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In charmless nonleptonic B decays to ππ or ρρ, the “color allowed” and “color suppressed” tree
amplitudes can be studied in a systematic expansion in αs(mb) and ΛQCD/mb. At leading order in
this expansion their relative strong phase vanishes. The implications of this prediction are obscured
by penguin contributions. We propose to use this prediction to test the relative importance of
the various penguin amplitudes using experimental data. The present B → ππ data suggest that
there are large corrections to the heavy quark limit, which can be due to power corrections to the
tree amplitudes, large up-penguin amplitude, or enhanced weak annihilation. Because the penguin
contributions are smaller, the heavy quark limit is more consistent with the B → ρρ data, and its
implications may become important for the extraction of α from this mode in the future.

I. INTRODUCTION

Nonleptonic B decays to light hadrons provide infor-
mation about CP violation. In particular, the decays to
ππ, ρπ and ρρ can determine the weak phase α. The the-
oretical challenge is to disentangle the strong interaction
physics from the weak phase one would like to determine.
For the decay B0 → π+π− the B factories study the CP
asymmetry,

Γ[B0(t) → π+π−]− Γ[B0(t) → π+π−]

Γ[B0(t) → π+π−] + Γ[B0(t) → π+π−]

= S+− sin(∆mt)− C+− cos(∆mt) , (1)

with the present world averages [1, 2]

S+− = −0.50± 0.12, C+− = −0.37± 0.10 . (2)

If the B → π+π− amplitude were dominated by contri-
butions with a single weak phase, the observable

sin(2αeff) = S+−

/√
1− C2

+− , (3)

would be equal to sin 2α and C+− would be zero. The
data indicate that this is not a good approximation. An
isospin analysis [3] still allows a theoretically clean deter-
mination of α if the B0 → π0π0 and B0 → π0π0 rates
are precisely measured. Since this requires very large
data samples, several strategies have been proposed to
extract α from αeff relying on theoretical inputs.
In the last few years the theory of B → ππ decays

has advanced considerably. Using the heavy quark limit,
factorization theorems have been proven for the decay
amplitudes at leading order in Λ/mb. The amplitudes
in Eq. (5) arise from the matrix element of the effective
Hamiltonian,

Heff = −4GF√
2

[
λu

(
C1O

u
1 + C2O

u
2 +

∑

i≥3

Cc
iOi

)

+ λc

(
C1O

c
1 + C2O

c
2 +

∑

i≥3

Cc
iOi

)

+ λt

∑

i≥3

Ct
i Oi

]
, (4)

where CKM-unitarity was not used, and i = 3, . . . , 6, 8.
(In the usual notation one has Ci = Cc

i −Ct
i .) Its B → ππ

matrix element can be parameterized as

A(B0 → π+π−) = −λu(T + Pu)− λcPc − λtPt

= e−iγTππ + eiφPππ ,√
2A(B0 → π0π0) = λu(−C + Pu) + λcPc + λtPt

= e−iγCππ − eiφPππ ,√
2A(B− → π−π0) = −λu(T + C) = e−iγT−0 , (5)

where λq = VqbV
∗
qd. (We neglect isospin breaking [4] and

the contributions of electroweak penguins, the dominant
part of which can be included model independently [5].)
In Eq. (5) T + Pu and C − Pu are the B → π+π− and
B → π0π0 matrix elements of the terms in the first line
in Eq. (4), while Pc and Pt are the matrix elements of
the second and third lines, respectively. This implies that
each of the T+Pu, C−Pu, Pc and Pt terms are separately
renormalization group invariant.

There is an ambiguity in Eq. (5) related to the free-
dom in choosing the weak phase φ, in terms of which
the amplitudes are written. There are two widely used
conventions corresponding to eliminating either λt or λc

using unitarity (some aspects of this were discussed in
Refs. [6]). In the t-convention one eliminates λt from
Eq. (5), while in the c-convention one eliminates λc. Ta-
ble I shows the expressions for the amplitudes and φ in
these conventions. Once a choice is made, Tππ, Cππ, Pππ,
and T−0 can be extracted from the data, while further
theoretical input is needed to determine T , C and Pu,c,t.

The amplitudes in Eq. (5) (and their CP conjugates)
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TABLE I: The B → ππ amplitudes and the phase of the
penguin amplitude in the c- and t-conventions (Pij ≡ Pi−Pj).

amplitude t-convention c-convention

Tππ |λu|(−T − Put) |λu|(−T − Puc)

Cππ |λu|(−C + Put) |λu|(−C + Puc)

Pππ −|λc|Pct |λt|Pct

φ π β

satisfy the isospin relation

1√
2
A(B0 → π+π−)+A(B0 → π0π0) = A(B− → π−π0) .

(6)
The “tree” amplitudes also satisfy the relation

Tππ + Cππ = T−0 , (7)

which will play an important role in this paper, and we
refer to it as the “tree triangle” (TT).
Expanding the amplitudes in soft-collinear effective

theory (SCET) [7], one can define the leading (in Λ/mb)
parts of T , C, and Pu separately in terms of matrix el-
ements of distinct SCET operators [8], which we denote
with (0) superscripts. The relative strong phase of T (0)

and C(0) is suppressed by αs [9, 10], and therefore

φT ≡ arg

(
T (0) + P

(0)
u

T + C

)
= O

[
αs(mb), ΛQCD/mb

]
. (8)

The numerator includes P
(0)
u so that φT is scale inde-

pendent. The denominator could be defined to contain
T (0) +C(0), and our choice is for later convenience. Nei-
ther of these affect the right-hand side of Eq. (8) [recall:

P
(0)
u /T (0) = O(αs)]. We define T ′(0) ≡ T (0) + P

(0)
u and

T + Pu ≡ T ′(0) + P ′
u, and in the rest of this paper the

primes will be dropped. Thus, hereafter, Pu contains the
power suppressed corrections to T + Pu (including weak
annihilation).
The implications of Eq. (8) for the determination of α

are obscured by the fact that T and C are not directly
observable. The amplitudes Tππ and Cππ in Eq. (5)
that can be extracted from the data include contribu-
tions from Pu,c,t. The heavy quark limit also determines
the power counting for the penguin amplitudes, however,
the convergence of the expansion for the penguins is less
clear than it is for the trees. At leading order in Λ/mb

the calculable parts of Pu,c,t are suppressed by αs or the
small Wilson coefficients C3,4. At subleading order, the
QCD factorization (QCDF) formula for Pt contains size-
able “chirally enhanced” corrections, comparable to the
leading order term [10]. The possible size of nonpertur-
bative contributions to Pc has also been the subject of
debate [9, 11]. A large Pc amplitude was found in fits
using the leading order factorization results in SCET [9],
or adding a free parameter to the leading order QCDF
result [12]. In QCDF Pc is claimed to be computable
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FIG. 1: Isospin triangles for B andB decay,WZY andWZX.
WVZ is the tree triangle (TT), Eq. (7), with WV = Tππ and
ZV = Cππ. The dashed lines show the Pππ amplitudes.

at leading order without nonperturbative inputs, while
Pt receives sizable “chirally enhanced” O(Λ/mb) correc-
tions. Equation (8) and allowing for large long distance
contribution to Pc was used in Ref. [13] to determine α
without using the measurement of C00 (the direct CP
asymmetry in B → π0π0).

The penguin amplitudes Pc and Pt introduce a differ-
ence between the TTs in the two conventions. The Pu

amplitude is common to Tππ in the t- and c-conventions,
but Pc enters Tππ in the c-convention and Pt enters Tππ in
the t-convention. Understanding the relative hierarchy of
the three penguin amplitudes, Pu,c,t, is important if one
is to use Eq. (8) for the determination of α. In addition,
it may also shed light on the Λ/mb power counting for the
penguin amplitudes. In this paper we show that by com-
paring the shapes of the TT in the c and t-conventions
we can gain empirical knowledge about the relative sizes
of Pu, Pc and Pt.

II. ISOSPIN ANALYSIS AND TREE TRIANGLE

The isospin relation in Eq. (6) holds for both the B and
B decay amplitudes, denoted by Ā and A, respectively.

It is convenient to define Ãij = e2iγAij , so that A0+ =

Ã0−. Figure 1 shows the resulting two isospin triangles,
WZX and WZY , where the tree triangle, WZV , is also
drawn. We follow the notation of Ref. [14], but normalize
A(B+ → π0π+) = WZ = 1.

To determine the TT from the data, recall that the
WZX and WZY isospin triangles can be obtained from
the direct CP asymmetries C+− and C00, and the ratios
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of branching fractions

R+− =
B(B0 → π+π−)

2B(B+ → π+π0)

τB+

τB0

= 0.44+0.07
−0.06 ,

R00 =
B(B0 → π0π0)

B(B+ → π+π0)

τB+

τB0

= 0.29+0.07
−0.06 , (9)

where we used the experimental inputs from [2, 15]. Tak-
ing the ratios eliminates an arbitrary overall normaliza-
tion parameter. To determine the coordinates of V , how-
ever, the measurement of S+− is also needed.
It is convenient to define the coordinates of X and Y

to be (±ℓ, 0), with

ℓ2 =
1

2
R+−

[
1−

√
1− C2

+− cos 2∆α
]
, (10)

where ∆α ≡ α− αeff and αeff is defined in Eq. (3). The
four coordinates of W and Z and the phase ∆α are given
by the solutions of the five equations [14]

1 = (xZ − xW )2 + (yZ − yW )2,

R00 = x2
Z + y2Z + ℓ2,

R+− = x2
W + y2W + ℓ2,

R+−C+− = −2ℓxW ,

R00C00 = −2ℓxZ . (11)

The XV Y angle is 2(φ+ γ), so that the y coordinate of
V (0, yV ) is

yV =

{
−ℓ cotγ , in the t-convention ,
ℓ cotα , in the c-convention .

(12)

Equations (11) can be solved for ∆α and the coordinates
of W and Z. Because of the relative orientation of the
amplitudes A+− and Ã+− adopted in Fig. 1, the solution
must also satisfy sgn(∆α) = sgn(yW ).
Some important properties of the solutions are appar-

ent. First, xW = 0 if and only if C+− = 0 (similarly,
xZ = 0 if and only if C00 = 0). Second, the sign of xW

(xZ) is opposite of that of C+− (C00). Thus, WZ crosses
the y axis if and only if the direct CP asymmetries in the
charged and neutral modes have opposite signs.
In the rest of this section, we treat the simplified case

where C00 is not known. The first four equations in (11)
can be used to solve for the coordinates of W and Z as
functions of ∆α. For any given value of ∆α, W and Z are
determined up to a two-fold ambiguity, corresponding to
the reflection of Z about the WO line. These equations
also place bounds on ℓ and ∆α [14, 16]

ℓ2 ≤ R+−R00 −
(1−R+− −R00)

2

4
,

cos(2∆α) ≥ (1 +R+− −R00)
2 − 2R+−

2R+−

√
1− C2

+−

. (13)

We refer to these inequalities as the isospin bound, and
define αbound ≡ αeff ± ∆αmax, which can be obtained

from Eqs. (3) and (13), and γbound ≡ π − β − αbound.
(Here, and in what follows β is treated as known.) The
coordinates of W and Z at the isospin bound satisfy

xZ

xW

∣∣∣∣
bound

=
yZ
yW

∣∣∣∣
bound

= −1 +R00 −R+−

1−R00 +R+−

. (14)

This means that at the isospin bound W , Z, and O are
on one line and that at the bound

C00

∣∣
bound

= −R+−

R00

1 +R00 −R+−

1−R00 +R+−

C+−

∣∣
bound

. (15)

The present data gives at the isospin bound C00 =
−(1.1± 0.1)C+−, which is almost 2σ from the measure-
ments of C+− in Eq. (2) and C00 = −0.28+0.39

−0.40 [2, 17].
In general, and even at the isospin bound, the V vertex

of the TT depends on S+− via Eq. (12). Thus, the shape
of the TT at the bound is not fixed, but depends on the
experimental results. This dependence enters through
αeff +∆α and implies that if one uses a constraint on the
shape of the TT to extract α, then i) the solution is not
invariant under ∆α ↔ −∆α, and ii) the allowed values of
∆α are not the same for each discrete ambiguity of αeff .
Both of these points are different from the well-known
symmetry properties of the usual isospin analysis.
The theory prediction of a small strong phase in Eq. (8)

implies that the TT should be nearly flat, up to penguin
contributions, small αs and unknown Λ/mb corrections.
While the penguin contamination makes the definition
of the TT itself convention dependent, it is interesting to
consider under what conditions the TT can be flat, and
its relation to the isospin bound. Since at the isospin
bound W , Z, and O are on a line, unless yV = 0, the TT
is flat at the isospin bound if and only if xW = xZ = 0.
This implies that if any two of the following statements
hold, then the other three follow:

1. The t-convention TT is flat for generic α;

2. The c-convention TT is flat for generic α;

3. α is at the isospin bound;

4. C+− = 0;

5. C00 = 0.

(16)

Equivalently, when one of the statements in (16) holds,
the other four are either all true or all false. This shows
that whether the TT is flat near the isospin bound or not
depends on the value of α; i.e., the TT being flat and α
(or γ) being close to the isospin bound are in principle
unrelated.

III. CONSTRAINTS ON α

In Ref. [13], the predicted smallness of φT and Put was
used to imply that the TT in the t-convention is (near)
flat, which, in turn, was used to extract γ without the
insufficiently known C00. In this section we discuss the
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implications of knowing an angle in the TT for the deter-
mination of α, using a method which makes transparent
the dependence of the constraints on α on the data.
For given R+−, R00, and C+−, the first four equations

in (11) together with (10) determine the coordinates of
W and Z as functions of ∆α. If, in addition, an angle in
the TT is also known, then the position of the point V is
determined. We find it simplest to discuss the constraints
in terms of the (convention dependent) observable phase,

τ (q) ≡ arg

(
T

(q)
ππ

T−0

)
= arg

(
1 +

Puq

T (0)

)
+ φT , (17)

where q = c or t. The TT is near flat in either convention
if |τ | ≪ 1. Note that if the penguin amplitudes vanished,
then τ (t) = τ (c) = φT . We can determine the coordinates
of V as a function of ∆α in two ways: from the value of
τ and the coordinates of W and Z

yV (∆α) = yW − xW

yZ − yW − (xZ − xW ) tan τ

xZ − xW + (yZ − yW ) tan τ
, (18)

and from Eq. (12) if β, S+− and C+− are measured

yV (∆α) =

{
ℓ cot(β + αeff +∆α) , t-convention,
ℓ cot(αeff +∆α) , c-convention.

(19)
The expression in (19) is convention dependent, because
so is the definition of τ that enters in (18). These two
equations form an implicit equation for ∆α.
Figure 2 illustrates this method for the central val-

ues of the data. The solid curves show the solution for
yV (∆α) vs. ∆α from Eq. (19): the darker (blue) curve
corresponds to the t-convention and αeff ≃ 106◦, while
the lighter (red) curves correspond to the c-convention
(the upper one for αeff ≃ 106◦, the lower one for its mir-
ror solution αeff ≃ 164◦). The dashed curve shows yV
vs. ∆α from Eq. (18) for τ = 0, and its intersections
with the solid curves determine the value of ∆α, which
together with αeff gives α. For the purpose of illustration
the dotted curves show τ = +10◦ (lower curve) and −10◦

(up-most curve).
The τ = 0 curve goes to yV = 0 at the isospin bound

(see Fig. 2), in accordance with our result in Sec. II that
if ∆α is at the isospin bound and the TT is flat, then
yV = 0. The right-hand side of Eq. (19) is small in
this region of ∆α, since the argument of the cotangent
is close to 90◦ (the central values of the ππ data give
αeff ≃ 106◦, so that at the smallest value of ∆α ≃ −28◦,
β + αeff +∆α ≃ 102◦ and αeff +∆α ≃ 79◦). These two
facts imply that there is a solution for ∆α near the isospin
bound with a flat TT; however, this is a coincidence and
not a necessity.
In Ref. [13] it was found that for small τ (t) the solu-

tion for ∆α was close to the isospin bound. This can be
easily seen from Fig. 2. The dashed and dotted curves
are steep near the bound for negative ∆α, so changing
τ hardly changes the solution for ∆α. However, for the
other solution (corresponding to positive ∆α, and a value
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FIG. 2: The solid curves are yV vs. ∆α from Eq. (19): the
darker (blue) curve corresponds to the t-convention and αeff ≃
106◦, while the lighter (red) curves to the c-convention (the
upper one for αeff ≃ 106◦, the lower one for αeff ≃ 164◦). The
dashed curve shows the solution of Eq. (18) for τ = 0, and the
dotted curves are τ = +10◦ (lower) and τ = −10◦ (upper).

of α disfavored by the global CKM fit [18]), the error is
significantly larger, since the dependence of ∆α on τ is
stronger. The allowed region of ∆α is particularly sen-
sitive to R00; for example, for R00 = 0.2 (which is a bit
more than 1σ lower than its present central value) the
|τ | < 10◦ constraint would include almost all values of
∆α that are allowed by the isospin analysis. Note that
with the current data the error of α extracted using the
constraint of a small τ increases with decreasing R00,
contrary to the isospin analysis.

The confidence level (CL) of α obtained by imposing
a constraint on τ is shown in Fig. 3 using the CKM-
fitter package [18]. In the left plot the curves show
(see the labels) the CL of α imposing τ = 0 in both
the t- and c-conventions without using the C00 measure-
ment in the fit. For comparison, we also show the re-
sult of the usual isospin analysis with and without using
C00. The plot on the right-hand side shows the CL of
α imposing τ = 0 in the t-convention with and with-
out using C00, and the constraint in the t-convention
imposing |τ | < 5◦, 10◦, and 20◦. The restriction on α
from a constraint |τ | < τ0 becomes quite weak as τ0 in-
creases in the range 10◦ < τ0 < 20◦. We can compare
our results with those of [13], which use as theory in-

put an upper bound on ǫ = |Im(C
(t)
ππ/T

(t)
ππ )|. Assuming

{γ, | arg(Pππ/Tππ)|} < 90◦, we find sin τ (t) < ǫ
√
R+−,

i.e., τ (t) < 15.5◦ (7.8◦) for the bounds considered in [13],
ǫ < 0.4 (0.2).

Imposing τ = 0 gives only two solutions with χ2 = 0
with the current data, around α ∼ 78◦ and 132◦. The
first one, which is consistent with the Standard Model
(SM) CKM fit, is disfavored by the measurement of C00.
While the two solutions have comparable errors for τ = 0,
allowing a finite range of τ to account for subleading
effects increases the error of the α ∼ 132◦ solution more
rapidly. Imposing a bound on |Im(C/T )| [13] allows, in
addition to τ being near 0, that τ is near π (mod 2π);
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FIG. 3: Left plot: confidence level for α imposing τ = 0 in the t- (solid line) and c-conventions (dashed line) without using
C00 in the fit. The t-convention curve uses β as an input. Also shown are the results of the traditional isospin analysis [3, 18]
with (light shaded region) and without (dark shaded region) using C00. The dot with 1σ error bar shows the predicton from
the global CKM fit (not including the direct measurement of α) [18]. Right plot: confidence level for α imposing τ = 0 in the
t-convention with (dotted line) and without (solid line) using the C00 result in the fit. Also shown are the constraints in the
t-convention imposing |τ | < 5◦, |τ | < 10◦, and |τ | < 20◦ (dashed lines). The shaded region is the same as in the left plot.

however, the theory disfavors the latter possibility. It is
constraining |τ | modulo 2π and not π that makes some
of the CL curves not periodic with a period of π.
These results for α should not be taken at face value,

because in the next Section we find that extracting τ us-
ing the SM CKM fit as an input gives significantly larger
values of |τ | than considered here. The implications of
this are discussed below.

IV. THE PENGUIN HIERARCHY PROBLEM

If the penguin amplitudes were small then the state-
ments in (16) would all hold to a good precision, and α
could be extracted simply from S+−. This is known not
to be the case, so the question is to determine which pen-
guins are large or small. This is complicated by the fact
that, as explained in Sec. II, the amplitudes T , C, Puc,
and Put are not separately observable from the B → ππ
data alone. They can be disentangled using SU(3) flavor
symmetry and data on B → Kπ, KK, etc.
In this section we propose to use the theory expec-

tation for φT in Eq. (8) to test the magnitude of the
penguins. (Another test of corrections to factorization
in B → ππ was proposed in [19].) We assume φT = 0,
although we may learn from other data that power cor-
rections to tree amplitudes are sizable. For example, a
power suppressed strong phase around 30◦ is observed in
B → Dπ decays [20].
In the t-convention Put (recall, Pij ≡ Pi − Pj) con-

tributes to the TT in Eq. (7), while in the c-convention

it is Puc. (We choose, for convenience, the pure tree
amplitude T−0 to be real.) Thus, comparing the TT in
the two conventions teaches us about the relative size of
Put and Puc. (The same information can in principle be
obtained from the fit in any one convention; this compar-
ison makes the results more transparent.) We use the SM
global fit to the CKM matrix that determines the weak
phase γ = (59.0+6.4

−4.9)
◦ [18]. This allows the construction

of the tree triangles in both conventions, as explained in
Sec. II. Comparing how flat they are, i.e., how small the
angle τ of the TT is, the following outcomes are possible:

(i) |τ (t)| ≪ |τ (c)|. This would imply Im(Put) ≪
Im(Puc), and the likely explanation would be
|Pc| ≫ |Pu| ∼ |Pt|.

(ii) |τ (t)| ≫ |τ (c)|. This would imply Im(Put) ≫
Im(Puc), and the likely explanation would be
|Pt| ≫ |Pu| ∼ |Pc|.

(iii) |τ (t)| ∼ |τ (c)| ≪ 1. This would imply that both
Im(Put/T

(0)) and Im(Puc/T
(0)) are small. In this

case the likely explanation would be that Pq/T
(0)

is small for each of the penguin amplitudes.

(iv) |τ (t)| ∼ |τ (c)| = O(1) and |τ (t) − τ (c)| ≪ 1. This
would imply that Im(Put/T

(0)) and Im(Puc/T
(0))

are both much larger than Im(Pct/T
(0)). There ap-

pears to be no single plausible explanation for such
a case. It may indicate that Pu (that includes weak
annihilation) is large, while Pc and Pt are small or
have small phases. Another, fine tuned, possibility
is that both Pc and Pt have large but nearly equal



6

0

0.2

0.4

0.6

0.8

1

1.2

-60 -40 -20 0 20 40 60

τ    (deg)

1 
– 

C
L

t-convention
c-convention

t-convention
fit without using C00

0

0.2

0.4

0.6

0.8

1

1.2

-60 -40 -20 0 20 40 60

τ    (deg)

1 
– 

C
L

t-convention
c-convention

FIG. 4: Confidence level plots for τ = arg(Tππ/T−0) in the t- and c-conventions in B → ππ (left), and for B → ρρ (right).

phases. Last, it might be that φT = O(1), indicat-
ing large corrections to the heavy quark limit.

(v) |τ (t)| ∼ |τ (c)| = O(1) and |τ (t) − τ (c)| = O(1). This
would imply that Im(Put/T

(0)), Im(Puc/T
(0)), and

Im(Pct/T
(0)) are all large. In this case the likely

explanation would be that all penguins are large
and comparable to T (0).

Note that the τ (t) − τ (c) difference is related to the
penguin-to-tree ratio,

τ (t) − τ (c) = − arg

(
1− |λu|

|λc|
P

(t)
ππ

T
(t)
ππ

)
, (20)

and can be determined with better precision than τ (t,c)

separately.

A. B → ππ

Using the experimental data we can determine τ in
the t- and c-conventions. The results for the confidence
levels of τ (t,c) are shown in the left plot in Fig. 4. At
the one sigma level only one solution is allowed (because
C00 disfavors one of the solutions at a near 2σ level).
Including C00 in the fit drives |τ | to larger values

τ =

{(
36+6

−8

)◦
, t-convention,(

30+6
−8

)◦
, c-convention.

(21)

Note that the central values indicate rather large values
for τ in both conventions. Their difference is more accu-
rately determined by Eq. (20), where the fit gives

τ (t) − τ (c) =
(
5.7+2.0

−1.7

)◦
. (22)

Eqs. (21) and (22) favor scenario (iv). While this may
have several reasons as explained above, the least fine-
tuned one, i.e., a large Pu (including weak annihilation)
and smaller Pc,t penguins (or that the φT ≪ 1 prediction
receives large corrections), would be puzzling for any ap-
proach to factorization. At present, this is not a very
firm conclusion yet. (Note that a similar enhancement
of the u-penguin amplitude is observed in B → Kπ and
b → (ss)s decays, if the apparent anomalies therein are
interpreted within the SM.)

B. B → ρρ

Since B → ρρ decays are dominantly longitudinally
polarized, the determination of α from this mode is very
similar to that from B → ππ, except that at the few per-
cent level an I = 1 amplitude may be present [21]. Us-
ing dynamical input to reduce the uncertainty of α from
B → ρρ has received little attention so far, because the
isospin bound puts tight constraints on α−αeff . However,
this bound may become worse in the future, since the
strong present bound is a consequence of the fact that the
isospin triangles do not close with the central values of
the current world averages. This is a consequence of both
the branching ratios, whose central values in units of 10−3

are
√
B(B → ρ+ρ0) = 5.14,

√
B(B → ρ+ρ−)/2 = 3.87,

and
√
B(B → ρ0ρ0) < 1.05 (90% CL), and the smallness

of Cρ+ρ− = −0.03± 0.20 [2, 22]. Therefore, although at
present imposing |τ | < 10◦ does not improve the con-
straint on α− αeff in this mode, such a dynamical input
may become useful in the future.

In this case, the τ values in the two conventions differ
by less than a degree as shown in the right plot in Fig. 4,
giving τ = (0 ± 12)◦. This may tend towards the above
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scenario (iii). If in the future the measured value of the
B → ρ+ρ0 branching ratio decreases (or that of ρ0ρ0 in-
creases) then the pure isospin bound will become worse,
and the fit results for τ will also change. If that fit still fa-
vors |τ (t)| ≪ |τ (c)| or |τ (t)| ∼ |τ (c)| ≪ 1 [cases (i) or (iii)]
then we would feel comfortable imposing a constraint on
the magnitude of τ (t) to improve the determination of
the CKM angle α.

V. CONCLUSIONS

The tree amplitudes in B → ππ decays can be com-
puted in an expansion of ΛQCD/mb using factorization.
In the heavy quark limit the strong phase between the
tree amplitudes is suppressed, which may help to improve
the determination of the weak phase α. Using this theory
input as an additional constraint in the fit for α, requires
some understanding of the power corrections and penguin
amplitudes.
While the present measurement of C00 does not pro-

vide a significant determination of α from the B → ππ
isospin analysis, it provides useful information about the
hadronic amplitudes. The determination of α using the
central values of the present data with C00 replaced by
the assumption of a flat TT gives a solution near the
isospin bound. While a |τ (t)| < 5◦ or 10◦ theoretical
bound is quite powerful to constrain α, allowing for larger
deviations from the heavy quark limit (|τ (t)| < 20◦) re-
duces significantly the predictive power of the constraint
on α. The present C00 result, however, disfavors being at
the isospin bound at about the 2σ level. This observation
is exhibited by the like-sign C+− and C00 measurements,
whereas the opposite signs of the Pππ terms in the π+π−

and π0π0 amplitudes would imply opposite signs for C+−

and C00 if the tree triangle was flat.

We proposed a comparison of fits that can give infor-
mation about the relative size of the penguins, using only
ππ data and the global fit for γ. While the present data
is not yet precise enough to give firm conclusions, its
most likely implication is that not only the charm (nor
the top) penguins in B → ππ are large, but so are the
up penguins (including terms proportional to Vub that
are power suppressed in the heavy quark limit), thus one
may not be able to use theory instead of C00. On the
other hand, for B → ρρ decay, it may well be the case
that the data will continue to favor |τ (t)| ∼ |τ (c)| ≪ 1 or
|τ (t)| ≪ |τ (c)|, in which case the theory can be useful to
reduce the error on α without a measurement of C00.
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