has been found so far. A logical consequence of this is to consider the
CEB as a hint for more fundamental law of nature. According to Bousso the
Covariant Holographic Principle could be stated (using the previous notation)
as follows: The fundamental theory underlying Quantum Mechanics and GR
should be such that the matter and the geometry illuminated by the con-
vergent rays starting from B have a number of independent states N (L(B))
which is bounded by:

N (L(B)) ≤ eA(B)/4 (10)

If the fundamental theory contains Quantum Mechanics in its present form,
the number of (quantum) states N is just the dimension of the Hilbert Space
but this does not have to be necessarily the case. In the language of informa-
tion theory the number of bits times ln2 involved in the description of L(B)
must be bounded by A(B)/4.

There is also a stronger version of the CEB which was proposed in [22]
known as the Generalized Covariant Entropy Bound (GCEB). In this version
the light rays in L are allowed to stop before they reach the caustic and in
this way they define a new surface B′ of area A(B′). Then according to the
GCEB we have:

S(L) ≤
A(B) − A(B′)

4
(11)

Obviously the GCEB reduces to the CEB for the particular case A(B′) = 0.
In [22] and [23] some different sets of necessary conditions for the energy and
entropy matter content are shown to guarantee the validity of the GCEB and
it has being shown that the UEB can be obtained from the GCEB [24]. It has
also been argued that CEB must be modified in some way in order to include
Hawking radiation [25].
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6 Discussion

Independently of the precise formulation of the Holographic Principle or its
possible consequences, for example the entropy bounds, it is apparent that
there are many indications that point towards the validity of some law of a
similar kind. Therefore this hypothetical law should be encoded in any fun-
damental theory that may reconcile Quantum Mechanics and GR. However,
even in the absence of such a theory, there are some important conclusions
that can be drawn from the Holographic Principle.

The first one is that Quantum Field Theory (QFT) does not work when
strong gravitational effects are present. In order to see why this is the case we
can consider a QFT defined in a finite volume V (to avoid infrared divergen-
cies). Then the divergencies are ultraviolet and typically they are regulated by
means of an energy cutoff (or equivalently by introducing some minimal dis-
tance ). In any case the number of degrees of freedom scales with the volume
V of the system and not with the external area as the Holographic Principle
seems to suggest. The reason for this is that even when the theory is regular-
ized by cutting the high energy modes, there remain an enormous number of
field configurations that are gravitationally unstable and would collapse into
a BH. By removing all of these configurations we are left with a much less
number of states that would scale with the external area of the system in a
way compatible with the Holographic Principle.

On the other hand many people consider Superstring Theory as the most
sound candidate for a quantum theory of gravity. It has been argued that
Superstring Theory violates the Holographic Principle since the number of
states scales also with the volume of the system. However this is true only at
the perturbative level. When non-perturbative effects are taken into account
in Superstring Theory one has to deal with the so called M-theory. The non-
perturbative regime can be reached in some cases by means of some duality
transformation from the perturbative one but the physics turn out to be com-
pletely different in general. In particular strings give rise to new bound states
(D-branes) in such a way that the counting of degrees of freedom may change
drastically from the perturbative regime. Moreover it has been shown that the
perturbation series breaks down before the holographic bounds are reached.
In fact the AdS/CFT Correspondence and the successful computation of the
entropy in some kind of BH, done in the framework of M-Theory by counting
microscopic states [26], seems to suggest that M-theory could be compatible
with the Holographic Principle.

In any case one can consider the Holographic Principle as a necessary
ingredient of any fundamental theory and use it in order to make predictions
even if the fundamental theory is far from being established. Finally, as in
any other branch of physics, confrontation with the experiment will be the
final test for this principle and if the general idea is correct it can play an
important role in the future.
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To end it is important to stress that in this paper we have not considered
the possibility of having a non-zero cosmological constant. However recent
data, coming from the cosmic microwave background radiation, distant su-
pernovae, and the spectrum of the density fluctuations, strongly suggest that
the cosmological constant is different from zero. If this is the case almost all
the points mentioned in this article should be reconsidered even if for many
applications the cosmological constant can be safely neglected. Work is in
progress in this direction.
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