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Abstract

We present calculations of the prompt photon photoproduction at HERA collider in the
kT -factorization approach. Both direct and resolved contributions are taken into account.
The conservative error analisys is performed. The unintegrated parton densities in a proton
and in a photon are determined using the Kimber-Martin-Ryskin prescription. We inves-
tigate both inclusive and associated with jet prompt photon photoproduction rates. In
particular, we study the angular correlations between produced photon and hadronic jet in
the transverse momentum plane which can provide a unique information about non-collinear
evolution dynamics. We compare our theoretical predictions with recent experimental data
taken by the H1 and ZEUS collaborations.

1 Introduction

The prompt photon production in ep collisions at HERA is a subject of the intensive
studies [1–4]. The theoretical and experimental investigations of the such processes have
provided a direct probe of the hard subprocess dynamics, since produced photons are largely
insensitive to the effects of final-state hadronization. Usually photons are called ”prompt”
if they are coupled to the interacting quarks. From the theoretical point, these photons in
ep collisions can be produced via direct γq → γq and resolved production mechanisms. In
resolved events, the photon emitted by the electron fluctuate into a hadronic state and a
gluon and/or a quark of this hadronic fluctuation takes part in the hard interactions. Also
observed final state photon may arise from fragmentation process [5], where a quark or gluon
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decays into γ. The cross section of such processes involves relative poorly known parton-
to-photon fragmentation functions [6]. However, the isolation criterion which introduced in
experimental analyses substantially reduces [7] the fragmentation component. In any case,
for the theoretical description of prompt photon production at modern (HERA, Tevatron)
and future (LHC) colliders the detailed knowledge of parton (quark and gluon) distributions
in a proton and in a photon is necessary.

Usually quark and gluon densities are described by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parizi (DGLAP) evolution equation [8] where large logarithmic terms proportional
to lnµ2 are taken into account only. The cross sections can be rewritten in terms of process-
dependent hard matrix elements convoluted with quark or gluon density functions. In this
way the dominant contributions come from diagrams where parton emissions in initial state
are strongly ordered in virtuality. This is called collinear factorization, as the strong ordering
means that the virtuality of the parton entering the hard scattering matrix elements can be
neglected compared to the large scale µ.

However, at high energies (or small x ∼ µ2/s ≪ 1) effects of finite virtualities and
transverse momenta of the incoming partons may become more and more important. These
effects can be systematically accounted for in a kT -factorization formalism [9–12]. Just as
for DGLAP, in this way it is possible to factorize an observable into a convolution of process-
dependent hard matrix elements with universal parton distributions. But as the virtualities
and transverse momenta of the emitted partons are no longer ordered, the matrix elements
have to be taken off-shell and the convolution made also over transverse momentum kT with
the unintegrated (i.e. kT -dependent) parton distributions. The unintegrated parton distri-
bution fa(x,k

2
T ) determines the probability to find a type a parton carrying the longitudinal

momentum fraction x and the transverse momentum kT . In particular, usage of the uninte-
grated parton densities have the advantage that it takes into account true kinematics of the
process under consideration even at leading order.

The unintegrated parton distributions fa(x,k
2
T ) are a subject of intensive studies [13, 14].

Various approaches to investigate these quantities has been proposed. It is believed that at
assymptotically large energies (or very small x) the theoretically correct description is given
by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation [15] where large terms
proportional to ln 1/x are taken into account. Another approach, valid for both small and
large x, have been developed by Ciafaloni, Catani, Fiorani and Marchesini, and is known as
the CCFM model [16]. It introduces angular ordering of emissions to correctly treat gluon
coherence effects. In the limit of asymptotic energies, it almost equivalent to BFKL [17–
19], but also similar to the DGLAP evolution for large x ∼ 1. The resulting unintegrated
gluon distribution depends on two scales, the additional scale q̄ is a variable related to the
maximum angle allowed in the emission and plays the role of the evolution scale µ in the
collinear parton densities.

Also it is possible to obtain the two-scale involved unintegrated parton distributions
from the conventional ones using the Kimber-Martin-Ryskin (KMR) prescription [20]. In
this way the µ dependence in the unintegrated parton distribution enters only in last step
of the evolution, and single scale evolution equations can be used up to this step. Such
procedure can be applied to a proton as well as photon and is expected to account for the
main part of the collinear higher-order QCD corrections. The KMR-constructed parton
densities were used, in particular, to describe the heavy quark production in γγ collisions at
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CERN LEP2 [21] and prompt photon hadroproduction at fixed target experiments and at
Fermilab Tevatron [22] collider (in the double logarithmic approximation).

In the present paper we will apply the KMR method to obtain the unintegrated quark
and gluon distributions in a proton fa(x,k

2
T , µ

2) and in a photon f γ
a (x,k

2
T , µ

2) independently
from other authors. After that, we calculate the inclusive prompt photon photoproduction
at HERA energies. Such calculations in the kT -factorization approach will be performed
for the first time. We will investigate the transverse energy Eγ

T and pseudo-rapidity ηγ

distributions of the produced prompt photons and compare our theoretical results with the
recent experimental data taken by the H1 [4] and ZEUS [3] collaborations. In order to
estimate the theoretical uncertainties of our predictions we will study the renormalization
and factorization scale dependences of the calculated cross sections. Next we calculate
the associated prompt photon and jet production rates using some physically motivated
approximation. In order to investigate the underlying dynamics more detail, we will study
the angular correlations between the prompt photon and jet in the transverse momentum
plane. It was shown [23, 24] that theoretical and experimental studying of such quantities
is a direct probe of the non-collinear parton evolution.

The additional motivation of our investigations within the kT -factorization approach is
the fact that the next-to-leading order (NLO) collinear QCD calculations [7, 25] are 30−40%
below the data, especially in rear pseudo-rapidity (electron direction) region. So, one of the
main goals of this paper is to investigate whether the kT -factorization formalism could give
a better description of the HERA data than collinear NLO QCD calculations.

The our paper is organized as follows. In Section 2 the KMR unintegrated parton densities
in a proton and in a photon are obtained and their properties are discussed. In particular,
we compare the KMR gluon distributions with ones taken from the full CCFM equation. In
Section 3 we present the basic formulas with a brief review of calculation steps. In Section
4 we present the numerical results of our calculations. Finally, in Section 5, we give some
conclusions. The compact analytic expressions for the off-mass shell matrix elements of all
the subprocesses under consideration are given in Appendix. These formulas may be useful
for the subsequent applications.

2 The KMR unintegrated partons

The Kimber-Martin-Ryskin approach [20] is the formalism to construct parton distri-
butions fa(x,k

2
T , µ

2) unintegrated over the parton transverse momenta k2
T from the known

conventional parton distributions a(x, µ2), where a = xg or a = xq. This formalism is valid
for a proton as well as photon and can embody both DGLAP and BFKL contributions. It
also accounts for the angular ordering which comes from coherence effects in gluon emission.

We start from parton distributions in a proton. The key observation here is that the µ
dependence of the unintegrated distributions fa(x,k

2
T , µ

2) enters at the last step of the evolu-
tion, and therefore single scale evolution equations (DGLAP or unified DGLAP-BFKL [26])
can be used up to this step. It was shown [20] that the unintegrated distributions obtained
via unified DGLAP-BFKL evolution are rather similar to those based on the pure DGLAP
equations. It is because the imposion of the angular ordering constraint is more important
than including the BFKL effects. Based on this point, in our calculations we will use much
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more simpler DGLAP equation up to the last evolution step. In this approximation, the
unintegrated quark and gluon distributions are given [20] by

fq(x,k
2
T , µ

2) = Tq(k
2
T , µ

2)
αs(k

2
T )

2π
×

×
1
∫

x

dz
[

Pqq(z)
x

z
q
(

x

z
,k2

T

)

Θ (∆− z) + Pqg(z)
x

z
g
(

x

z
,k2

T

)]

,

(1)

fg(x,k
2
T , µ

2) = Tg(k
2
T , µ

2)
αs(k

2
T )

2π
×

×
1
∫

x

dz

[

∑

q

Pgq(z)
x

z
q
(

x

z
,k2

T

)

+ Pgg(z)
x

z
g
(

x

z
,k2

T

)

Θ (∆− z)

]

,

(2)

where Pab(z) are the usual unregulated leading order DGLAP splitting functions, and q(x, µ2)
and g(x, µ2) are the conventional quark and gluon densities. The theta functions which
appear in (1) and (2) imply the angular-ordering constraint ∆ = µ/(µ + |kT |) specifically
to the last evolution step to regulate the soft gluon singularities. For other evolution steps,
the strong ordering in transverse momentum within the DGLAP equations automatically
ensures angular ordering. It is important that parton distributions fa(x,k

2
T , µ

2) extended
now into the k2

T > µ2 region. This fact is in the clear contrast with the usual DGLAP
evolution1.

The virtual (loop) contributions may be resummed to all orders by the quark and gluon
Sudakov form factors

lnTq(k
2
T , µ

2) = −
µ2
∫

k2
T

dp2
T

p2
T

αs(p
2
T )

2π

zmax
∫

0

dzPqq(z), (3)

lnTg(k
2
T , µ

2) = −
µ2
∫

k2
T

dp2
T

p2
T

αs(p
2
T )

2π



nf

1
∫

0

dzPqg(z) +

zmax
∫

zmin

dzzPgg(z)



 , (4)

where zmax = 1 − zmin = µ/(µ+ |pT |). The form factors Ta(k
2
T , µ

2) give the probability of
evolving from a scale k2

T to a scale µ2 without parton emission. According to (3) and (4)
Ta(k

2
T , µ

2) = 1 in the k2
T > µ2 region.

We would like to note that such definition of the fa(x,k
2
T , µ

2) is correct for k2
T > µ2

0 only,
where µ0 ∼ 1 GeV is the minimum scale for which DGLAP evolution of the collinear parton
densities is valid. Everywhere in our numerical calculations we set the starting scale µ0 to
be equal µ0 = 1 GeV. Since the starting point of our derivation is the leading order DGLAP
equations, the unintegrated parton distributions must satisfy the normalisation condition

a(x, µ2) =

µ2
∫

0

fa(x,k
2
T , µ

2)dk2
T . (5)

1We would like to note that cut-off ∆ can be also taken ∆ = |kT |/µ [23]. In this case the unintegrated
parton distributions given by (1) — (2) vanish for k2

T
> µ2 in accordance with the DGLAP strong ordering

in k
2

T
.
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This relation will be exactly satisfied if we define [20]

fa(x,k
2
T , µ

2)|k2
T
<µ2

0
= a(x, µ2

0)Ta(µ
2
0, µ

2). (6)

Then, we have obtained the unintegrated parton distributions fa(x,k
2
T , µ

2) in a proton.
In order to obtain the unintegrated parton distribution f γ

a (x,k
2
T , µ

2) in a photon the same
formulas (1) — (4) can be also used [21]. In the last case the conventional parton distributions
a(x, µ2) in a proton should be replaced by the corresponding parton densities aγ(x, µ2) in a
photon.

In Figure 1 we show unintegrated parton densities fa(x,k
2
T , µ

2) in a proton at scale
µ2 = 100GeV2 as a function of x for different values of k2

T , namely k2
T = 2GeV2 (a),

k2
T = 5GeV2 (b), k2

T = 10GeV2 (c) and k2
T = 20GeV2 (d). The solid, dashed, short dashed,

dotted and dash-dotted lines correspond to the unintegrated u + ū, d + d̄, s, c and gluon
(divided by factor 10) distributions, respectively. We have used here the standard GRV
(LO) parametrizations [27] of the collinear quark and gluon densities a(x, µ2). In order to be
sure that normalization condition (5) is correctly satisfied we have performed the numerical
integration of the parton densities fa(x,k

2
T , µ

2) over transverse momenta k2
T . So, in Figure 2

we show our result for effective u+ū quark and gluon (also divided by factor 10) distributions
for different scales µ2 = 2GeV2 (a), µ2 = 5GeV2 (b), µ2 = 10GeV2 (c), µ2 = 20GeV2 (d).
The solid lines correspond to the effective densities obtained from the unintegrated ones using
relation (5). The dashed lines correspond to the collinear GRV (LO) parton distributions.
One can see that normalization condition (5) is exactly satisfied practically for all x and µ2

values. There are only rather small (less then few percent) violations of (5) in the case of the
u+ ū quark distributions at large x > 0.2. We have checked numerically that the expression
(5) is true also for other parton densities in a proton and in a photon.

For comparison we plot in Figure 2 (as dash-dotted lines) the corresponding LO parton
distributions obtained by the CTEQ collaboration [28] (CTEQ5L set). It is clear that there
are some differences in both normalization and shape between GRV and CTEQ parametriza-
tions. In general, the CTEQ curves lie below the GRV ones by about 10%. This difference
tends to be small when scale µ2 is large. However, the CTEQ collaboration does not pro-
vide a set of the parton distributions in a photon, which are necessary for calculation of the
resolved contributions. Therefore everywhere in our numerical analysis we will use only the
GRV parametrizations.

It is interesting to compare the KMR-constructed unintegrated parton densities with
the distributions obtained in other approaches. Recently the full CCFM equation in a
proton and in a photon was solved numerically using a Monte Carlo method, and new fits
of the unintegrated gluon distributions (J2003 set 1 — 3) have been presented [29]. The
input parameters were fitted to describe the proton structure function F2(x,Q

2). These
unintegrated gluon densities were used also in description of the forward jet production at
HERA, charm and bottom production at Tevatron [29], and charm and J/ψ production at
LEP2 energies [30]. In Figure 3 we plot KMR (as solid lines) and J2003 set 1 (as dashed lines)
gluon distributions in a proton at scale µ2 = 100GeV2 as a function of x for different values
of k2

T , namely k2
T = 2GeV2 (a), k2

T = 10GeV2 (b), k2
T = 20GeV2 (c) and k2

T = 50GeV2 (d).
One can see that J2003 set 1 gluon density is less steep at small x compared to the KMR
one. The KMR gluon lie below J2003 set 1 at small k2

T region for x > 3 ·10−3. Typically the
difference between solid and dashed lines is about 30% — 40% at x = 0.01. This fact results
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to the some underestimation of the calculated cross sections in the KMR approach. This
underestimation is about 30% at HERA and 50% at Tevatron2. Therefore we can expect a
rather large sensitivity of our predictions to the parton evolution scheme.

We would like to point out again that behaviour of different unintegrated parton distri-
butions in a proton in the small k2

T region (which essentially drives the total cross sections)
is very different, as it is clear shown on Figure 3. However, the CCFM evolution does not
include quark-initiated chains and therefore can not be used in our analysis since prompt
photon production at HERA strongly depends on the quark distributions (see Section 3).
Therefore in our following investigations we will use only the KMR unintegrated parton den-
sities. But one should remember that dependence of our results on the evolution scheme may
be rather large, and further theoretical attempts (in order to investigate the unintegrated
quark distributions more detail) are necessary to reduce this uncertainty.

3 Calculation details

3.1 The subprocesses under consideration

In ep collisions at HERA prompt photons can be produced by one of three mechanisms:
a direct production, a single resolved production and via parton-to-photon fragmentation
processes [5]. The direct contribution to the γp → γ + X process is the Deep Inelastic
Compton (DIC) scattering on the quark (antiquark)

γ(k1) + q(k2) → γ(pγ) + q(p′), (7)

where the particles four-momenta are given in parentheses. It gives the O(α2
em) order con-

tribution to the hadronic cross section. Here αem is Sommerfeld’s fine structure constant.
The single resolved processes are

q(k1) + g(k2) → γ(pγ) + q(p′), (8)

g(k1) + q(k2) → γ(pγ) + q(p′), (9)

q(k1) + q(k2) → γ(pγ) + g(p′). (10)

Since the parton distributions in a photon aγ(x, µ
2) have a leading behavior proportional

to αem lnµ2/Λ2
QCD ∼ αem/αs, these subprocesses give also the O(α2

em) contributions and
therefore should be taken into account in our analysis.

In addition to the direct and resolved production, photons can be also produced through
the fragmentation of a hadronic jet into a single photon carrying a large fraction z of the jet
energy [5]. These processes are described in terms of quark-to-photonDq→γ(z, µ

2) and gluon-
to-photon Dg→γ(z, µ

2) fragmentation functions [7]. The main feature of the fragmentation
contribution in leading order is fact that produced photon balanced by a jet on the opposite
side of the event and accompanied by collinear hadrons on the same side of the event.

It is very important that in order to reduce the huge background from the secondary
photons produced by the decays of π0, η and ω mesons the isolation criterion is introduced in

2See Ref. [13] for more details.
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the experimental analyses. This criterion is the following. A photon is isolated if the amount
of hadronic transverse energy Ehad

T , deposited inside a cone with aperture R centered around
the photon direction in the pseudo-rapidity and azimuthal angle plane, is smaller than some
value Emax

T :
Ehad

T ≤ Emax
T ,

(η − ηγ)2 + (φ− φγ)2 ≤ R2.
(11)

The both H1 and ZEUS collaborations take R = 1, Emax
T = ǫEγ

T with ǫ = 0.1 in the ex-
periment [1–4]. Isolation not only reduces the background but also significantly reduces the
fragmentation components. It was shown [7] that after applying the isolation cut (11) the
contribution from the fragmentation subprocesses is about 5 — 6% of the total cross section.
Since the dependence of our results on the non-collinear parton evolution scheme may be
rather large (as it was demonstrated in Section 2), in our further analysis we will neglect the
relative small fragmentation contribution and consider only the direct and resolved produc-
tion (7) — (10). We note that photon produced in these processes is automatically isolated
from the quark or gluon jet by requiring a non-zero transverse momentum of a photon or jet
in the γp center-of-mass frame.

It was claimed [7, 25] that direct box diagram γg → γg, which is formally of the next-to-
next-to-leading order (NNLO), gives approximately 6% contribution to the total NLO cross
section. In the present paper we will not take into account this diagram also.

3.2 Cross section for prompt photon production

Let pe and pp be the four-momenta of the initial electron and proton. The direct con-
tribution (7) to the γp → γ + X process in the kT -factorization approach can be written
as

dσ(dir)(γp→ γ +X) =
∑

q

∫ dx2
x2

fq(x2,k
2
2T , µ

2)dk2
T

dφ2

2π
dσ̂(γq → γq), (12)

where σ̂(γq → γq) is the hard subprocess cross section via quark or antiquark having fraction
x2 of a initial proton longitudinal momentum, non-zero transverse momentum k2T (k2

2T =
−k22T 6= 0) and azimuthal angle φ2. The expression (12) can be easily rewritten in the form

σ(dir)(γp→ γ +X) =
∑

q

∫

Eγ
T

8π(x2s)2(1− α)
|M̄|2(γq → γq)×

×fq(x2,k2
2T , µ

2)dyγdEγ
Tdk

2
2T

dφ2

2π

dφγ

2π
,

(13)

where |M̄|2(γq → γq) is the hard matrix element which depends on the transverse momen-
tum k2

2T , s = (k1 + pp)
2 is the total energy of the subprocess under consideration, yγ, Eγ

T

and φγ are the rapidity, transverse energy and azimuthal angle of the produced photon in
the γp center-of-mass frame, and α = Eγ

T exp yγ/
√
s.

The formula for the resolved contribution to the prompt photon photoproduction in the
kT -factorization approach can be obtained by the similar way. But one should keep in mind
that convolution in (12) should be made also with the unintegrated parton distributions
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f γ
a (x,k

2
T , µ

2) in a photon, i.e.

dσ(res)(γp→ γ +X) =
∑

a,b

∫

dx1
x1

f γ
a (x1,k

2
1T , µ

2)dk2
1T

dφ1

2π
×

×
∫ dx2

x2
fb(x2,k

2
2T , µ

2)dk2
2T

dφ2

2π
dσ̂(ab→ γc),

(14)

where a, b, c = q and/or g, σ̂(ab → γc) is the cross section of the photon production in the
corresponding parton-parton interaction (8) — (10). Here parton a has fraction x1 of a initial
photon longitudinal momentum, non-zero transverse momentum k1T (k2

1T = −k21T 6= 0) and
azimuthal angle φ1. We can easily obtain the final expression from equation (14). It has the
form

σ(res)(γp→ γ +X) =
∑

a,b

∫ Eγ
T

8π(x1x2s)2
|M̄|2(ab→ γc)×

×f γ
a (x1,k

2
1T , µ

2)fb(x2,k
2
2T , µ

2)dk2
1Tdk

2
2TdE

γ
Tdy

γdyc
dφ1

2π

dφ2

2π

dφγ

2π
,

(15)

where yc is the rapidity of the parton c in the γp center-of-mass frame. It is important that
hard matrix elements |M̄|2(ab → γc) depend on the transverse momenta k2

1T and k2
2T . We

would like to note that if we average the expressions (13) and (15) over k1T and k2T and
take the limit k2

1T → 0 and k2
2T → 0, then we obtain well-known expressions for the prompt

photon production in leading-order (LO) perturbative QCD.
The experimental data taken by the H1 [4] and ZEUS [3] collaborations refer to the

prompt photon production in the ep collisions, where electron is scattered at small angle
and the mediating photon is almost real (Q2 ∼ 0). Therefore γp cross sections (13) and (15)
needs to be weighted with the photon flux in the electron:

dσ(ep→ e′ + γ +X) =
∫

fγ/e(y)dσ(γp→ γ +X)dy, (16)

where y is a fraction of the initial electron energy taken by the photon in the laboratory
frame, and we use the Weizacker-Williams approximation for the bremsstrahlung photon
distribution from an electron:

fγ/e(y) =
αem

2π

(

1 + (1− y)2

y
ln
Q2

max

Q2
min

+ 2m2
ey

(

1

Q2
max

− 1

Q2
min

))

. (17)

Here me is the electron mass, Q2
min = m2

ey
2/(1− y)2 and Q2

max = 1GeV2, which is a typical
value for the recent photoproduction measurements at the HERA collider.

The multidimensional integration in (13), (15) and (16) has been performed by means of
the Monte Carlo technique, using the routine VEGAS [31]. The full C++ code is available
from the authors on request3. For reader’s convenience, we collect the analytic expressions
for the off-shell matrix elements which correspond to all partonic subprocesses under con-
sideration (7) — (10) in the Appendix. These formulas may be useful for the subsequent
applications.

3lipatov@theory.sinp.msu.ru
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4 Numerical results

We now are in a position to present our numerical results. First we describe our theo-
retical input and the kinematical conditions. After we fixed the unintegrated parton distri-
butions in a proton fa(x,k

2
T , µ

2) and in a photon f γ
a (x,k

2
T , µ

2), the cross sections (13) and
(15) depend on the energy scale µ. As it often done [7, 25] for prompt photon production,
we choose the renormalization and factorization scales to be µ = ξEγ

T . In order to estimate
the theoretical uncertainties of our calculations we will vary the scale parameter ξ between
1/2 and 2 about the default value ξ = 1. Also we use LO formula for the strong coupling
constant αs(µ

2) with nf = 3 active (massless) quark flavours and ΛQCD = 232 MeV, such
that αs(M

2
Z) = 0.1169. In our analysis we will not neglect the charm quark mass and set it

to be mc = 1.4 GeV.

4.1 Inclusive prompt photon production

Experimental data for the inclusive prompt photon production ep → e′ + γ +X comes
from both ZEUS and H1 collaborations. Two differential cross section are determined: first
as a function of the transverse energy Eγ

T , and second as a function of pseudo-rapidity
ηγ. The ZEUS data [3] refer to the kinematic region4 defined by 5 < Eγ

T < 10 GeV and
−0.7 < ηγ < 0.9 with electron energy Ee = 27.5 GeV and proton energy Ep = 820 GeV.
The fraction y of the electron energy trasferred to the photon is restricted to the range
0.2 < y < 0.9. Additionally the available ZEUS data for the prompt photon pseudo-rapidity
distributions have been given also for three subdivisons of the y range, namely 0.2 < y < 0.32
(134 < W < 170 GeV), 0.32 < y < 0.5 (170 < W < 212 GeV) and 0.5 < y < 0.9
(212 < W < 285 GeV). The more recent H1 data [4] refer to the kinematic region defined
by 5 < Eγ

T < 10 GeV, −1 < ηγ < 0.9 and 0.2 < y < 0.7 with electron energy Ee = 27.6 GeV
and proton energy Ep = 920 GeV.

The transverse energy distributions of the inclusive prompt photon for different kine-
matical region are shown in Figures 4 and 5 in comparison to the HERA data. Instead
of presenting our theoretical predictions as continuous lines, we adopt the binning pattern
encoded in the experimental data. The solid histograms obtained by fixing both the fac-
torization and normalization scales at the default value µ = Eγ

T , whereas upper and lower
dashed histograms correspond to the µ = Eγ

T/2 and µ = 2Eγ
T scales, respectively. One can

see that predicted cross sections agree well with the experimental data except the moderate
Eγ

T region. We would like to note that overall agreement with data can be improved when
unintegrated quark and gluon distributions in a proton and in a photon will be studied more
detail. It is because the KMR approach tends to underestimate the calculated cross sections,
as it was discussed in Section 2. The collinear NLO QCD calculations [7, 25] give the similar
description of the transverse energy distributions measured by the ZEUS collaboration. At
the same time, according to the analysis which was done by the H1 collaboration [4], in
order to obtain a realistic comparison of their data and theory the corrections for hadro-
nisation and multiple interactions should be taken into account in the predictions5. The

4Here and in the following all kinematic quantities are given in the laboratory frame where positive OZ
axis direction is given by the proton beam.

5See Ref. [4] for more details.
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correction factors are typically 0.7 — 0.9 depending on a bin. The NLO calculations [7,
25] are approximately 30% — 40% below the H1 data if the corrections for hadronisation
and multiple interactions are applied. We would like to note that these corrections are not
accounted for in our analysis. The effect of scale variations in transverse energy distributions
is rather large: the relative difference between results for µ = Eγ

T and results for µ = Eγ
T/2

or µ = 2Eγ
T is about 15%.

The pseudo-rapidity distributions of the inclusive prompt photon production compared
with the HERA data in different kinematical region are shown in Figures 6 and 7. All
histograms here are the same as in Figure 4. One can see that measured distributions
are reasonably well described in the pseudo-rapidity region −0.4 ≤ ηγ ≤ 0.9 only. For
−1 ≤ ηγ ≤ −0.4 our predictions lie mostly below the experimental points6. The discrepancy
between data and theory at negative ηγ is found to be relative strong at low values of the
initial photon fractional momentum y. So, in Figures 8, 9 and 10 we show the inclusive cross
sections dσ/dηγ evaluated for the three y ranges 0.2 < y < 0.32 (134 < W < 170 GeV),
0.32 < y < 0.5 (170 < W < 212 GeV) and 0.5 < y < 0.9 (212 < W < 285 GeV), respectively.
All histograms here are the same as in Figure 4. In the lowest y range, both our predictions
and experimental data show a peaking at negative ηγ, but it is stronger in the data. In the
high y region, 0.5 < y < 0.9, a good agreement is obtained. This fact allows to establish that
the above discussed discrepancy between the data and theory at −1 ≤ ηγ ≤ −0.4 is coming
from the low (0.2 < y < 0.32) and medium (0.32 < y < 0.5) y region. The scale variation
changes the estimated cross sections by about 15%. The collinear NLO QCD calculations [7,
25] give the similar description of the pseudo-rapidity distributions measured by the ZEUS
collaboration. At the same time, after corrections for hadronisation and multiple interactions
(not accounted for in our analysis) the NLO predictions are 30% — 40% below the H1 data.

As it was already mentioned above, the dependence of the our results on a renormaliza-
tion/factorization scale µ is rather large, about 10% — 15% in the wide kinematic range.
There are also additional uncertainties come from the unintegrated parton densities, as it was
discussed in Section 2. The theoretical uncertainties of the collinear NLO QCD calculations
are about 3% [7, 25]. This fact indicates that contribution from NNLO and high order terms
is not significant. At the same time the strong scale dependence of our results demonstrates
the necessarity of reducing of uncertainties in the non-collinear parton evolution.

The individual contributions from the direct and resolved production mechanisms to the
total cross section in the kT -factorization approach is about 47% and 53%, respectively.
In the resolved conribution, the channels (8), (9) and (10) account for 80%, 14% and 6%.
Additionally, using the Duke-Owens (DO) [32] parton-to-photon fragmentation functions,
we perform the estimation of the fragmentation component (not shown in Figures). We find
that after applying isolation cut it give only a very small (about few percent) contribution.

4.2 Prompt photon production in association with jet

Now we demonstrate how kT -factorization approach can be used to calculate the semi-
inclusive prompt photon production rates. The produced photon is accompanied by a number
of partons radiated in the course of the parton evolution. As it has been noted in Ref. [33],

6Note that such disagreement between predicted and measured cross sections is observed for collinear
NLO QCD calculations [7, 25] also.
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on the average the parton transverse momentum decreases from the hard interaction block
towards the proton. As an approximation, we assume that the parton k′ emitted in the last
evolution step compensates the whole transverse momentum of the parton participating in
the hard subprocess, i.e. k′

T ≃ −kT . All the other emitted partons are collected together
in the proton remnant, which is assumed to carry only a negligible transverse momentum
compared to k′

T . This parton gives rise to a final hadron jet with Ejet
T = |k′

T | in addition to
the jet produced in the hard subprocess. From these hadron jets we choose the one carrying
the largest transverse energy, and then compute prompt photon with an associated jet cross
sections.

Experimental data for such processes were obtained [4] very recently by the H1 collabo-
ration. The cross sections measured differentially as a function of Eγ

T , E
jet
T , and the pseudo-

rapidities ηγ and ηjet in the kinematic region defined by 5 < Eγ
T < 10 GeV, Ejet

T > 4.5 GeV,
−1 < ηγ < 0.9, −1 < ηjet < 2.3 and 0.2 < y < 0.7 with electron energy Ee = 27.6 GeV
and proton energy Ep = 920 GeV. There are no ZEUS data for the prompt photon plus
jet production, although some data for distribution of events, not corrected for the detector
effects, were presented [2].

The transverse energy Eγ
T and pseudo-rapidity ηγ distributions of the prompt photon

plus jet production are shown in Figures 11 and 12 in comparison with H1 data. All his-
tograms here are the same as in Figure 4. In contrast to the inclusive case, one can see that
our predictions are consistent with the data in most bins, although some discrepancies are
present. The scale variation as it was described above changes the estimated cross sections
by about 10%. The results of the collinear NLO calculations [7, 25] which include corrections
for hadronisation and multiple interactions give the similar results and consistent with data
also.

In Figures 13 and 14 we show our predictions for the transverse energy Ejet
T and pseudo-

rapidity ηjet distributions in comparison with H1 data. All histograms here are the same as
in Figure 4. A rather good agreement between our results and data is obtained again. It
is interesting to note that shape of the predicted pseudo-rapidity ηjet distribution coincide
with the one obtained in the collinear NLO calculations [7, 25]. At the same time the shape
of this distribution is not reproduced by the leading-order QCD calculations [4]. This fact
can demonstrate again that the main part of the collinear high-order corrections is already
included at LO level in kT -factorization formalism. The scale dependence of our predictions
is about 10%.

The most important variables for testing the structure of colliding proton and photon
are the longitudinal fractional momenta of partons in these particles. In order to reconstruct
the momentum fractions of the initial partons from measured quantities the observables xγ
and xp are introduced [4]:

xγ =
Eγ

T (e
−ηγ + e−ηjet)

2yEe

, xp =
Eγ

T (e
ηγ + eη

jet

)

2Ep

. (18)

These observables make explicit use only of the photon energy, which is better measured
than the jet energy. The xγ distribution is particularly sensitive to the photon structure
function. At large xγ region (xγ > 0.85) the cross section is dominated by the contribution of
processes with direct initial photons, whereas at xγ < 0.85 the resolved photon contributions
dominate [4].
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So, in Figures 15 and 16 the xγ and xp distributions are shown in comparison with
H1 data. One can see that our predictions reasonable agree with experimental data. The
NLO calculations [7, 25] without corrections for hadronisation and multiple interactions
give the similar results. However, NLO calculations tend to underestimate the H1 data if
these corrections are taken into account. The hadronic and multiple interaction corrections
improve the description of the data at xγ < 0.6 only [4].

Further understanding of the process dynamics and in particular of the high-order correc-
tion effects may be obtained from the transverse correlation between the produced prompt
photon and the jet. The H1 collaboration has measured the distribution on the component
of the prompt photon’s momentum perpendicular to the jet direction in the transverse plane,
i.e.

pT = |pγ
T × p

jet
T |/|pjet

T | = Eγ
T sin∆φ, (19)

where ∆φ is the difference in azimuth between the photon and the jet. In the collinear
leading order approximation, the distribution over pT must be simply a delta function δ(pT ),
since the produced photon and the jet are back-to-back in the transverse plane. Taking
into account the non-vanishing initial parton transverse momenta k1T and k2T leads to the
violation of this back-to-back kinematics in the kT -factorization approach.

The normalised pT distributions are shown in Figures 17 and 18 separately for the regions
xγ < 0.85 and xγ > 0.85, where direct and resolved photon induced processes dominate,
respectively. All histograms here are the same as in Figure 4. Our predictions are consistent
with the H1 data for all xγ values except large pT region. So, at pT > 5 GeV the results of our
calculations lie slightly below the data at xγ < 0.85 and above the data at xγ > 0.85. At the
same time the NLO QCD prediction [7] gives a better description of the pT distributions at
xγ < 0.85 than another one [25]. It is because in this region the cross section is dominated by
O(αs) corrections to the processes with resolved photons, which are not included in the NLO
calculations [25]. In general, we can conclude that our results lie between the predictions [7]
and the predictions [25] in the whole xγ range. This fact indicates again that the main part
of the high-order collinear corrections is effectively included in our calculations.

Finally, we would like to note that there are, of course, still rather large theoretical uncer-
tainties in our results connected with unintegrated parton distributions, and it is necessary
to work hard until these uncertainties will be reduced. However, it was shown [24] that
the properties of different unintegrated parton distributions clear manifest themselves in the
azimuthal correlation between transverse momenta of the final state particles. Therefore we
can expect that further theoretical and experimental studying of these correlations will give
important information about non-collinear parton evolution dynamics in a proton and in a
photon.

5 Conclusions

We have investigated the prompt photon photoproduction at the HERA collider in the kT -
factorization approach. In order to obtain the unintegrated quark and gluon distributions
in a proton and in a photon we used the Kimber-Martin-Ryskin prescription. We have
investigated both inclusive and associated with jet prompt photon production rates. Such
calculations in the kT -factorization approach were performed for the first time.
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We took into account both the direct and resolved contributions and investigated the
sensitivity of the our results to renormalization and factorization scales. There are, of course,
also theoretical uncertainties due to non-collinear evolution scheme. However, much more
work needs to be done before these uncertainties will be reduced.

We have found that our predictions for the inclusive prompt photon production are in
reasonable agreement with the H1 and ZEUS data except rear (electron direction) pseudo-
rapidity region. In contrast, our results for prompt photon associated with jet are consistent
with data in the whole kinematical range. However, the scale dependence of our results
is rather large compared to the collinear NLO QCD calculations. At the same time we
demonstrate that main part of the standard high-order corrections is already included in the
kT -factorization formalism at LO level.

Note that in our analysis we neglect the contribution from the fragmentation processes
and from the direct box diagram (γg → γg). Since the relative large box contribution (about
6% of the total NLO cross section) is mainly due to large gluonic content of the proton at
small x, studying of this subprocess should be also very interesting in the kT -factorization
approach. We plan to investigate it in detail in the forthcoming publications.
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7 Appendix

Here we present the compact analytic expressions for the hard matrix elements which
appear in (13) and (15). In the following, ŝ, t̂ and û are usual Mandelstam variables for
corresponding 2 → 2 subprocesses and eq is the fractional electric charge of quark q.

We start from the direct subprocess (7). The corresponding squared matrix element
summed over final polarization states and averaged over initial ones read

|M̄|2(γq → γq) =
2(4π)2α2

eme
4
q

(ŝ−m2)2(û−m2)2
Fγq(k

2
2T ), (A.1)

where m is the quark mass, and

Fγq(k
2
T ) = 6m8 − (3ŝ2 + 14ŝû+ 3û2)m4 + (ŝ3 + 7ŝ2û+

7û2ŝ+ û3)m2 − (ŝ2 + û2)ŝû.
(A.2)

It is important to note that when we calculate the Dirac’s traces we set the incoming quark
four-momentum to be equal k2 = x2pp. Therefore these formulas formally are the same as in
the usual leading-order collinear approach and there is no obvious dependence on the parton
transverse momentum k2T . However, this dependence is present because we have used true
off-shell kinematics in order to estimate the cross section (13). It is in the clear contrast
with the collinear calculations.
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The squared matrix elements of the resolved photon contributions (8) — (10) summed
over final polarization states and averaged over initial ones read

|M̄|2(qg → γq) =
(4π)2αemαse

2
q

3(t̂−m2)2(ŝ−m2)2
Fqg(k

2
1T ,k

2
2T ), (A.3)

|M̄|2(gq → γq) =
(4π)2αemαse

2
q

3(ŝ−m2)2(û−m2)2
Fgq(k

2
1T ,k

2
2T ), (A.4)

|M̄|2(qq → γg) = −
8(4π)2αemαse

2
q

9(t̂−m2)2(û−m2)2
Fqq(k

2
1T ,k

2
2T ), (A.5)

where functions Fqg(k
2
1T ,k

2
2T ), Fgq(k

2
1T ,k

2
2T ) and Fqq(k

2
1T ,k

2
2T ) are given by

Fqg(k
2
1T ,k

2
2T ) = 6m8 − (2k4

2T + 2(ŝ+ t̂)k2
2T + 3ŝ2 + 3t̂2 + 14ŝt̂)m4+

(2(ŝ+ t̂)k4
2T + 8ŝt̂k2

2T + ŝ3 + t̂3 + 7ŝt̂2 + 7ŝ2t̂)m2−
ŝt̂(2k4

2T + 2(ŝ+ t̂)k2
2T + ŝ2 + t̂2), (A.6)

Fgq(k
2
1T ,k

2
2T ) = 6m8 − (2k4

1T + 2(ŝ+ û)k2
1T + 3ŝ2 + 3û2 + 14ŝû)m4+

(2(ŝ+ û)k4
1T + 8ŝûk2

1T + ŝ3 + û3 + 7ŝû2 + 7ŝ2û)m2−
ŝû(2k4

1T + 2(ŝ+ û)k2
1T + ŝ2 + û2), (A.7)

Fqq(k
2
1T ,k

2
2T ) = 6m8 − (3t̂2 + 3û2 + 14t̂û)m4 + (t̂3 + û3+

7t̂û2 + 7t̂2û)m2 − t̂û(t̂2 + û2).
(A.8)

Since we take into account the kT depencence of the incoming virtual gluon polarization
tensor, the functions Fqg(k

2
1T ,k

2
2T ) and Fgq(k

2
1T ,k

2
2T ) also depend obviously on the gluon

transverse momentum. It is clear that if we take the limit k2
1T → 0, k2

2T → 0 in (A.1) —
(A.8) we easily obtain the corresponding collinear formulas.

Finally, we would like to point out again that in numerical computations we use precise
off-shell kinematics and therefore all expressions (A.1) — (A.8) depends on the parton trans-
verse momentum. In particular, the incident parton momentum fractions x1 and x2 in (13)
and (15) have some kT dependence. In the limit k1T → 0, k2T → 0 we reproduce standard
leading-order QCD collinear results.
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Figure 1: The unintegrated parton distributions fa(x,k
2
T , µ

2) at scale µ2 = 100GeV2 as
a function of x for different values of k2

T , namely k2
T = 2GeV2 (a), k2

T = 5GeV2 (b),
k2
T = 10GeV2 (c) and k2

T = 20GeV2 (d). The solid, dashed, short dashed, dotted and
dash-dotted lines correspond to the unintegrated u + ū, d + d̄, s, c and gluon (divided by
factor 10) distributions, respectively.
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Figure 2: The effective parton distributions a(x, µ2) as a function of x for different values
of µ2, namely µ2 = 2GeV2 (a), µ2 = 5GeV2 (b), µ2 = 10GeV2 (c) and µ2 = 20GeV2

(d). The solid lines correspond to the parton densities taken from the unintegrated ones
using relation (5). The dashed and dash-dotted lines correspond to the conventional GRV
(LO) and CTEQ5L parton distributions, respectively. Everywhere the gluon distributions
are divided by factor 10.
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Figure 3: The unitegrated gluon distributions fg(x,k
2
T , µ

2) at scale µ2 = 100GeV2 as a
function of x for different values of k2

T , namely k2
T = 2GeV2 (a), k2

T = 10GeV2 (b), k2
T =

20GeV2 (c) and k2
T = 50GeV2 (d). The solid lines and dashed lines correspond to the KMR

and J2003 set 1 gluon densities, respectively.
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Figure 4: The differential cross section dσ/dEγ
T for the inclusive prompt photon production

calculated at −0.7 < ηγ < 0.9 and 0.2 < y < 0.9. The solid histogram corresponds to
the default scale µ = Eγ

T , whereas upper and lower dashed histograms correspond to the
µ = Eγ

T/2 and µ = 2Eγ
T scales, respectively. The experimental data are from ZEUS [3].
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Figure 5: The differential cross section dσ/dEγ
T for the inclusive prompt photon production

calculated at −1 < ηγ < 0.9 and 0.2 < y < 0.7. All histograms are the same as in Figure 4.
The experimental data are from H1 [4].
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Figure 6: The differential cross section dσ/dηγ for the inclusive prompt photon production
calculated at 5 < Eγ

T < 10 GeV and 0.2 < y < 0.9 (134 < W < 285 GeV). All histograms
are the same as in Figure 4. The experimental data are from ZEUS [3].
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Figure 7: The differential cross section dσ/dηγ for the inclusive prompt photon production
calculated at 5 < Eγ

T < 10 GeV and 0.2 < y < 0.7. All histograms are the same as in
Figure 4. The experimental data are from H1 [4].
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Figure 8: The differential cross section dσ/dηγ for the inclusive prompt photon production
calculated at 5 < Eγ

T < 10 GeV and 0.2 < y < 0.32 (134 < W < 170 GeV). All histograms
are the same as in Figure 4. The experimental data are from ZEUS [3].
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Figure 9: The differential cross section dσ/dηγ for the inclusive prompt photon production
calculated at 5 < Eγ

T < 10 GeV and 0.32 < y < 0.5 (170 < W < 212 GeV). All histograms
are the same as in Figure 4. The experimental data are from ZEUS [3].
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Figure 10: The differential cross section dσ/dηγ for the inclusive prompt photon production
calculated at 5 < Eγ

T < 10 GeV and 0.5 < y < 0.9 (212 < W < 285 GeV). All histograms
are the same as in Figure 4. The experimental data are from ZEUS [3].
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Figure 11: The differential cross section dσ/dEγ
T for the prompt photon + jet production

calculated at −1 < ηγ < 0.9 and 0.2 < y < 0.7 with an additional jet requirement −1 <
ηjet < 2.3 and Ejet

T > 4.5 GeV. All histograms are the same as in Figure 4. The experimental
data are from H1 [4].
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Figure 12: The differential cross section dσ/dηγ for the prompt photon + jet production
calculated at 5 < Eγ

T < 10 GeV and 0.2 < y < 0.7 with an additional jet requirement
−1 < ηjet < 2.3 and Ejet

T > 4.5 GeV. All histograms are the same as in Figure 4. The
experimental data are from H1 [4].
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Figure 13: The differential cross section dσ/dEjet
T for the prompt photon + jet production

calculated at 5 < Eγ
T < 10 GeV and 0.2 < y < 0.7 with an additional jet requirement

−1 < ηjet < 2.3 and Ejet
T > 4.5 GeV. All histograms are the same as in Figure 4. The

experimental data are from H1 [4].
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Figure 14: The differential cross section dσ/dηjet for the prompt photon + jet production
calculated at 5 < Eγ

T < 10 GeV and 0.2 < y < 0.7 with an additional jet requirement
−1 < ηjet < 2.3 and Ejet

T > 4.5 GeV. All histograms are the same as in Figure 4. The
experimental data are from H1 [4].
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Figure 15: The differential cross section dσ/dxγ for the prompt photon + jet production
calculated at 5 < Eγ

T < 10 GeV and 0.2 < y < 0.7 with an additional jet requirement
−1 < ηjet < 2.3 and Ejet

T > 4.5 GeV. All histograms are the same as in Figure 4. The
experimental data are from H1 [4].
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Figure 16: The differential cross section dσ/dxp for the prompt photon + jet production
calculated at 5 < Eγ

T < 10 GeV and 0.2 < y < 0.7 with an additional jet requirement
−1 < ηjet < 2.3 and Ejet

T > 4.5 GeV. All histograms are the same as in Figure 4. The
experimental data are from H1 [4].
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Figure 17: Distribution of the prompt photon momentum component, perpendicular to the
jet direction in the transverse plane at 5 < Eγ

T < 10 GeV, 0.2 < y < 0.7, −1 < ηjet < 2.3,
Ejet

T > 4.5 GeV and xγ < 0.85. All histograms are the same as in Figure 4. The experimental
data are from H1 [4].
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Figure 18: Distribution of the prompt photon momentum component, perpendicular to the
jet direction in the transverse plane at 5 < Eγ

T < 10 GeV, 0.2 < y < 0.7, −1 < ηjet < 2.3,
Ejet

T > 4.5 GeV and xγ > 0.85. All histograms are the same as in Figure 4. The experimental
data are from H1 [4].
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